home *** CD-ROM | disk | FTP | other *** search
- /* sin.c
- *
- * Circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, sin();
- *
- * y = sin( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic range # trials peak rms
- * DEC 0, 10 20000 2.5e-17 7.1e-18
- * DEC 0, 1.07e9 10000 2.8e-17 7.2e-18
- * IEEE 0, 10 35000 2.1e-16 5.4e-17
- * IEEE -1.07e9,+1.07e9 30000 2.1e-16 5.5e-17
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 1.073741824e9 0.0
- *
- * For 43,000 random points between plus and minus 5.36e8, peak
- * relative error was 4.22e-17, rms relative error 9.29e-18.
- *
- * Partial loss of accuracy begins to occur at x = 2**30
- * = 1.074e9. The loss is not gradual, but jumps suddenly to
- * about 1 part in 10e7. Results may be meaningless for
- * x > 2**49 = 5.6e14. The routine as implemented flags a
- * TLOSS error for x > 2**30 and returns 0.0.
- */
- /* cos.c
- *
- * Circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, cos();
- *
- * y = cos( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 P(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic range # trials peak rms
- * IEEE -1.07e9,+1.07e9 5000 2.0e-16 5.5e-17
- * DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
- * See also sin().
- *
- */
-
- /* sin.c */
-
- /* Cephes Math Library Release 2.0: April, 1987
- * Copyright 1985, 1987 by Stephen L. Moshier
- * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */
-
- #include "mconf.h"
-
- #ifdef UNK
- static double sincof[] = {
- 1.58962301572218447952E-10,
- -2.50507477628503540135E-8,
- 2.75573136213856773549E-6,
- -1.98412698295895384658E-4,
- 8.33333333332211858862E-3,
- -1.66666666666666307295E-1
- };
- static double coscof[] = {
- 1.13678171382044553091E-11,
- -2.08758833757683644217E-9,
- 2.75573155429816611547E-7,
- -2.48015872936186303776E-5,
- 1.38888888888806666760E-3,
- -4.16666666666666348141E-2,
- 4.99999999999999999798E-1
- };
- static double DP1 = 7.85398125648498535156E-1;
- static double DP2 = 3.77489470793079817668E-8;
- static double DP3 = 2.69515142907905952645E-15;
- static double lossth = 1.073741824e9;
- #endif
-
- #ifdef DEC
- static short sincof[] = {
- 0030056,0143750,0177170,0073013,
- 0131727,0027455,0044510,0132205,
- 0033470,0167432,0131752,0042263,
- 0135120,0006400,0146776,0174027,
- 0036410,0104210,0104207,0137202,
- 0137452,0125252,0125252,0125103
- };
- static short coscof[] = {
- 0027107,0176030,0153315,0110312,
- 0131017,0072476,0007450,0123243,
- 0032623,0171174,0070066,0146445,
- 0134320,0006400,0147355,0163313,
- 0035666,0005540,0133012,0165067,
- 0137052,0125252,0125252,0125206,
- 0040000,0000000,0000000,0000000
- };
- /* 7.853981629014015197753906250000E-1 */
- static short P1[] = {0040111,0007732,0120000,0000000,};
- /* 4.960467869796758577649598009884E-10 */
- static short P2[] = {0030410,0055060,0100000,0000000,};
- /* 2.860594363054915898381331279295E-18 */
- static short P3[] = {0021523,0011431,0105056,0001560,};
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- static double lossth = 1.073741824e9;
- #endif
-
- #ifdef IBMPC
- static short sincof[] = {
- 0x0ec1,0x1fcf,0xd8fd,0x3de5,
- 0x1691,0xa929,0xe5e5,0xbe5a,
- 0x4896,0x567d,0x1de3,0x3ec7,
- 0xdf03,0x19bf,0x01a0,0xbf2a,
- 0xf7d0,0x1110,0x1111,0x3f81,
- 0x5548,0x5555,0x5555,0xbfc5
- };
- static short coscof[] = {
- 0xb219,0x1ad9,0xff83,0x3da8,
- 0x14d4,0xc1e5,0xeea7,0xbe21,
- 0xd9a5,0x8e06,0x7e4f,0x3e92,
- 0xbcd9,0x19dd,0x01a0,0xbefa,
- 0x5d47,0x16c1,0xc16c,0x3f56,
- 0x5551,0x5555,0x5555,0xbfa5,
- 0x0000,0x0000,0x0000,0x3fe0
- };
-
- /*
- 7.85398125648498535156E-1,
- 3.77489470793079817668E-8,
- 2.69515142907905952645E-15,
- */
- static short P1[] = {0x0000,0x4000,0x21fb,0x3fe9};
- static short P2[] = {0x0000,0x0000,0x442d,0x3e64};
- static short P3[] = {0x5170,0x98cc,0x4698,0x3ce8};
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- static double lossth = 1.073741824e9;
- #endif
-
- #ifdef MIEEE
- static short sincof[] = {
- 0x3de5,0xd8fd,0x1fcf,0x0ec1,
- 0xbe5a,0xe5e5,0xa929,0x1691,
- 0x3ec7,0x1de3,0x567d,0x4896,
- 0xbf2a,0x01a0,0x19bf,0xdf03,
- 0x3f81,0x1111,0x1110,0xf7d0,
- 0xbfc5,0x5555,0x5555,0x5548
- };
- static short coscof[] = {
- 0x3da8,0xff83,0x1ad9,0xb219,
- 0xbe21,0xeea7,0xc1e5,0x14d4,
- 0x3e92,0x7e4f,0x8e06,0xd9a5,
- 0xbefa,0x01a0,0x19dd,0xbcd9,
- 0x3f56,0xc16c,0x16c1,0x5d47,
- 0xbfa5,0x5555,0x5555,0x5551,
- 0x3fe0,0x0000,0x0000,0x0000
- };
-
- static short P1[] = {
- 0x3fe9,0x21fb,0x4000,0x0000
- };
- static short P2[] = {
- 0x3e64,0x442d,0x0000,0x0000
- };
- static short P3[] = {
- 0x3ce8,0x4698,0x98cc,0x5170
- };
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- static double lossth = 1.073741824e9;
- #endif
-
- extern double PIO4;
-
- double sin(x)
- double x;
- {
- double y, z, zz;
- int rflg, j, sign;
- double polevl(), floor(), ldexp();
-
- /* make argument positive but save the sign */
- sign = 1;
- if( x < 0 )
- {
- x = -x;
- sign = -1;
- }
-
- if( x > lossth )
- {
- mtherr( "sin", TLOSS );
- return(0.0);
- }
-
- y = floor( x/PIO4 ); /* integer part of x/PIO4 */
-
- /* strip high bits of integer part to prevent integer overflow */
- z = ldexp( y, -4 );
- z = floor(z); /* integer part of y/8 */
- z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
-
- j = z; /* convert to integer for tests on the phase angle */
- /* map zeros to origin */
- if( j & 1 )
- {
- j += 1;
- y += 1.0;
- }
- j = j & 07; /* octant modulo 360 degrees */
- /* reflect in x axis */
- if( j > 3)
- {
- sign = -sign;
- j -= 4;
- }
-
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
-
- zz = z * z;
-
- if( (j==1) || (j==2) )
- {
- y = 1.0 - zz * polevl( zz, coscof, 6 );
- }
- else
- {
- y = z + z * (zz * polevl( zz, sincof, 5 ));
- }
-
- if(sign < 0)
- y = -y;
-
- return(y);
- }
-
-
-
-
-
- double cos(x)
- double x;
- {
- double y, z, zz;
- long i;
- int j, sign, refl;
- double polevl(), floor(), ldexp();
-
-
- /* make argument positive */
- sign = 1;
- if( x < 0 )
- x = -x;
-
- if( x > lossth )
- {
- mtherr( "cos", TLOSS );
- return(0.0);
- }
-
- y = floor( x/PIO4 );
- z = ldexp( y, -4 );
- z = floor(z); /* integer part of y/8 */
- z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */
-
- /* integer and fractional part modulo one octant */
- i = z;
- if( i & 1 ) /* map zeros to origin */
- {
- i += 1;
- y += 1.0;
- }
- j = i & 07;
- if( j > 3)
- {
- j -=4;
- sign = -sign;
- }
-
- if( j > 1 )
- sign = -sign;
-
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
-
- zz = z * z;
-
- if( (j==1) || (j==2) )
- {
- y = z + z * (zz * polevl( zz, sincof, 5 ));
- }
- else
- {
- y = 1.0 - zz * polevl( zz, coscof, 6 );
- }
-
- if(sign < 0)
- y = -y;
-
- return(y);
- }
-
-
-
-
-
- /* Degrees, minutes, seconds to radians: */
-
- /* 1 arc second, in radians = 4.8481368110953599358991410e-5 */
- #ifdef DEC
- static short P648[] = {034513,054170,0176773,0116043,};
- #define P64800 *(double *)P648
- #else
- static double P64800 = 4.8481368110953599358991410e-5;
- #endif
-
- double radian(d,m,s)
- double d,m,s;
- {
-
- return( ((d*60.0 + m)*60.0 + s)*P64800 );
- }
-