A Neutron Star Emerges As A Rare Magnetic Emerald
Sometimes astronomers look in the right place at the right time, and
that's just what happened in July 2003.
|
An Artist's concept of a magnetar. The blue lines emanating from the magnetar's pole represent its powerful magnetic field, strong enough to make it glow in X-rays. (Credit: Dr. R. Mallozzi, University of Alabama, Huntsville.) (Click image for high resolution version.) |
A group of astronomers at NASA's Goddard Space Flight Center were, by
chance, looking in just the right place and saw a neutron star emerging
from a metamorphosis.á The star was shedding its dim, nondescript
existence of millions of years and suddenly transformed itself into a
bright and exotic object called a magnetar.á
Only ten magnetars are known in the whole Universe.á So this was a real gem
of a find.
These magnetars are a class of ultra-magnetic neutron stars.á Their
magnetic fields are so strong that they could strip an electronic gift
card clean at a distance of 100,000 miles, or half way to the Moon.á
Where do they come from, and how do they get so magnetic?á These are
two questions that the lucky observation will help answer.
Neutron stars are scattered throughout our Milky Way galaxy and in
billions of other galaxies too.á These are fascinating objects in their
own right.á A neutron star is created in a type of star explosion called
a supernova, andá contains the mass of the Sun compacted
into a sphere only about 10 miles across.
Neutron stars are very magnetic.á They have a magnetic field strength of
a billion to a trillion Gauss.á In comparison, the Earth's magnetic field
is about 0.5 Gauss, and a refrigerator magnet is about 10 to 100 Gauss.á
Magnetars are a thousand times more magnetic than neutron stars, about a
hundred trillion (1014) Gauss.
Dr. Alaa Ibrahim led the discovery of the new magnetar, which he and his
colleagues called XTE J1810-197.á Part of the name comes from the
instrument that spotted the magnetar, NASA's Rossi X-ray Timing Explorer.á
|
An image showing side by side comparisons before and after the event. (Credit: NASA) (Click image for high resolution version.) |
What's interesting is that Dr. Ibrahim was studying another magnetar at
the time.á Caught in this "routine" observation was a strange, new bright
object.á He thought it might have been a magnetar because it was so
bright.á Magnetars are very energetic, and they radiate in X rays.á
Dr. Ibrahim's colleagues, including Dr. Craig Markwardt and Dr. Eric Gotthelf, pinpointed the
location of the new source.á No one had seen it before.á They then poured
through archived data from past missions.á Sure enough, looking
closely in the old data back to 1990, they saw a very dim neutron star
in the exact spot where the new magnetar is.á This magnetar must have
"turned on" between January and March of 2003.á
The observation supports one theory of magnetars.á Some scientists think
that about 10 percent of neutron stars are born with ultra-high magnetic
fields.á This might be because of the mass of the progenitor star or the
spin that the neutron star gets from the explosion.á Such neutron stars
sit unnoticed, extremely dim because they have no fuel to burn.
Gradually, the magnetic field slows the spin of the neutron star.á This
act of slowing releases energy, making the star brighter.á Additional
disturbances in the star's magnetic field and crust (called starquakes)
can make it brighter yet.á This is when it reaches the magnetar stage.á
The original neutron star was also very magnetic, but that field simply
couldn't be measured from afar until the star got bright.á To measure a
magnetic field, scientists use an equation that compares the speed of
the neutron star spin to the rate that it is slowing down.á When a star
is dim, scientists can't gather this information.
So, magnetars might start out magnetic but dim (at this point, it might
be called a regular neutron star, or maybe it isn't visible at all).á
Then, after existing for tens to hundreds of millions of years like this,
it gets bright -- the magnetar stage.á Then, the magnetic fields weaken
and the star gets dim again.á The magnetar stage may be but a brief
moment of beauty in the billion-year existence of special neutron star.
This would explain why scientists have only found 10 magnetars so far.á
There could be many more out there simply in prolonged dim stages.á To
confirm this theory, scientists will need to find many more magnetars
turning on.
In the future, they may not need to be so lucky.á Along with the Rossi
Explorer, which is still going strong after 9 years in orbit, scientists
will soon have the Swift Gamma-ray Burst Explorer in orbit.á Although
Swift's primary goal is to detect gamma-ray bursts, the observatory will
also likely find magnetars.á This is because Swift will be good at
spotting transient events, that suddenly appear in its field of view.
Other members of Dr. Ibrahim's team are Dr. Jean Swank of NASA Goddard;
Dr. William Parke of George Washington University; Drs. Scott Ransom,
Mallory Roberts and Vicky Kaspi of McGill University; Drs. Chryssa
Kouveliotou and Peter Woods of NASA Marshall; Dr. Samar Safi-Harb of the
University of Manitoba; Dr. S÷len Balman of the Middle East Technical
University in Ankara; and Dr. Kevin Hurley of University of California at
Berkeley.á Dr. Ibrahim has a joint position with George Washington
University.
Additional Links
Visit the RXTE Learning Center. (http://rxte.gsfc.nasa.gov/docs/xte/learning_center/)
Visit the Swift site. (http://swift.gsfc.nasa.gov/public/)
|