home *** CD-ROM | disk | FTP | other *** search
- .geometry "version 0.1";
- v1 = .free(-0.012312, -0.017784, .invisible, "1");
- v2 = .free(0.767442, -0.017784, .invisible, "2");
- c1 = .c.vv(v1, v2);
- v3 = .vonc(c1, -0.708427, -0.369125, .plus);
- v4 = .vonc(c1, -0.589159, 0.506872, .plus);
- v5 = .vonc(c1, 0.053579, 0.759181, .plus);
- v6 = .vonc(c1, 0.671497, 0.356944, .plus);
- v7 = .vonc(c1, 0.693224, -0.349801, .plus);
- v8 = .vonc(c1, 0.037806, -0.795926, .plus);
- l1 = .l.vv(v3, v5);
- l2 = .l.vv(v5, v8);
- l3 = .l.vv(v8, v6);
- l4 = .l.vv(v6, v4);
- l5 = .l.vv(v4, v7);
- l6 = .l.vv(v7, v3);
- v9 = .v.ll(l4, l1, .red);
- v10 = .v.ll(l5, l2, .red);
- v11 = .v.ll(l6, l6);
- v12 = .v.ll(l3, l6, .red);
- l7 = .l.vv(v9, v10, .red);
- l8 = .l.vv(v10, v12, .red);
- l9 = .l.vv(v12, v9, .red);
- .text("Pascal's Theorem:");
- .text("");
- .text("Given a hexagon inscribed in a circle (actually in any conic section),");
- .text("the intersections of the opposite sides all lie on a straight line. Move");
- .text("any of the crosses on the circle to try different hexagons. The red");
- .text("points are the intersections of the opposite sides.");
- .text("");
- .text("Pascal's theorem is the dual of Brianchon's theorem (see brianchon.T).");
-