home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
rtsi.com
/
2014.01.www.rtsi.com.tar
/
www.rtsi.com
/
OS9
/
OSK
/
EFFO
/
pd8.lzh
/
SRC
/
circum.c
< prev
next >
Wrap
Text File
|
1990-05-03
|
10KB
|
363 lines
/* fill in a Sky struct with all we know about each object.
*(the user defined objects are in obj.c)
*/
#include <stdio.h>
#include <math.h>
#include "astro.h"
#include "circum.h"
#include "screen.h" /* just for SUN and MOON */
/* find body p's circumstances now.
* to save some time the caller may specify a desired accuracy, in arc seconds.
* if, based on its mean motion, it would not have moved this much since the
* last time we were called we only recompute altitude and azimuth and avoid
* recomputing the planet's heliocentric position. use 0.0 for best possible.
* we always recompute the user-defined objects' position regardless.
* return 0 if only alt/az changes, else 1 if all other stuff updated too.
* TODO: beware of fast retrograde motions.
*/
body_cir (p, as, np, sp)
int p;
double as;
Now *np;
Sky *sp;
{
typedef struct {
double l_dpas; /* mean days per arc second */
Now l_now; /* when l_sky was found */
double l_ra, l_dec; /* the eod, ie, unprecessed, ra/dec values */
Sky l_sky;
} Last;
/* must be in same order as the astro.h object #define's */
static Last last[8] =
{{.000068},{.00017},{.00053},{.0034},{.0092},{.027},{.046},{.069}};
Last objxlast, objylast;
double lst, alt, az;
double ehp, ha, dec; /* ehp: angular dia of earth from body */
Last *lp;
int new;
switch (p) {
case SUN: return (sun_cir (as, np, sp));
case MOON: return (moon_cir (as, np, sp));
case OBJX: lp = &objxlast; break;
case OBJY: lp = &objylast; break;
default: lp = last + p; break;
}
/* if less than l_every days from last time for this planet
* just redo alt/az.
* ALWAYS redo objects x and y.
*/
if (p != OBJX && p != OBJY && same_cir (np, &lp->l_now)
&& about_now (np, &lp->l_now, as*lp->l_dpas)) {
*sp = lp->l_sky;
new = 0;
} else {
double lpd0, psi0; /* heliocentric ecliptic long and lat */
double rp0; /* dist from sun */
double rho0; /* dist from earth */
double lam, bet; /* geocentric ecliptic long and lat */
double dia, mag; /* angular diameter at 1 AU and magnitude */
double lsn, rsn; /* true geoc lng of sun, dist from sn to earth*/
double el; /* elongation */
double f; /* phase from earth */
lp->l_now = *np;
sunpos (mjd, &lsn, &rsn);
if (p == OBJX || p == OBJY)
obj_cir(mjd,p,&lpd0,&psi0,&rp0,&rho0,&lam,&bet,&sp->s_mag);
else {
double deps, dpsi;
double a;
plans(mjd, p, &lpd0, &psi0, &rp0, &rho0, &lam, &bet, &dia,&mag);
nutation (mjd, &deps, &dpsi); /* correct for nutation */
lam += dpsi;
a = lsn-lam; /* and 20.4" aberation */
lam -= degrad(20.4/3600)*cos(a)/cos(bet);
bet -= degrad(20.4/3600)*sin(a)*sin(bet);
}
ecl_eq (mjd, bet, lam, &lp->l_ra, &lp->l_dec);
sp->s_ra = lp->l_ra;
sp->s_dec = lp->l_dec;
if (epoch != EOD)
precess (mjd, epoch, &sp->s_ra, &sp->s_dec);
sp->s_edist = rho0;
sp->s_sdist = rp0;
elongation (lam, bet, lsn, &el);
el = raddeg(el);
sp->s_elong = el;
sp->s_size = (p != OBJX && p != OBJY) ? dia/rho0 : 0.0;
f = 0.25 * (((rp0+rho0)*(rp0+rho0) - rsn*rsn)/(rp0*rho0));
sp->s_phase = f*100.0; /* percent */
/* obj_cir already returned the apparent magnitude */
if (p != OBJX && p != OBJY)
sp->s_mag = mag + 5.0*log(rp0*rho0/sqrt(f))/log(10.0);
sp->s_hlong = lpd0;
sp->s_hlat = psi0;
new = 1;
}
/* alt, az; correct for parallax and refraction; use eod ra/dec */
now_lst (np, &lst);
ha = hrrad(lst) - lp->l_ra;
if (sp->s_edist > 0.0) {
ehp = (2.0*6378.0/146.0e6) / sp->s_edist;
ta_par (ha, lp->l_dec, lat, height, ehp, &ha, &dec);
} else
dec = lp->l_dec;
hadec_aa (lat, ha, dec, &alt, &az);
refract (pressure, temp, alt, &alt);
sp->s_alt = alt;
sp->s_az = az;
lp->l_sky = *sp;
return (new);
}
/* find local times when sun is 18 degrees below horizon.
* return 0 if just returned same stuff as previous call, else 1 if new.
*/
twilight_cir (np, dawn, dusk, status)
Now *np;
double *dawn, *dusk;
int *status;
{
static Now last_now;
static double last_dawn, last_dusk;
static int last_status;
int new;
if (same_cir (np, &last_now) && same_lday (np, &last_now)) {
*dawn = last_dawn;
*dusk = last_dusk;
*status = last_status;
new = 0;
} else {
double x;
(void) riset_cir (SUN,np,0,TWILIGHT,dawn,dusk,&x,&x,&x,&x,status);
last_dawn = *dawn;
last_dusk = *dusk;
last_status = *status;
last_now = *np;
new = 1;
}
return (new);
}
/* find sun's circumstances now.
* as is the desired accuracy, in arc seconds; use 0.0 for best possible.
* return 0 if only alt/az changes, else 1 if all other stuff updated too.
*/
sun_cir (as, np, sp)
double as;
Now *np;
Sky *sp;
{
static Sky last_sky;
static Now last_now;
static double last_ra, last_dec; /* unprecessed ra/dec */
double lst, alt, az;
double ehp, ha, dec; /* ehp: angular dia of earth from body */
int new;
if (same_cir (np, &last_now) && about_now (np, &last_now, as*.00028)) {
*sp = last_sky;
new = 0;
} else {
double lsn, rsn;
double deps, dpsi;
last_now = *np;
sunpos (mjd, &lsn, &rsn); /* sun's true ecliptic long
* and dist
*/
nutation (mjd, &deps, &dpsi); /* correct for nutation */
lsn += dpsi;
lsn -= degrad(20.4/3600); /* and light travel time */
sp->s_edist = rsn;
sp->s_sdist = 0.0;
sp->s_elong = 0.0;
sp->s_size = raddeg(4.65242e-3/rsn)*3600*2;
sp->s_mag = -26.8;
sp->s_hlong = lsn-PI; /* geo- to helio- centric */
range (&sp->s_hlong, 2*PI);
sp->s_hlat = 0.0;
ecl_eq (mjd, 0.0, lsn, &last_ra, &last_dec);
sp->s_ra = last_ra;
sp->s_dec = last_dec;
if (epoch != EOD)
precess (mjd, epoch, &sp->s_ra, &sp->s_dec);
new = 1;
}
now_lst (np, &lst);
ha = hrrad(lst) - last_ra;
ehp = (2.0 * 6378.0 / 146.0e6) / sp->s_edist;
ta_par (ha, last_dec, lat, height, ehp, &ha, &dec);
hadec_aa (lat, ha, dec, &alt, &az);
refract (pressure, temp, alt, &alt);
sp->s_alt = alt;
sp->s_az = az;
last_sky = *sp;
return (new);
}
/* find moon's circumstances now.
* as is the desired accuracy, in arc seconds; use 0.0 for best possible.
* return 0 if only alt/az changes, else 1 if all other stuff updated too.
*/
moon_cir (as, np, sp)
double as;
Now *np;
Sky *sp;
{
static Sky last_sky;
static Now last_now;
static double ehp;
static double last_ra, last_dec; /* unprecessed */
double lst, alt, az;
double ha, dec;
int new;
if (same_cir (np, &last_now) && about_now (np, &last_now, as*.000021)) {
*sp = last_sky;
new = 0;
} else {
double lam, bet;
double deps, dpsi;
double lsn, rsn; /* sun long in rads, earth-sun dist in au */
double edistau; /* earth-moon dist, in au */
double el; /* elongation, rads east */
last_now = *np;
moon (mjd, &lam, &bet, &ehp); /* moon's true ecliptic loc */
nutation (mjd, &deps, &dpsi); /* correct for nutation */
lam += dpsi;
range (&lam, 2*PI);
sp->s_edist = 6378.14/sin(ehp); /* earth-moon dist, want km */
sp->s_size = 3600*31.22512*sin(ehp);/* moon angular dia, seconds */
ecl_eq (mjd, bet, lam, &last_ra, &last_dec);
sp->s_ra = last_ra;
sp->s_dec = last_dec;
if (epoch != EOD)
precess (mjd, epoch, &sp->s_ra, &sp->s_dec);
sunpos (mjd, &lsn, &rsn);
range (&lsn, 2*PI);
elongation (lam, bet, lsn, &el);
/* solve triangle of earth, sun, and elongation for moon-sun dist */
edistau = sp->s_edist/1.495979e8; /* km -> au */
sp->s_sdist =
sqrt (edistau*edistau + rsn*rsn - 2.0*edistau*rsn*cos(el));
/* TODO: improve mag; this is based on a flat moon model. */
sp->s_mag = -12.7 + 2.5*(log10(PI) - log10(PI/2*(1+1.e-6-cos(el))));
sp->s_elong = raddeg(el); /* want degrees */
sp->s_phase = fabs(el)/PI*100.0; /* want non-negative % */
sp->s_hlong = sp->s_hlat = 0.0;
new = 1;
}
/* show topocentric alt/az by correcting ra/dec for parallax
* as well as refraction.
*/
now_lst (np, &lst);
ha = hrrad(lst) - last_ra;
ta_par (ha, last_dec, lat, height, ehp, &ha, &dec);
hadec_aa (lat, ha, dec, &alt, &az);
refract (pressure, temp, alt, &alt);
sp->s_alt = alt;
sp->s_az = az;
last_sky = *sp;
return (new);
}
/* given geocentric ecliptic longitude and latitude, lam and bet, of some object
* and the longitude of the sun, lsn, find the elongation, el. this is the
* actual angular separation of the object from the sun, not just the difference
* in the longitude. the sign, however, IS set simply as a test on longitude
* such that el will be >0 for an evening object <0 for a morning object.
* to understand the test for el sign, draw a graph with lam going from 0-2*PI
* down the vertical axis, lsn going from 0-2*PI across the hor axis. then
* define the diagonal regions bounded by the lines lam=lsn+PI, lam=lsn and
* lam=lsn-PI. the "morning" regions are any values to the lower left of the
* first line and bounded within the second pair of lines.
* all angles in radians.
*/
elongation (lam, bet, lsn, el)
double lam, bet, lsn;
double *el;
{
*el = acos(cos(bet)*cos(lam-lsn));
if (lam>lsn+PI || lam>lsn-PI && lam<lsn) *el = - *el;
}
/* return whether the two Nows are for the same observing circumstances. */
same_cir (n1, n2)
register Now *n1, *n2;
{
return (n1->n_lat == n2->n_lat
&& n1->n_lng == n2->n_lng
&& n1->n_temp == n2->n_temp
&& n1->n_pressure == n2->n_pressure
&& n1->n_height == n2->n_height
&& n1->n_tz == n2->n_tz
&& n1->n_epoch == n2->n_epoch);
}
/* return whether the two Nows are for the same LOCAL day */
same_lday (n1, n2)
Now *n1, *n2;
{
return (mjd_day(n1->n_mjd - n1->n_tz/24.0) ==
mjd_day(n2->n_mjd - n2->n_tz/24.0));
}
/* return whether the mjd of the two Nows are within dt */
static
about_now (n1, n2, dt)
Now *n1, *n2;
double dt;
{
return (fabs (n1->n_mjd - n2->n_mjd) <= dt/2.0);
}
now_lst (np, lst)
Now *np;
double *lst;
{
utc_gst (mjd_day(mjd), mjd_hr(mjd), lst);
*lst += radhr(lng);
range (lst, 24.0);
}
/* round a time in days, *t, to the nearest second, IN PLACE. */
rnd_second (t)
double *t;
{
*t = floor(*t*SPD+0.5)/SPD;
}
double
mjd_day(jd)
double jd;
{
return (floor(jd-0.5)+0.5);
}
double
mjd_hr(jd)
double jd;
{
return ((jd-mjd_day(jd))*24.0);
}