home *** CD-ROM | disk | FTP | other *** search
- /* rsa.c - RSA function
- * Copyright (c) 1997,1998,1999 by Werner Koch (dd9jn)
- ***********************************************************************
- * ATTENTION: This code should not be exported to the United States
- * nor should it be used there without a license agreement with PKP.
- * The RSA algorithm is protected by U.S. Patent #4,405,829 which
- * expires on September 20, 2000!
- ***********************************************************************
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * WERNER KOCH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
- * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- *
- * Except as contained in this notice, the name of Werner Koch shall not be
- * used in advertising or otherwise to promote the sale, use or other dealings
- * in this Software without prior written authorization from Werner Koch.
- */
-
- /* How to compile:
- *
- gcc -Wall -O2 -shared -fPIC -o rsa rsa.c
- */
-
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
-
- /* configuration stuff */
- #ifdef __alpha__
- #define SIZEOF_UNSIGNED_LONG 8
- #else
- #define SIZEOF_UNSIGNED_LONG 4
- #endif
-
- #if defined(__mc68000__) || defined (__sparc__) || defined (__PPC__) \
- || (defined(__mips__) && (defined(MIPSEB) || defined (__MIPSEB__)) ) \
- || defined(__hpux__) /* should be replaced by the macro for the PA */
- #define BIG_ENDIAN_HOST 1
- #else
- #define LITTLE_ENDIAN_HOST 1
- #endif
-
- typedef unsigned long ulong;
- typedef unsigned short ushort;
- typedef unsigned char byte;
-
- typedef unsigned short u16;
- typedef unsigned long u32;
-
- /* end configurable stuff */
-
-
- const char * const gnupgext_version = "RSA ($Revision: 1.10 $)";
-
- #ifndef DIM
- #define DIM(v) (sizeof(v)/sizeof((v)[0]))
- #define DIMof(type,member) DIM(((type *)0)->member)
- #endif
-
- #define is_RSA(a) ((a)>=1 && (a)<=3)
-
- #define BAD_ALGO 4
- #define BAD_KEY 7
- #define BAD_SIGN 8
-
- struct mpi_struct { int hidden_stuff; };
- typedef struct mpi_struct *MPI;
-
- extern int g10c_debug_mode;
- extern int g10_opt_verbose;
-
-
-
- typedef struct {
- MPI n; /* modulus */
- MPI e; /* exponent */
- } RSA_public_key;
-
-
- typedef struct {
- MPI n; /* public modulus */
- MPI e; /* public exponent */
- MPI d; /* exponent */
- MPI p; /* prime p. */
- MPI q; /* prime q. */
- MPI u; /* inverse of p mod q. */
- } RSA_secret_key;
-
- /* imports */
- void *g10_malloc( size_t n );
- void *g10_calloc( size_t n );
- void g10_free( void *p);
- void g10_log_fatal( const char *fmt, ... );
- void g10_log_error( const char *fmt, ... );
- void g10_log_info( const char *fmt, ... );
- void g10_log_debug( const char *fmt, ... );
- void g10_log_hexdump( const char *text, char *buf, size_t len );
- void g10_log_mpidump( const char *text, MPI a );
- MPI g10c_generate_secret_prime( unsigned nbits );
- char *g10c_get_random_bits( unsigned nbits, int level, int secure );
- MPI g10m_new( unsigned nbits );
- MPI g10m_new_secure( unsigned nbits );
- void g10m_release( MPI a );
- void g10m_set( MPI w, MPI u);
- void g10m_set_ui( MPI w, unsigned long u);
- void g10m_set_buffer( MPI a, const char *buffer, unsigned nbytes, int sign );
- MPI g10m_copy( MPI a );
- void g10m_swap( MPI a, MPI b);
- unsigned g10m_get_nbits( MPI a );
- unsigned g10m_get_size( MPI a );
- int g10m_cmp( MPI u, MPI v );
- void g10m_add_ui(MPI w, MPI u, unsigned long v );
- void g10m_sub_ui(MPI w, MPI u, unsigned long v );
- void g10m_mul( MPI w, MPI u, MPI v);
- void g10m_fdiv_q( MPI quot, MPI dividend, MPI divisor );
- void g10m_powm( MPI res, MPI base, MPI exp, MPI mod);
- int g10m_gcd( MPI g, MPI a, MPI b );
- int g10m_invm( MPI x, MPI u, MPI v );
-
- /* local prototypes */
- static void test_keys( RSA_secret_key *sk, unsigned nbits );
- static void generate( RSA_secret_key *sk, unsigned nbits );
- static int check_secret_key( RSA_secret_key *sk );
- static void public(MPI output, MPI input, RSA_public_key *skey );
- static void secret(MPI output, MPI input, RSA_secret_key *skey );
-
-
- static void
- test_keys( RSA_secret_key *sk, unsigned nbits )
- {
- RSA_public_key pk;
- MPI test = g10m_new( nbits );
- MPI out1 = g10m_new( nbits );
- MPI out2 = g10m_new( nbits );
-
- pk.n = sk->n;
- pk.e = sk->e;
- { char *p = g10c_get_random_bits( nbits, 0, 0 );
- g10m_set_buffer( test, p, (nbits+7)/8, 0 );
- g10_free(p);
- }
-
- public( out1, test, &pk );
- secret( out2, out1, sk );
- if( g10m_cmp( test, out2 ) )
- g10_log_fatal("RSA operation: public, secret failed\n");
- secret( out1, test, sk );
- public( out2, out1, &pk );
- if( g10m_cmp( test, out2 ) )
- g10_log_fatal("RSA operation: secret, public failed\n");
- g10m_release( test );
- g10m_release( out1 );
- g10m_release( out2 );
- }
-
- /****************
- * Generate a key pair with a key of size NBITS
- * Returns: 2 structures filles with all needed values
- */
- static void
- generate( RSA_secret_key *sk, unsigned nbits )
- {
- MPI p, q; /* the two primes */
- MPI d; /* the private key */
- MPI u;
- MPI t1, t2;
- MPI n; /* the public key */
- MPI e; /* the exponent */
- MPI phi; /* helper: (p-a)(q-1) */
- MPI g;
- MPI f;
-
- /* select two (very secret) primes */
- p = g10c_generate_secret_prime( nbits / 2 );
- q = g10c_generate_secret_prime( nbits / 2 );
- if( g10m_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
- g10m_swap(p,q);
- /* calculate Euler totient: phi = (p-1)(q-1) */
- t1 = g10m_new_secure( g10m_get_size(p) );
- t2 = g10m_new_secure( g10m_get_size(p) );
- phi = g10m_new_secure( nbits );
- g = g10m_new_secure( nbits );
- f = g10m_new_secure( nbits );
- g10m_sub_ui( t1, p, 1 );
- g10m_sub_ui( t2, q, 1 );
- g10m_mul( phi, t1, t2 );
- g10m_gcd(g, t1, t2);
- g10m_fdiv_q(f, phi, g);
- /* multiply them to make the private key */
- n = g10m_new( nbits );
- g10m_mul( n, p, q );
- /* find a public exponent */
- e = g10m_new(6);
- g10m_set_ui( e, 17); /* start with 17 */
- while( !g10m_gcd(t1, e, phi) ) /* (while gcd is not 1) */
- g10m_add_ui( e, e, 2);
- /* calculate the secret key d = e^1 mod phi */
- d = g10m_new( nbits );
- g10m_invm(d, e, f );
- /* calculate the inverse of p and q (used for chinese remainder theorem)*/
- u = g10m_new( nbits );
- g10m_invm(u, p, q );
-
- if( g10c_debug_mode ) {
- g10_log_mpidump(" p= ", p );
- g10_log_mpidump(" q= ", q );
- g10_log_mpidump("phi= ", phi );
- g10_log_mpidump(" g= ", g );
- g10_log_mpidump(" f= ", f );
- g10_log_mpidump(" n= ", n );
- g10_log_mpidump(" e= ", e );
- g10_log_mpidump(" d= ", d );
- g10_log_mpidump(" u= ", u );
- }
-
- g10m_release(t1);
- g10m_release(t2);
- g10m_release(phi);
- g10m_release(f);
- g10m_release(g);
-
- sk->n = n;
- sk->e = e;
- sk->p = p;
- sk->q = q;
- sk->d = d;
- sk->u = u;
-
- /* now we can test our keys (this should never fail!) */
- test_keys( sk, nbits - 64 );
- }
-
-
- /****************
- * Test wether the secret key is valid.
- * Returns: true if this is a valid key.
- */
- static int
- check_secret_key( RSA_secret_key *sk )
- {
- int rc;
- MPI temp = g10m_new( g10m_get_size(sk->p)*2 );
-
- g10m_mul(temp, sk->p, sk->q );
- rc = g10m_cmp( temp, sk->n );
- g10m_release(temp);
- return !rc;
- }
-
-
-
- /****************
- * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
- *
- * c = m^e mod n
- *
- * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
- */
- static void
- public(MPI output, MPI input, RSA_public_key *pkey )
- {
- if( output == input ) { /* powm doesn't like output and input the same */
- MPI x = g10m_new( g10m_get_size(input)*2 );
- g10m_powm( x, input, pkey->e, pkey->n );
- g10m_set(output, x);
- g10m_release(x);
- }
- else
- g10m_powm( output, input, pkey->e, pkey->n );
- }
-
- /****************
- * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
- *
- * m = c^d mod n
- *
- * Where m is OUTPUT, c is INPUT and d,n are elements of PKEY.
- *
- * FIXME: We should better use the Chinese Remainder Theorem
- */
- static void
- secret(MPI output, MPI input, RSA_secret_key *skey )
- {
- g10m_powm( output, input, skey->d, skey->n );
- }
-
-
- /*********************************************
- ************** interface ******************
- *********************************************/
-
- static int
- do_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
- {
- RSA_secret_key sk;
-
- if( !is_RSA(algo) )
- return BAD_ALGO;
-
- generate( &sk, nbits );
- skey[0] = sk.n;
- skey[1] = sk.e;
- skey[2] = sk.d;
- skey[3] = sk.p;
- skey[4] = sk.q;
- skey[5] = sk.u;
- /* make an empty list of factors */
- *retfactors = g10_calloc( 1 * sizeof **retfactors );
- return 0;
- }
-
-
- static int
- do_check_secret_key( int algo, MPI *skey )
- {
- RSA_secret_key sk;
-
- if( !is_RSA(algo) )
- return BAD_ALGO;
-
- sk.n = skey[0];
- sk.e = skey[1];
- sk.d = skey[2];
- sk.p = skey[3];
- sk.q = skey[4];
- sk.u = skey[5];
- if( !check_secret_key( &sk ) )
- return BAD_KEY;
-
- return 0;
- }
-
-
-
- static int
- do_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
- {
- RSA_public_key pk;
-
- if( algo != 1 && algo != 2 )
- return BAD_ALGO;
-
- pk.n = pkey[0];
- pk.e = pkey[1];
- resarr[0] = g10m_new( g10m_get_size( pk.n ) );
- public( resarr[0], data, &pk );
- return 0;
- }
-
- static int
- do_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
- {
- RSA_secret_key sk;
-
- if( algo != 1 && algo != 2 )
- return BAD_ALGO;
-
- sk.n = skey[0];
- sk.e = skey[1];
- sk.d = skey[2];
- sk.p = skey[3];
- sk.q = skey[4];
- sk.u = skey[5];
- *result = g10m_new_secure( g10m_get_size( sk.n ) );
- secret( *result, data[0], &sk );
- return 0;
- }
-
- static int
- do_sign( int algo, MPI *resarr, MPI data, MPI *skey )
- {
- RSA_secret_key sk;
-
- if( algo != 1 && algo != 3 )
- return BAD_ALGO;
-
- sk.n = skey[0];
- sk.e = skey[1];
- sk.d = skey[2];
- sk.p = skey[3];
- sk.q = skey[4];
- sk.u = skey[5];
- resarr[0] = g10m_new( g10m_get_size( sk.n ) );
- secret( resarr[0], data, &sk );
-
- return 0;
- }
-
- static int
- do_verify( int algo, MPI hash, MPI *data, MPI *pkey,
- int (*cmp)(void *opaque, MPI tmp), void *opaquev )
- {
- RSA_public_key pk;
- MPI result;
- int rc;
-
- if( algo != 1 && algo != 3 )
- return BAD_ALGO;
- pk.n = pkey[0];
- pk.e = pkey[1];
- result = g10m_new(160);
- public( result, data[0], &pk );
- /*rc = (*cmp)( opaquev, result );*/
- rc = g10m_cmp( result, hash )? BAD_SIGN:0;
- g10m_release(result);
-
- return rc;
- }
-
-
- static unsigned
- do_get_nbits( int algo, MPI *pkey )
- {
- if( !is_RSA(algo) )
- return 0;
- return g10m_get_nbits( pkey[0] );
- }
-
-
- /****************
- * Return some information about the algorithm. We need algo here to
- * distinguish different flavors of the algorithm.
- * Returns: A pointer to string describing the algorithm or NULL if
- * the ALGO is invalid.
- * Usage: Bit 0 set : allows signing
- * 1 set : allows encryption
- */
- static const char *
- rsa_get_info( int algo,
- int *npkey, int *nskey, int *nenc, int *nsig, int *usage,
- int (**r_generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors ),
- int (**r_check_secret_key)( int algo, MPI *skey ),
- int (**r_encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey ),
- int (**r_decrypt)( int algo, MPI *result, MPI *data, MPI *skey ),
- int (**r_sign)( int algo, MPI *resarr, MPI data, MPI *skey ),
- int (**r_verify)( int algo, MPI hash, MPI *data, MPI *pkey,
- int (*)(void *, MPI), void *),
- unsigned (**r_get_nbits)( int algo, MPI *pkey ) )
- {
- *npkey = 2;
- *nskey = 6;
- *nenc = 1;
- *nsig = 1;
- *r_generate = do_generate ;
- *r_check_secret_key = do_check_secret_key;
- *r_encrypt = do_encrypt ;
- *r_decrypt = do_decrypt ;
- *r_sign = do_sign ;
- *r_verify = do_verify ;
- *r_get_nbits = do_get_nbits ;
-
- switch( algo ) {
- case 1: *usage = 2|1; return "RSA";
- case 2: *usage = 2 ; return "RSA-E";
- case 3: *usage = 1; return "RSA-S";
- default:*usage = 0; return NULL;
- }
- }
-
-
- static struct {
- int class;
- int version;
- int value;
- void (*func)(void);
- } func_table[] = {
- { 30, 1, 0, (void(*)(void))rsa_get_info },
- { 31, 1, 1 }, /* RSA */
- { 31, 1, 2 }, /* RSA encrypt only */
- { 31, 1, 3 }, /* RSA sign only */
- };
-
-
-
- /****************
- * Enumerate the names of the functions together with informations about
- * this function. Set sequence to an integer with a initial value of 0 and
- * do not change it.
- * If what is 0 all kind of functions are returned.
- * Return values: class := class of function:
- * 10 = message digest algorithm info function
- * 11 = integer with available md algorithms
- * 20 = cipher algorithm info function
- * 21 = integer with available cipher algorithms
- * 30 = public key algorithm info function
- * 31 = integer with available pubkey algorithms
- * version = interface version of the function/pointer
- */
- void *
- gnupgext_enum_func( int what, int *sequence, int *class, int *vers )
- {
- void *ret;
- int i = *sequence;
-
- do {
- if( i >= DIM(func_table) || i < 0 ) {
- return NULL;
- }
- *class = func_table[i].class;
- *vers = func_table[i].version;
- switch( *class ) {
- case 11:
- case 21:
- case 31:
- ret = &func_table[i].value;
- break;
- default:
- ret = func_table[i].func;
- break;
- }
- i++;
- } while( what && what != *class );
-
- *sequence = i;
- return ret;
- }
-
-
-