home *** CD-ROM | disk | FTP | other *** search
- .geometry "version 0.1";
- v1 = .free(-0.328804, -0.271739, "A");
- v2 = .free(-0.00271739, 0.225543, "C");
- v3 = .free(0.589674, -0.274457, "B");
- l1 = .l.vv(v1, v2);
- l2 = .l.vv(v2, v3);
- l3 = .l.vv(v3, v1);
- v4 = .v.vvmid(v1, v2, .plus, "B'");
- v5 = .v.vvmid(v2, v3, .plus, "A'");
- v6 = .v.vvmid(v3, v1, .L0, .plus, "C'");
- l4 = .l.vv(v2, v6, .L0);
- l5 = .l.vv(v3, v4);
- l6 = .l.vv(v1, v5);
- l7 = .l.vv(v4, v5, .red, .L2, .L3, .L4, .L5, .L6, .L7, .L8, .L9, .L10, .L11, .L12, .L13, .L14, .L15);
- v7 = .v.ll(l6, l4, "O");
- .text("Theorem: The three medians of a triangle meet in a point,", .L0);
- .text(" and that point is 2/3 of the distance from the", .L0);
- .text(" vertex to the middle of the opposite edge.", .L0);
- .text("", .L0);
- .text("In the figure, AA', BB', and CC' all meet at O, and", .L0);
- .text("AO = 2 OA', BO = 2 OB' and CO = 2 OC'", .L0);
- .text("To prove the theorem, show that any two medians, say AA' and BB'", .L1);
- .text("meet at a point 2/3 of the distance from the triangle vertex.", .L1);
- .text("Since it is true of any pair, all three will meet in a point.", .L1);
- .text("Construct the line A'B'. Since A' and B' bisect CA and CB, the", .L2);
- .text("triangles CB'A' and CAB are similar. Therefore AB is parallel", .L2);
- .text("to B'A' and B'A' is half the length of AB.", .L2);
- .text("", .L2);
- .text("Therefore triangle B'OA' is similar to BOA, and since B'A' is", .L2);
- .text("half the length of AB, AO = 2 OA' and BO = 2 OB'. QED.", .L2);
-