home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Inside Multimedia 1995 July
/
IMM0795.ISO
/
share
/
os2
/
sysbench
/
src
/
pmb_linp.ckr
< prev
next >
Wrap
Text File
|
1994-11-05
|
27KB
|
1,232 lines
/*
Translated to C by Bonnie Toy 5/88
You MUST specify one of -DSP or -DDP to compile correctly.
You MUST specify one of -DROLL or -DUNROLL to compile correctly.
You MUST specify a timer option(see below) to compile correctly.
To compile double precision version for Sun-4:
cc -DUNIX -DDP -DROLL -O4 clinpack.c
To compile single precision version for Sun-4:
cc -DUNIX -DSP -DROLL -O4 -fsingle -fsingle2 clinpack.c
To obtain rolled source BLAS, add -DROLL to the command lines.
To obtain unrolled source BLAS, add -DUNROLL to the command lines.
PLEASE NOTE: You can also just 'uncomment' one of the options below.
*/
/* #define SP */
#define DP
#define ROLL
/* #define UNROLL */
/***************************************************************/
/* Timer options. You MUST uncomment one of the options below */
/* or compile, for example, with the '-DUNIX' option. */
/***************************************************************/
/* #define Amiga */
/* #define UNIX */
/* #define UNIX_Old */
/* #define VMS */
/* #define BORLAND_C */
/* #define MSC */
/* #define MAC */
/* #define IPSC */
/* #define FORTRAN_SEC */
/* #define GTODay */
/* #define CTimer */
/* #define UXPM */
#ifdef SP
#define REAL float
#define ZERO 0.0
#define ONE 1.0
#define PREC "Single "
#endif
#ifdef DP
#define REAL double
#define ZERO 0.0e0
#define ONE 1.0e0
#define PREC "Double "
#endif
#define NTIMES 100
#ifdef ROLL
#define ROLLING "Rolled "
#endif
#ifdef UNROLL
#define ROLLING "Unrolled "
#endif
//#include <stdio.h>
#include <math.h>
static double st[8][6];
double pmb_linpack ()
{
static REAL aa[200][200],a[200][201],b[200],x[200];
REAL cray,ops,total,norma,normx;
REAL resid,residn,eps;
REAL epslon(),kf;
double t1,tm,tm2,dtime();
static int ipvt[200],n,i,ntimes,info,lda,ldaa,kflops;
lda = 201;
ldaa = 200;
cray = .056;
n = 100;
/*
fprintf(stdout,ROLLING);fprintf(stdout,PREC);
fprintf(stdout,"Precision Linpack\n\n");
*/
// fprintf(stderr,ROLLING);fprintf(stderr,PREC);
// fprintf(stderr,"Precision Linpack\n\n");
ops = (2.0e0*(n*n*n))/3.0 + 2.0*(n*n);
matgen(a,lda,n,b,&norma);
t1 = dtime();
dgefa(a,lda,n,ipvt,&info);
st[0][0] = dtime() - t1;
t1 = dtime();
dgesl(a,lda,n,ipvt,b,0);
st[1][0] = dtime() - t1;
total = st[0][0] + st[1][0];
/* compute a residual to verify results. */
for (i = 0; i < n; i++) {
x[i] = b[i];
}
matgen(a,lda,n,b,&norma);
for (i = 0; i < n; i++) {
b[i] = -b[i];
}
dmxpy(n,b,n,lda,x,a);
resid = 0.0;
normx = 0.0;
for (i = 0; i < n; i++) {
resid = (resid > fabs((double)b[i]))
? resid : fabs((double)b[i]);
normx = (normx > fabs((double)x[i]))
? normx : fabs((double)x[i]);
}
eps = epslon((REAL)ONE);
residn = resid/( n*norma*normx*eps );
/* printf(" norm. resid resid machep");
printf(" x[0]-1 x[n-1]-1\n");
printf("%8.1f %16.8e%16.8e%16.8e%16.8e\n",
(double)residn, (double)resid, (double)eps,
(double)x[0]-1, (double)x[n-1]-1);
fprintf(stderr," times are reported for matrices of order %5d\n",n);
fprintf(stderr," dgefa dgesl total kflops unit");
fprintf(stderr," ratio\n");
*/
st[2][0] = total;
st[3][0] = ops/(1.0e3*total);
st[4][0] = 2.0e3/st[3][0];
st[5][0] = total/cray;
// fprintf(stderr," times for array with leading dimension of%5d\n",lda);
print_time(0);
matgen(a,lda,n,b,&norma);
t1 = dtime();
dgefa(a,lda,n,ipvt,&info);
st[0][1] = dtime() - t1;
t1 = dtime();
dgesl(a,lda,n,ipvt,b,0);
st[1][1] = dtime() - t1;
total = st[0][1] + st[1][1];
st[2][1] = total;
st[3][1] = ops/(1.0e3*total);
st[4][1] = 2.0e3/st[3][1];
st[5][1] = total/cray;
matgen(a,lda,n,b,&norma);
t1 = dtime();
dgefa(a,lda,n,ipvt,&info);
st[0][2] = dtime() - t1;
t1 = dtime();
dgesl(a,lda,n,ipvt,b,0);
st[1][2] = dtime() - t1;
total = st[0][2] + st[1][2];
st[2][2] = total;
st[3][2] = ops/(1.0e3*total);
st[4][2] = 2.0e3/st[3][2];
st[5][2] = total/cray;
ntimes = NTIMES;
tm2 = 0.0;
t1 = dtime();
for (i = 0; i < ntimes; i++) {
tm = dtime();
matgen(a,lda,n,b,&norma);
tm2 = tm2 + dtime() - tm;
dgefa(a,lda,n,ipvt,&info);
}
st[0][3] = (dtime() - t1 - tm2)/ntimes;
t1 = dtime();
for (i = 0; i < ntimes; i++) {
dgesl(a,lda,n,ipvt,b,0);
}
st[1][3] = (dtime() - t1)/ntimes;
total = st[0][3] + st[1][3];
st[2][3] = total;
st[3][3] = ops/(1.0e3*total);
st[4][3] = 2.0e3/st[3][3];
st[5][3] = total/cray;
print_time(1);
print_time(2);
print_time(3);
matgen(aa,ldaa,n,b,&norma);
t1 = dtime();
dgefa(aa,ldaa,n,ipvt,&info);
st[0][4] = dtime() - t1;
t1 = dtime();
dgesl(aa,ldaa,n,ipvt,b,0);
st[1][4] = dtime() - t1;
total = st[0][4] + st[1][4];
st[2][4] = total;
st[3][4] = ops/(1.0e3*total);
st[4][4] = 2.0e3/st[3][4];
st[5][4] = total/cray;
matgen(aa,ldaa,n,b,&norma);
t1 = dtime();
dgefa(aa,ldaa,n,ipvt,&info);
st[0][5] = dtime() - t1;
t1 = dtime();
dgesl(aa,ldaa,n,ipvt,b,0);
st[1][5] = dtime() - t1;
total = st[0][5] + st[1][5];
st[2][5] = total;
st[3][5] = ops/(1.0e3*total);
st[4][5] = 2.0e3/st[3][5];
st[5][5] = total/cray;
matgen(aa,ldaa,n,b,&norma);
t1 = dtime();
dgefa(aa,ldaa,n,ipvt,&info);
st[0][6] = dtime() - t1;
t1 = dtime();
dgesl(aa,ldaa,n,ipvt,b,0);
st[1][6] = dtime() - t1;
total = st[0][6] + st[1][6];
st[2][6] = total;
st[3][6] = ops/(1.0e3*total);
st[4][6] = 2.0e3/st[3][6];
st[5][6] = total/cray;
ntimes = NTIMES;
tm2 = 0;
t1 = dtime();
for (i = 0; i < ntimes; i++) {
tm = dtime();
matgen(aa,ldaa,n,b,&norma);
tm2 = tm2 + dtime() - tm;
dgefa(aa,ldaa,n,ipvt,&info);
}
st[0][7] = (dtime() - t1 - tm2)/ntimes;
t1 = dtime();
for (i = 0; i < ntimes; i++) {
dgesl(aa,ldaa,n,ipvt,b,0);
}
st[1][7] = (dtime() - t1)/ntimes;
total = st[0][7] + st[1][7];
st[2][7] = total;
st[3][7] = ops/(1.0e3*total);
st[4][7] = 2.0e3/st[3][7];
st[5][7] = total/cray;
/* the following code sequence implements the semantics of
the Fortran intrinsics "nint(min(st[3][3],st[3][7]))" */
/*
kf = (st[3][3] < st[3][7]) ? st[3][3] : st[3][7];
kf = (kf > ZERO) ? (kf + .5) : (kf - .5);
if (fabs((double)kf) < ONE)
kflops = 0;
else {
kflops = floor(fabs((double)kf));
if (kf < ZERO) kflops = -kflops;
}
*/
if ( st[3][3] < ZERO ) st[3][3] = ZERO;
if ( st[3][7] < ZERO ) st[3][7] = ZERO;
kf = st[3][3];
if ( st[3][7] < st[3][3] ) kf = st[3][7];
kflops = (int)(kf + 0.5);
// fprintf(stderr," times for array with leading dimension of%4d\n",ldaa);
print_time(4);
print_time(5);
print_time(6);
print_time(7);
// fprintf(stderr,ROLLING);fprintf(stderr,PREC);
// fprintf(stderr," Precision %5d Kflops ; %d Reps \n",kflops,NTIMES);
return kflops;
}
/*----------------------*/
static print_time (row)
int row;
{
/*fprintf(stderr,"%11.2f%11.2f%11.2f%11.0f%11.2f%11.2f\n",
(double)st[0][row], (double)st[1][row], (double)st[2][row],
(double)st[3][row], (double)st[4][row], (double)st[5][row]);
*/
}
/*----------------------*/
static matgen(a,lda,n,b,norma)
REAL a[],b[],*norma;
int lda, n;
/* We would like to declare a[][lda], but c does not allow it. In this
function, references to a[i][j] are written a[lda*i+j]. */
{
int init, i, j;
init = 1325;
*norma = 0.0;
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++) {
init = 3125*init % 65536;
a[lda*j+i] = (init - 32768.0)/16384.0;
*norma = (a[lda*j+i] > *norma) ? a[lda*j+i] : *norma;
}
}
for (i = 0; i < n; i++) {
b[i] = 0.0;
}
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++) {
b[i] = b[i] + a[lda*j+i];
}
}
}
/*----------------------*/
static dgefa(a,lda,n,ipvt,info)
REAL a[];
int lda,n,ipvt[],*info;
/* We would like to declare a[][lda], but c does not allow it. In this
function, references to a[i][j] are written a[lda*i+j].
*/
/*
dgefa factors a double precision matrix by gaussian elimination.
dgefa is usually called by dgeco, but it can be called
directly with a saving in time if rcond is not needed.
(time for dgeco) = (1 + 9/n)*(time for dgefa) .
on entry
a REAL precision[n][lda]
the matrix to be factored.
lda integer
the leading dimension of the array a .
n integer
the order of the matrix a .
on return
a an upper triangular matrix and the multipliers
which were used to obtain it.
the factorization can be written a = l*u where
l is a product of permutation and unit lower
triangular matrices and u is upper triangular.
ipvt integer[n]
an integer vector of pivot indices.
info integer
= 0 normal value.
= k if u[k][k] .eq. 0.0 . this is not an error
condition for this subroutine, but it does
indicate that dgesl or dgedi will divide by zero
if called. use rcond in dgeco for a reliable
indication of singularity.
linpack. this version dated 08/14/78 .
cleve moler, university of new mexico, argonne national lab.
functions
blas daxpy,dscal,idamax
*/
{
/* internal variables */
REAL t;
int idamax(),j,k,kp1,l,nm1;
/* gaussian elimination with partial pivoting */
*info = 0;
nm1 = n - 1;
if (nm1 >= 0) {
for (k = 0; k < nm1; k++) {
kp1 = k + 1;
/* find l = pivot index */
l = idamax(n-k,&a[lda*k+k],1) + k;
ipvt[k] = l;
/* zero pivot implies this column already
triangularized */
if (a[lda*k+l] != ZERO) {
/* interchange if necessary */
if (l != k) {
t = a[lda*k+l];
a[lda*k+l] = a[lda*k+k];
a[lda*k+k] = t;
}
/* compute multipliers */
t = -ONE/a[lda*k+k];
dscal(n-(k+1),t,&a[lda*k+k+1],1);
/* row elimination with column indexing */
for (j = kp1; j < n; j++) {
t = a[lda*j+l];
if (l != k) {
a[lda*j+l] = a[lda*j+k];
a[lda*j+k] = t;
}
daxpy(n-(k+1),t,&a[lda*k+k+1],1,
&a[lda*j+k+1],1);
}
}
else {
*info = k;
}
}
}
ipvt[n-1] = n-1;
if (a[lda*(n-1)+(n-1)] == ZERO) *info = n-1;
}
/*----------------------*/
static dgesl(a,lda,n,ipvt,b,job)
int lda,n,ipvt[],job;
REAL a[],b[];
/* We would like to declare a[][lda], but c does not allow it. In this
function, references to a[i][j] are written a[lda*i+j]. */
/*
dgesl solves the double precision system
a * x = b or trans(a) * x = b
using the factors computed by dgeco or dgefa.
on entry
a double precision[n][lda]
the output from dgeco or dgefa.
lda integer
the leading dimension of the array a .
n integer
the order of the matrix a .
ipvt integer[n]
the pivot vector from dgeco or dgefa.
b double precision[n]
the right hand side vector.
job integer
= 0 to solve a*x = b ,
= nonzero to solve trans(a)*x = b where
trans(a) is the transpose.
on return
b the solution vector x .
error condition
a division by zero will occur if the input factor contains a
zero on the diagonal. technically this indicates singularity
but it is often caused by improper arguments or improper
setting of lda . it will not occur if the subroutines are
called correctly and if dgeco has set rcond .gt. 0.0
or dgefa has set info .eq. 0 .
to compute inverse(a) * c where c is a matrix
with p columns
dgeco(a,lda,n,ipvt,rcond,z)
if (!rcond is too small){
for (j=0,j<p,j++)
dgesl(a,lda,n,ipvt,c[j][0],0);
}
linpack. this version dated 08/14/78 .
cleve moler, university of new mexico, argonne national lab.
functions
blas daxpy,ddot
*/
{
/* internal variables */
REAL ddot(),t;
int k,kb,l,nm1;
nm1 = n - 1;
if (job == 0) {
/* job = 0 , solve a * x = b
first solve l*y = b */
if (nm1 >= 1) {
for (k = 0; k < nm1; k++) {
l = ipvt[k];
t = b[l];
if (l != k){
b[l] = b[k];
b[k] = t;
}
daxpy(n-(k+1),t,&a[lda*k+k+1],1,&b[k+1],1);
}
}
/* now solve u*x = y */
for (kb = 0; kb < n; kb++) {
k = n - (kb + 1);
b[k] = b[k]/a[lda*k+k];
t = -b[k];
daxpy(k,t,&a[lda*k+0],1,&b[0],1);
}
}
else {
/* job = nonzero, solve trans(a) * x = b
first solve trans(u)*y = b */
for (k = 0; k < n; k++) {
t = ddot(k,&a[lda*k+0],1,&b[0],1);
b[k] = (b[k] - t)/a[lda*k+k];
}
/* now solve trans(l)*x = y */
if (nm1 >= 1) {
for (kb = 1; kb < nm1; kb++) {
k = n - (kb+1);
b[k] = b[k] + ddot(n-(k+1),&a[lda*k+k+1],1,&b[k+1],1);
l = ipvt[k];
if (l != k) {
t = b[l];
b[l] = b[k];
b[k] = t;
}
}
}
}
}
/*----------------------*/
static daxpy(n,da,dx,incx,dy,incy)
/*
constant times a vector plus a vector.
jack dongarra, linpack, 3/11/78.
*/
REAL dx[],dy[],da;
int incx,incy,n;
{
int i,ix,iy,m,mp1;
if(n <= 0) return;
if (da == ZERO) return;
if(incx != 1 || incy != 1) {
/* code for unequal increments or equal increments
not equal to 1 */
ix = 1;
iy = 1;
if(incx < 0) ix = (-n+1)*incx + 1;
if(incy < 0) iy = (-n+1)*incy + 1;
for (i = 0;i < n; i++) {
dy[iy] = dy[iy] + da*dx[ix];
ix = ix + incx;
iy = iy + incy;
}
return;
}
/* code for both increments equal to 1 */
#ifdef ROLL
for (i = 0;i < n; i++) {
dy[i] = dy[i] + da*dx[i];
}
#endif
#ifdef UNROLL
m = n % 4;
if ( m != 0) {
for (i = 0; i < m; i++)
dy[i] = dy[i] + da*dx[i];
if (n < 4) return;
}
for (i = m; i < n; i = i + 4) {
dy[i] = dy[i] + da*dx[i];
dy[i+1] = dy[i+1] + da*dx[i+1];
dy[i+2] = dy[i+2] + da*dx[i+2];
dy[i+3] = dy[i+3] + da*dx[i+3];
}
#endif
}
/*----------------------*/
static REAL ddot(n,dx,incx,dy,incy)
/*
forms the dot product of two vectors.
jack dongarra, linpack, 3/11/78.
*/
REAL dx[],dy[];
int incx,incy,n;
{
REAL dtemp;
int i,ix,iy,m,mp1;
dtemp = ZERO;
if(n <= 0) return(ZERO);
if(incx != 1 || incy != 1) {
/* code for unequal increments or equal increments
not equal to 1 */
ix = 0;
iy = 0;
if (incx < 0) ix = (-n+1)*incx;
if (incy < 0) iy = (-n+1)*incy;
for (i = 0;i < n; i++) {
dtemp = dtemp + dx[ix]*dy[iy];
ix = ix + incx;
iy = iy + incy;
}
return(dtemp);
}
/* code for both increments equal to 1 */
#ifdef ROLL
for (i=0;i < n; i++)
dtemp = dtemp + dx[i]*dy[i];
return(dtemp);
#endif
#ifdef UNROLL
m = n % 5;
if (m != 0) {
for (i = 0; i < m; i++)
dtemp = dtemp + dx[i]*dy[i];
if (n < 5) return(dtemp);
}
for (i = m; i < n; i = i + 5) {
dtemp = dtemp + dx[i]*dy[i] +
dx[i+1]*dy[i+1] + dx[i+2]*dy[i+2] +
dx[i+3]*dy[i+3] + dx[i+4]*dy[i+4];
}
return(dtemp);
#endif
}
/*----------------------*/
static dscal(n,da,dx,incx)
/* scales a vector by a constant.
jack dongarra, linpack, 3/11/78.
*/
REAL da,dx[];
int n, incx;
{
int i,m,mp1,nincx;
if(n <= 0)return;
if(incx != 1) {
/* code for increment not equal to 1 */
nincx = n*incx;
for (i = 0; i < nincx; i = i + incx)
dx[i] = da*dx[i];
return;
}
/* code for increment equal to 1 */
#ifdef ROLL
for (i = 0; i < n; i++)
dx[i] = da*dx[i];
#endif
#ifdef UNROLL
m = n % 5;
if (m != 0) {
for (i = 0; i < m; i++)
dx[i] = da*dx[i];
if (n < 5) return;
}
for (i = m; i < n; i = i + 5){
dx[i] = da*dx[i];
dx[i+1] = da*dx[i+1];
dx[i+2] = da*dx[i+2];
dx[i+3] = da*dx[i+3];
dx[i+4] = da*dx[i+4];
}
#endif
}
/*----------------------*/
static int idamax(n,dx,incx)
/*
finds the index of element having max. absolute value.
jack dongarra, linpack, 3/11/78.
*/
REAL dx[];
int incx,n;
{
REAL dmax;
int i, ix, itemp;
if( n < 1 ) return(-1);
if(n ==1 ) return(0);
if(incx != 1) {
/* code for increment not equal to 1 */
ix = 1;
dmax = fabs((double)dx[0]);
ix = ix + incx;
for (i = 1; i < n; i++) {
if(fabs((double)dx[ix]) > dmax) {
itemp = i;
dmax = fabs((double)dx[ix]);
}
ix = ix + incx;
}
}
else {
/* code for increment equal to 1 */
itemp = 0;
dmax = fabs((double)dx[0]);
for (i = 1; i < n; i++) {
if(fabs((double)dx[i]) > dmax) {
itemp = i;
dmax = fabs((double)dx[i]);
}
}
}
return (itemp);
}
/*----------------------*/
static REAL epslon (x)
REAL x;
/*
estimate unit roundoff in quantities of size x.
*/
{
REAL a,b,c,eps;
/*
this program should function properly on all systems
satisfying the following two assumptions,
1. the base used in representing dfloating point
numbers is not a power of three.
2. the quantity a in statement 10 is represented to
the accuracy used in dfloating point variables
that are stored in memory.
the statement number 10 and the go to 10 are intended to
force optimizing compilers to generate code satisfying
assumption 2.
under these assumptions, it should be true that,
a is not exactly equal to four-thirds,
b has a zero for its last bit or digit,
c is not exactly equal to one,
eps measures the separation of 1.0 from
the next larger dfloating point number.
the developers of eispack would appreciate being informed
about any systems where these assumptions do not hold.
*****************************************************************
this routine is one of the auxiliary routines used by eispack iii
to avoid machine dependencies.
*****************************************************************
this version dated 4/6/83.
*/
a = 4.0e0/3.0e0;
eps = ZERO;
while (eps == ZERO) {
b = a - ONE;
c = b + b + b;
eps = fabs((double)(c-ONE));
}
return(eps*fabs((double)x));
}
/*----------------------*/
static dmxpy (n1, y, n2, ldm, x, m)
REAL y[], x[], m[];
int n1, n2, ldm;
/* We would like to declare m[][ldm], but c does not allow it. In this
function, references to m[i][j] are written m[ldm*i+j]. */
/*
purpose:
multiply matrix m times vector x and add the result to vector y.
parameters:
n1 integer, number of elements in vector y, and number of rows in
matrix m
y double [n1], vector of length n1 to which is added
the product m*x
n2 integer, number of elements in vector x, and number of columns
in matrix m
ldm integer, leading dimension of array m
x double [n2], vector of length n2
m double [ldm][n2], matrix of n1 rows and n2 columns
----------------------------------------------------------------------
*/
{
int j,i,jmin;
/* cleanup odd vector */
j = n2 % 2;
if (j >= 1) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = (y[i]) + x[j]*m[ldm*j+i];
}
/* cleanup odd group of two vectors */
j = n2 % 4;
if (j >= 2) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = ( (y[i])
+ x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i];
}
/* cleanup odd group of four vectors */
j = n2 % 8;
if (j >= 4) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = ((( (y[i])
+ x[j-3]*m[ldm*(j-3)+i])
+ x[j-2]*m[ldm*(j-2)+i])
+ x[j-1]*m[ldm*(j-1)+i]) + x[j]*m[ldm*j+i];
}
/* cleanup odd group of eight vectors */
j = n2 % 16;
if (j >= 8) {
j = j - 1;
for (i = 0; i < n1; i++)
y[i] = ((((((( (y[i])
+ x[j-7]*m[ldm*(j-7)+i]) + x[j-6]*m[ldm*(j-6)+i])
+ x[j-5]*m[ldm*(j-5)+i]) + x[j-4]*m[ldm*(j-4)+i])
+ x[j-3]*m[ldm*(j-3)+i]) + x[j-2]*m[ldm*(j-2)+i])
+ x[j-1]*m[ldm*(j-1)+i]) + x[j] *m[ldm*j+i];
}
/* main loop - groups of sixteen vectors */
jmin = (n2%16)+16;
for (j = jmin-1; j < n2; j = j + 16) {
for (i = 0; i < n1; i++)
y[i] = ((((((((((((((( (y[i])
+ x[j-15]*m[ldm*(j-15)+i])
+ x[j-14]*m[ldm*(j-14)+i])
+ x[j-13]*m[ldm*(j-13)+i])
+ x[j-12]*m[ldm*(j-12)+i])
+ x[j-11]*m[ldm*(j-11)+i])
+ x[j-10]*m[ldm*(j-10)+i])
+ x[j- 9]*m[ldm*(j- 9)+i])
+ x[j- 8]*m[ldm*(j- 8)+i])
+ x[j- 7]*m[ldm*(j- 7)+i])
+ x[j- 6]*m[ldm*(j- 6)+i])
+ x[j- 5]*m[ldm*(j- 5)+i])
+ x[j- 4]*m[ldm*(j- 4)+i])
+ x[j- 3]*m[ldm*(j- 3)+i])
+ x[j- 2]*m[ldm*(j- 2)+i])
+ x[j- 1]*m[ldm*(j- 1)+i])
+ x[j] *m[ldm*j+i];
}
}
/*****************************************************/
/* Various timer routines. */
/* Al Aburto, aburto@marlin.nosc.mil, 26 Sep 1992 */
/* */
/* t = dtime() outputs the current time in seconds. */
/* Use CAUTION as some of these routines will mess */
/* up when timing across the hour mark!!! */
/* */
/* For timing I use the 'user' time whenever */
/* possible. Using 'user+sys' time is a separate */
/* issue. */
/* */
/*****************************************************/
/*********************************/
/* Timer code. */
/*********************************/
/*******************/
/* Amiga dtime() */
/*******************/
#ifdef Amiga
#include <ctype.h>
#define HZ 50
double dtime()
{
double q;
struct tt {
long days;
long minutes;
long ticks;
} tt;
DateStamp(&tt);
q = ((double)(tt.ticks + (tt.minutes * 60L * 50L))) / (double)HZ;
return q;
}
#endif
/*****************************************************/
/* UNIX dtime(). This is the preferred UNIX timer. */
/* Provided by: Markku Kolkka, mk59200@cc.tut.fi */
/* HP-UX Addition by: Bo Thide', bt@irfu.se */
/*****************************************************/
#ifdef UNIX
#include <sys/time.h>
#include <sys/resource.h>
#ifdef __hpux
#include <sys/syscall.h>
#define getrusage(a,b) syscall(SYS_getrusage,a,b)
#endif
struct rusage rusage;
double dtime()
{
double q;
getrusage(RUSAGE_SELF,&rusage);
q = (double)(rusage.ru_utime.tv_sec);
q = q + (double)(rusage.ru_utime.tv_usec) * 1.0e-06;
return q;
}
#endif
/***************************************************/
/* UNIX_Old dtime(). This is the old UNIX timer. */
/* Use only if absolutely necessary as HZ may be */
/* ill defined on your system. */
/***************************************************/
#ifdef UNIX_Old
#include <sys/types.h>
#include <sys/times.h>
#include <sys/param.h>
#ifndef HZ
#define HZ 60
#endif
struct tms tms;
double dtime()
{
double q;
times(&tms);
q = (double)(tms.tms_utime) / (double)HZ;
return q;
}
#endif
/*********************************************************/
/* VMS dtime() for VMS systems. */
/* Provided by: RAMO@uvphys.phys.UVic.CA */
/* Some people have run into problems with this timer. */
/*********************************************************/
#ifdef VMS
#include time
#ifndef HZ
#define HZ 100
#endif
struct tbuffer_t
{
int proc_user_time;
int proc_system_time;
int child_user_time;
int child_system_time;
};
struct tbuffer_t tms;
double dtime()
{
double q;
times(&tms);
q = (double)(tms.proc_user_time) / (double)HZ;
return q;
}
#endif
/******************************/
/* BORLAND C dtime() for DOS */
/******************************/
#ifdef BORLAND_C
#include <ctype.h>
#include <dos.h>
#include <time.h>
#define HZ 100
struct time tnow;
double dtime()
{
double q;
gettime(&tnow);
q = 60.0 * (double)(tnow.ti_min);
q = q + (double)(tnow.ti_sec);
q = q + (double)(tnow.ti_hund)/(double)HZ;
return q;
}
#endif
/**************************************/
/* Microsoft C (MSC) dtime() for DOS */
/**************************************/
#ifdef MSC
#include <time.h>
#include <ctype.h>
#define HZ CLK_TCK
clock_t tnow;
double dtime()
{
double q;
tnow = clock();
q = (double)tnow / (double)HZ;
return q;
}
#endif
/*************************************/
/* Macintosh (MAC) Think C dtime() */
/*************************************/
#ifdef MAC
#include <time.h>
#define HZ 60
double dtime()
{
double q;
q = (double)clock() / (double)HZ;
return q;
}
#endif
/************************************************************/
/* iPSC/860 (IPSC) dtime() for i860. */
/* Provided by: Dan Yergeau, yergeau@gloworm.Stanford.EDU */
/************************************************************/
#ifdef IPSC
extern double dclock();
double dtime()
{
double q;
q = dclock();
return q;
}
#endif
/**************************************************/
/* FORTRAN dtime() for Cray type systems. */
/* This is the preferred timer for Cray systems. */
/**************************************************/
#ifdef FORTRAN_SEC
fortran double second();
double dtime()
{
double q;
second(&q);
return q;
}
#endif
/***********************************************************/
/* UNICOS C dtime() for Cray UNICOS systems. Don't use */
/* unless absolutely necessary as returned time includes */
/* 'user+system' time. Provided by: R. Mike Dority, */
/* dority@craysea.cray.com */
/***********************************************************/
#ifdef CTimer
#include <time.h>
double dtime()
{
double q;
clock_t t;
t = clock();
q = (double)t / (double)CLOCKS_PER_SEC;
return q;
}
#endif
/********************************************/
/* Another UNIX timer using gettimeofday(). */
/* However, getrusage() is preferred. */
/********************************************/
#ifdef GTODay
#include <sys/time.h>
struct timeval tnow;
double dtime()
{
double q;
gettimeofday(&tnow,NULL);
q = (double)tnow.tv_sec + (double)tnow.tv_usec * 1.0e-6;
return q;
}
#endif
/*****************************************************/
/* Fujitsu UXP/M timer. */
/* Provided by: Mathew Lim, ANUSF, M.Lim@anu.edu.au */
/*****************************************************/
#ifdef UXPM
#include <sys/types.h>
#include <sys/timesu.h>
struct tmsu rusage;
double dtime()
{
double q;
timesu(&rusage);
q = (double)(rusage.tms_utime) * 1.0e-06;
return q;
}
#endif