home *** CD-ROM | disk | FTP | other *** search
/ Language/OS - Multiplatform Resource Library / LANGUAGE OS.iso / scheme / schmrprt / r399rs.lha / example.tex < prev    next >
LaTeX Document  |  1989-08-31  |  4.2 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: LaTeX Document (document/latex).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document, ASCII text default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/281 LaTeX (Subdocument) default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 76 66 69 6c 6c 5c 65 | 6a 65 63 74 0a 0a 5c 65 |\vfill\e|ject..\e|
|00000010| 78 74 72 61 70 61 72 74 | 7b 45 78 61 6d 70 6c 65 |xtrapart|{Example|
|00000020| 7d 20 25 20 2d 2a 2d 20 | 4d 6f 64 65 3a 20 4c 69 |} % -*- |Mode: Li|
|00000030| 73 70 3b 20 50 61 63 6b | 61 67 65 3a 20 53 43 48 |sp; Pack|age: SCH|
|00000040| 45 4d 45 3b 20 53 79 6e | 74 61 78 3a 20 43 6f 6d |EME; Syn|tax: Com|
|00000050| 6d 6f 6e 2d 6c 69 73 70 | 20 2d 2a 2d 0a 0a 5c 6e |mon-lisp| -*-..\n|
|00000060| 6f 62 72 65 61 6b 0a 5c | 69 64 65 7b 49 6e 74 65 |obreak.\|ide{Inte|
|00000070| 67 72 61 74 65 2d 73 79 | 73 74 65 6d 7d 20 69 6e |grate-sy|stem} in|
|00000080| 74 65 67 72 61 74 65 73 | 20 74 68 65 20 73 79 73 |tegrates| the sys|
|00000090| 74 65 6d 20 0a 24 24 79 | 5f 6b 5e 5c 70 72 69 6d |tem .$$y|_k^\prim|
|000000a0| 65 20 3d 20 66 5f 6b 28 | 79 5f 31 2c 20 79 5f 32 |e = f_k(|y_1, y_2|
|000000b0| 2c 20 5c 6c 64 6f 74 73 | 2c 20 79 5f 6e 29 2c 20 |, \ldots|, y_n), |
|000000c0| 5c 3b 20 6b 20 3d 20 31 | 2c 20 5c 6c 64 6f 74 73 |\; k = 1|, \ldots|
|000000d0| 2c 20 6e 24 24 0a 6f 66 | 20 64 69 66 66 65 72 65 |, n$$.of| differe|
|000000e0| 6e 74 69 61 6c 20 65 71 | 75 61 74 69 6f 6e 73 20 |ntial eq|uations |
|000000f0| 77 69 74 68 20 74 68 65 | 20 6d 65 74 68 6f 64 20 |with the| method |
|00000100| 6f 66 20 52 75 6e 67 65 | 2d 4b 75 74 74 61 2e 0a |of Runge|-Kutta..|
|00000110| 0a 54 68 65 20 70 61 72 | 61 6d 65 74 65 72 20 7b |.The par|ameter {|
|00000120| 5c 74 74 20 73 79 73 74 | 65 6d 2d 64 65 72 69 76 |\tt syst|em-deriv|
|00000130| 61 74 69 76 65 7d 20 69 | 73 20 61 20 66 75 6e 63 |ative} i|s a func|
|00000140| 74 69 6f 6e 20 74 68 61 | 74 20 74 61 6b 65 73 20 |tion tha|t takes |
|00000150| 61 20 73 79 73 74 65 6d | 0a 73 74 61 74 65 20 28 |a system|.state (|
|00000160| 61 20 76 65 63 74 6f 72 | 20 6f 66 20 76 61 6c 75 |a vector| of valu|
|00000170| 65 73 20 66 6f 72 20 74 | 68 65 20 73 74 61 74 65 |es for t|he state|
|00000180| 20 76 61 72 69 61 62 6c | 65 73 20 24 79 5f 31 2c | variabl|es $y_1,|
|00000190| 20 5c 6c 64 6f 74 73 2c | 20 79 5f 6e 24 29 0a 61 | \ldots,| y_n$).a|
|000001a0| 6e 64 20 70 72 6f 64 75 | 63 65 73 20 61 20 73 79 |nd produ|ces a sy|
|000001b0| 73 74 65 6d 20 64 65 72 | 69 76 61 74 69 76 65 20 |stem der|ivative |
|000001c0| 28 74 68 65 20 76 61 6c | 75 65 73 20 24 79 5f 31 |(the val|ues $y_1|
|000001d0| 5e 5c 70 72 69 6d 65 2c | 20 5c 6c 64 6f 74 73 2c |^\prime,| \ldots,|
|000001e0| 0a 79 5f 6e 5e 5c 70 72 | 69 6d 65 24 29 2e 20 20 |.y_n^\pr|ime$). |
|000001f0| 54 68 65 20 70 61 72 61 | 6d 65 74 65 72 20 7b 5c |The para|meter {\|
|00000200| 74 74 20 69 6e 69 74 69 | 61 6c 2d 73 74 61 74 65 |tt initi|al-state|
|00000210| 7d 20 70 72 6f 76 69 64 | 65 73 20 61 6e 20 69 6e |} provid|es an in|
|00000220| 69 74 69 61 6c 0a 73 79 | 73 74 65 6d 20 73 74 61 |itial.sy|stem sta|
|00000230| 74 65 2c 20 61 6e 64 20 | 7b 5c 74 74 20 68 7d 20 |te, and |{\tt h} |
|00000240| 69 73 20 61 6e 20 69 6e | 69 74 69 61 6c 20 67 75 |is an in|itial gu|
|00000250| 65 73 73 20 66 6f 72 20 | 74 68 65 20 6c 65 6e 67 |ess for |the leng|
|00000260| 74 68 20 6f 66 20 74 68 | 65 0a 69 6e 74 65 67 72 |th of th|e.integr|
|00000270| 61 74 69 6f 6e 20 73 74 | 65 70 2e 0a 0a 54 68 65 |ation st|ep...The|
|00000280| 20 76 61 6c 75 65 20 72 | 65 74 75 72 6e 65 64 20 | value r|eturned |
|00000290| 62 79 20 5c 69 64 65 7b | 69 6e 74 65 67 72 61 74 |by \ide{|integrat|
|000002a0| 65 2d 73 79 73 74 65 6d | 7d 20 69 73 20 61 6e 20 |e-system|} is an |
|000002b0| 69 6e 66 69 6e 69 74 65 | 20 73 74 72 65 61 6d 20 |infinite| stream |
|000002c0| 6f 66 0a 73 79 73 74 65 | 6d 20 73 74 61 74 65 73 |of.syste|m states|
|000002d0| 2e 0a 0a 5c 62 65 67 69 | 6e 7b 73 63 68 65 6d 65 |...\begi|n{scheme|
|000002e0| 6e 6f 69 6e 64 65 6e 74 | 7d 0a 28 64 65 66 69 6e |noindent|}.(defin|
|000002f0| 65 20 69 6e 74 65 67 72 | 61 74 65 2d 73 79 73 74 |e integr|ate-syst|
|00000300| 65 6d 0a 20 20 28 6c 61 | 6d 62 64 61 20 28 73 79 |em. (la|mbda (sy|
|00000310| 73 74 65 6d 2d 64 65 72 | 69 76 61 74 69 76 65 20 |stem-der|ivative |
|00000320| 69 6e 69 74 69 61 6c 2d | 73 74 61 74 65 20 68 29 |initial-|state h)|
|00000330| 0a 20 20 20 20 28 6c 65 | 74 20 28 28 6e 65 78 74 |. (le|t ((next|
|00000340| 20 28 72 75 6e 67 65 2d | 6b 75 74 74 61 2d 34 20 | (runge-|kutta-4 |
|00000350| 73 79 73 74 65 6d 2d 64 | 65 72 69 76 61 74 69 76 |system-d|erivativ|
|00000360| 65 20 68 29 29 29 0a 20 | 20 20 20 20 20 28 6c 65 |e h))). | (le|
|00000370| 74 72 65 63 20 28 28 73 | 74 61 74 65 73 0a 20 20 |trec ((s|tates. |
|00000380| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 28 63 | | (c|
|00000390| 6f 6e 73 20 69 6e 69 74 | 69 61 6c 2d 73 74 61 74 |ons init|ial-stat|
|000003a0| 65 0a 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |e. | |
|000003b0| 20 20 20 20 20 20 20 20 | 28 64 65 6c 61 79 20 28 | |(delay (|
|000003c0| 6d 61 70 2d 73 74 72 65 | 61 6d 73 20 6e 65 78 74 |map-stre|ams next|
|000003d0| 0a 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000003e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003f0| 20 20 20 20 20 20 20 20 | 20 20 20 73 74 61 74 65 | | state|
|00000400| 73 29 29 29 29 29 0a 20 | 20 20 20 20 20 20 20 73 |s))))). | s|
|00000410| 74 61 74 65 73 29 29 29 | 29 25 0a 5c 65 6e 64 7b |tates)))|)%.\end{|
|00000420| 73 63 68 65 6d 65 6e 6f | 69 6e 64 65 6e 74 7d 0a |schemeno|indent}.|
|00000430| 0a 5c 69 64 65 7b 52 75 | 6e 67 65 2d 4b 75 74 74 |.\ide{Ru|nge-Kutt|
|00000440| 61 2d 34 7d 20 74 61 6b | 65 73 20 61 20 66 75 6e |a-4} tak|es a fun|
|00000450| 63 74 69 6f 6e 2c 20 7b | 5c 74 74 20 66 7d 2c 20 |ction, {|\tt f}, |
|00000460| 74 68 61 74 20 70 72 6f | 64 75 63 65 73 20 61 0a |that pro|duces a.|
|00000470| 73 79 73 74 65 6d 20 64 | 65 72 69 76 61 74 69 76 |system d|erivativ|
|00000480| 65 20 66 72 6f 6d 20 61 | 20 73 79 73 74 65 6d 20 |e from a| system |
|00000490| 73 74 61 74 65 2e 20 20 | 5c 69 64 65 7b 52 75 6e |state. |\ide{Run|
|000004a0| 67 65 2d 4b 75 74 74 61 | 2d 34 7d 0a 70 72 6f 64 |ge-Kutta|-4}.prod|
|000004b0| 75 63 65 73 20 61 20 66 | 75 6e 63 74 69 6f 6e 20 |uces a f|unction |
|000004c0| 74 68 61 74 20 74 61 6b | 65 73 20 61 20 73 79 73 |that tak|es a sys|
|000004d0| 74 65 6d 20 73 74 61 74 | 65 20 61 6e 64 0a 70 72 |tem stat|e and.pr|
|000004e0| 6f 64 75 63 65 73 20 61 | 20 6e 65 77 20 73 79 73 |oduces a| new sys|
|000004f0| 74 65 6d 20 73 74 61 74 | 65 2e 0a 0a 5c 62 65 67 |tem stat|e...\beg|
|00000500| 69 6e 7b 73 63 68 65 6d | 65 6e 6f 69 6e 64 65 6e |in{schem|enoinden|
|00000510| 74 7d 0a 28 64 65 66 69 | 6e 65 20 72 75 6e 67 65 |t}.(defi|ne runge|
|00000520| 2d 6b 75 74 74 61 2d 34 | 0a 20 20 28 6c 61 6d 62 |-kutta-4|. (lamb|
|00000530| 64 61 20 28 66 20 68 29 | 0a 20 20 20 20 28 6c 65 |da (f h)|. (le|
|00000540| 74 20 28 28 2a 68 20 28 | 73 63 61 6c 65 2d 76 65 |t ((*h (|scale-ve|
|00000550| 63 74 6f 72 20 68 29 29 | 0a 20 20 20 20 20 20 20 |ctor h))|. |
|00000560| 20 20 20 28 2a 32 20 28 | 73 63 61 6c 65 2d 76 65 | (*2 (|scale-ve|
|00000570| 63 74 6f 72 20 32 29 29 | 0a 20 20 20 20 20 20 20 |ctor 2))|. |
|00000580| 20 20 20 28 2a 31 2f 32 | 20 28 73 63 61 6c 65 2d | (*1/2| (scale-|
|00000590| 76 65 63 74 6f 72 20 28 | 2f 20 31 20 32 29 29 29 |vector (|/ 1 2)))|
|000005a0| 0a 20 20 20 20 20 20 20 | 20 20 20 28 2a 31 2f 36 |. | (*1/6|
|000005b0| 20 28 73 63 61 6c 65 2d | 76 65 63 74 6f 72 20 28 | (scale-|vector (|
|000005c0| 2f 20 31 20 36 29 29 29 | 29 0a 20 20 20 20 20 20 |/ 1 6)))|). |
|000005d0| 28 6c 61 6d 62 64 61 20 | 28 79 29 0a 20 20 20 20 |(lambda |(y). |
|000005e0| 20 20 20 20 3b 3b 20 79 | 20 7b 5c 72 6d 7b 7d 69 | ;; y| {\rm{}i|
|000005f0| 73 20 61 20 73 79 73 74 | 65 6d 20 73 74 61 74 65 |s a syst|em state|
|00000600| 7d 0a 20 20 20 20 20 20 | 20 20 28 6c 65 74 2a 20 |}. | (let* |
|00000610| 28 28 6b 30 20 28 2a 68 | 20 28 66 20 79 29 29 29 |((k0 (*h| (f y)))|
|00000620| 0a 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000630| 28 6b 31 20 28 2a 68 20 | 28 66 20 28 61 64 64 2d |(k1 (*h |(f (add-|
|00000640| 76 65 63 74 6f 72 73 20 | 79 20 28 2a 31 2f 32 20 |vectors |y (*1/2 |
|00000650| 6b 30 29 29 29 29 29 0a | 20 20 20 20 20 20 20 20 |k0))))).| |
|00000660| 20 20 20 20 20 20 20 28 | 6b 32 20 28 2a 68 20 28 | (|k2 (*h (|
|00000670| 66 20 28 61 64 64 2d 76 | 65 63 74 6f 72 73 20 79 |f (add-v|ectors y|
|00000680| 20 28 2a 31 2f 32 20 6b | 31 29 29 29 29 29 0a 20 | (*1/2 k|1))))). |
|00000690| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 28 6b | | (k|
|000006a0| 33 20 28 2a 68 20 28 66 | 20 28 61 64 64 2d 76 65 |3 (*h (f| (add-ve|
|000006b0| 63 74 6f 72 73 20 79 20 | 6b 32 29 29 29 29 29 0a |ctors y |k2))))).|
|000006c0| 20 20 20 20 20 20 20 20 | 20 20 28 61 64 64 2d 76 | | (add-v|
|000006d0| 65 63 74 6f 72 73 20 79 | 0a 20 20 20 20 20 20 20 |ectors y|. |
|000006e0| 20 20 20 20 20 28 2a 31 | 2f 36 20 28 61 64 64 2d | (*1|/6 (add-|
|000006f0| 76 65 63 74 6f 72 73 20 | 6b 30 0a 20 20 20 20 20 |vectors |k0. |
|00000700| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000710| 20 20 20 20 20 20 20 20 | 20 20 28 2a 32 20 6b 31 | | (*2 k1|
|00000720| 29 0a 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |). | |
|00000730| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000740| 20 28 2a 32 20 6b 32 29 | 0a 20 20 20 20 20 20 20 | (*2 k2)|. |
|00000750| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000760| 20 20 20 20 20 20 20 20 | 6b 33 29 29 29 29 29 29 | |k3))))))|
|00000770| 29 29 0a 25 7c 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |)).%|---|--------|
|00000780| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000790| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000007a0| 2d 2d 2d 2d 2d 2d 2d 7c | 0a 0a 28 64 65 66 69 6e |-------||..(defin|
|000007b0| 65 20 65 6c 65 6d 65 6e | 74 77 69 73 65 0a 20 20 |e elemen|twise. |
|000007c0| 28 6c 61 6d 62 64 61 20 | 28 66 29 0a 20 20 20 20 |(lambda |(f). |
|000007d0| 28 6c 61 6d 62 64 61 20 | 76 65 63 74 6f 72 73 0a |(lambda |vectors.|
|000007e0| 20 20 20 20 20 20 28 67 | 65 6e 65 72 61 74 65 2d | (g|enerate-|
|000007f0| 76 65 63 74 6f 72 0a 20 | 20 20 20 20 20 20 20 28 |vector. | (|
|00000800| 76 65 63 74 6f 72 2d 6c | 65 6e 67 74 68 20 28 63 |vector-l|ength (c|
|00000810| 61 72 20 76 65 63 74 6f | 72 73 29 29 0a 20 20 20 |ar vecto|rs)). |
|00000820| 20 20 20 20 20 28 6c 61 | 6d 62 64 61 20 28 69 29 | (la|mbda (i)|
|00000830| 0a 20 20 20 20 20 20 20 | 20 20 20 28 61 70 70 6c |. | (appl|
|00000840| 79 20 66 0a 20 20 20 20 | 20 20 20 20 20 20 20 20 |y f. | |
|00000850| 20 20 20 20 20 28 6d 61 | 70 20 28 6c 61 6d 62 64 | (ma|p (lambd|
|00000860| 61 20 28 76 29 20 28 76 | 65 63 74 6f 72 2d 72 65 |a (v) (v|ector-re|
|00000870| 66 20 20 76 20 69 29 29 | 0a 20 20 20 20 20 20 20 |f v i))|. |
|00000880| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 76 | | v|
|00000890| 65 63 74 6f 72 73 29 29 | 29 29 29 29 29 0a 0a 25 |ectors))|)))))..%|
|000008a0| 7c 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d ||-------|--------|
|000008b0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000008c0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000008d0| 2d 2d 2d 7c 0a 28 64 65 | 66 69 6e 65 20 67 65 6e |---|.(de|fine gen|
|000008e0| 65 72 61 74 65 2d 76 65 | 63 74 6f 72 0a 20 20 28 |erate-ve|ctor. (|
|000008f0| 6c 61 6d 62 64 61 20 28 | 73 69 7a 65 20 70 72 6f |lambda (|size pro|
|00000900| 63 29 0a 20 20 20 20 28 | 6c 65 74 20 28 28 61 6e |c). (|let ((an|
|00000910| 73 20 28 6d 61 6b 65 2d | 76 65 63 74 6f 72 20 73 |s (make-|vector s|
|00000920| 69 7a 65 29 29 29 0a 20 | 20 20 20 20 20 28 6c 65 |ize))). | (le|
|00000930| 74 72 65 63 20 28 28 6c | 6f 6f 70 0a 20 20 20 20 |trec ((l|oop. |
|00000940| 20 20 20 20 20 20 20 20 | 20 20 20 20 28 6c 61 6d | | (lam|
|00000950| 62 64 61 20 28 69 29 0a | 20 20 20 20 20 20 20 20 |bda (i).| |
|00000960| 20 20 20 20 20 20 20 20 | 20 20 28 63 6f 6e 64 20 | | (cond |
|00000970| 28 28 3d 20 69 20 73 69 | 7a 65 29 20 61 6e 73 29 |((= i si|ze) ans)|
|00000980| 0a 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000990| 20 20 20 20 20 20 20 20 | 20 28 65 6c 73 65 0a 20 | | (else. |
|000009a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009b0| 20 20 20 20 20 20 20 20 | 28 76 65 63 74 6f 72 2d | |(vector-|
|000009c0| 73 65 74 21 20 61 6e 73 | 20 69 20 28 70 72 6f 63 |set! ans| i (proc|
|000009d0| 20 69 29 29 0a 20 20 20 | 20 20 20 20 20 20 20 20 | i)). | |
|000009e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 28 6c | | (l|
|000009f0| 6f 6f 70 20 28 2b 20 69 | 20 31 29 29 29 29 29 29 |oop (+ i| 1))))))|
|00000a00| 29 0a 20 20 20 20 20 20 | 20 20 28 6c 6f 6f 70 20 |). | (loop |
|00000a10| 30 29 29 29 29 29 0a 0a | 28 64 65 66 69 6e 65 20 |0)))))..|(define |
|00000a20| 61 64 64 2d 76 65 63 74 | 6f 72 73 20 28 65 6c 65 |add-vect|ors (ele|
|00000a30| 6d 65 6e 74 77 69 73 65 | 20 2b 29 29 0a 0a 28 64 |mentwise| +))..(d|
|00000a40| 65 66 69 6e 65 20 73 63 | 61 6c 65 2d 76 65 63 74 |efine sc|ale-vect|
|00000a50| 6f 72 0a 20 20 28 6c 61 | 6d 62 64 61 20 28 73 29 |or. (la|mbda (s)|
|00000a60| 0a 20 20 20 20 28 65 6c | 65 6d 65 6e 74 77 69 73 |. (el|ementwis|
|00000a70| 65 20 28 6c 61 6d 62 64 | 61 20 28 78 29 20 28 2a |e (lambd|a (x) (*|
|00000a80| 20 78 20 73 29 29 29 29 | 29 25 0a 5c 65 6e 64 7b | x s))))|)%.\end{|
|00000a90| 73 63 68 65 6d 65 6e 6f | 69 6e 64 65 6e 74 7d 0a |schemeno|indent}.|
|00000aa0| 0a 5c 69 64 65 7b 4d 61 | 70 2d 73 74 72 65 61 6d |.\ide{Ma|p-stream|
|00000ab0| 73 7d 20 69 73 20 61 6e | 61 6c 6f 67 6f 75 73 20 |s} is an|alogous |
|00000ac0| 74 6f 20 5c 69 64 65 7b | 6d 61 70 7d 3a 20 69 74 |to \ide{|map}: it|
|00000ad0| 20 61 70 70 6c 69 65 73 | 20 69 74 73 20 66 69 72 | applies| its fir|
|00000ae0| 73 74 0a 61 72 67 75 6d | 65 6e 74 20 28 61 20 70 |st.argum|ent (a p|
|00000af0| 72 6f 63 65 64 75 72 65 | 29 20 74 6f 20 61 6c 6c |rocedure|) to all|
|00000b00| 20 74 68 65 20 65 6c 65 | 6d 65 6e 74 73 20 6f 66 | the ele|ments of|
|00000b10| 20 69 74 73 20 73 65 63 | 6f 6e 64 20 61 72 67 75 | its sec|ond argu|
|00000b20| 6d 65 6e 74 20 28 61 0a | 73 74 72 65 61 6d 29 2e |ment (a.|stream).|
|00000b30| 0a 0a 5c 62 65 67 69 6e | 7b 73 63 68 65 6d 65 6e |..\begin|{schemen|
|00000b40| 6f 69 6e 64 65 6e 74 7d | 0a 28 64 65 66 69 6e 65 |oindent}|.(define|
|00000b50| 20 6d 61 70 2d 73 74 72 | 65 61 6d 73 0a 20 20 28 | map-str|eams. (|
|00000b60| 6c 61 6d 62 64 61 20 28 | 66 20 73 29 0a 20 20 20 |lambda (|f s). |
|00000b70| 20 28 63 6f 6e 73 20 28 | 66 20 28 68 65 61 64 20 | (cons (|f (head |
|00000b80| 73 29 29 0a 20 20 20 20 | 20 20 20 20 20 20 28 64 |s)). | (d|
|00000b90| 65 6c 61 79 20 28 6d 61 | 70 2d 73 74 72 65 61 6d |elay (ma|p-stream|
|00000ba0| 73 20 66 20 28 74 61 69 | 6c 20 73 29 29 29 29 29 |s f (tai|l s)))))|
|00000bb0| 29 25 0a 5c 65 6e 64 7b | 73 63 68 65 6d 65 6e 6f |)%.\end{|schemeno|
|00000bc0| 69 6e 64 65 6e 74 7d 0a | 0a 49 6e 66 69 6e 69 74 |indent}.|.Infinit|
|00000bd0| 65 20 73 74 72 65 61 6d | 73 20 61 72 65 20 69 6d |e stream|s are im|
|00000be0| 70 6c 65 6d 65 6e 74 65 | 64 20 61 73 20 70 61 69 |plemente|d as pai|
|00000bf0| 72 73 20 77 68 6f 73 65 | 20 63 61 72 20 68 6f 6c |rs whose| car hol|
|00000c00| 64 73 20 74 68 65 20 66 | 69 72 73 74 0a 65 6c 65 |ds the f|irst.ele|
|00000c10| 6d 65 6e 74 20 6f 66 20 | 74 68 65 20 73 74 72 65 |ment of |the stre|
|00000c20| 61 6d 20 61 6e 64 20 77 | 68 6f 73 65 20 63 64 72 |am and w|hose cdr|
|00000c30| 20 68 6f 6c 64 73 20 61 | 20 70 72 6f 6d 69 73 65 | holds a| promise|
|00000c40| 20 74 6f 20 64 65 6c 69 | 76 65 72 20 74 68 65 20 | to deli|ver the |
|00000c50| 72 65 73 74 0a 6f 66 20 | 74 68 65 20 73 74 72 65 |rest.of |the stre|
|00000c60| 61 6d 2e 0a 0a 5c 62 65 | 67 69 6e 7b 73 63 68 65 |am...\be|gin{sche|
|00000c70| 6d 65 6e 6f 69 6e 64 65 | 6e 74 7d 0a 28 64 65 66 |menoinde|nt}.(def|
|00000c80| 69 6e 65 20 68 65 61 64 | 20 63 61 72 29 0a 28 64 |ine head| car).(d|
|00000c90| 65 66 69 6e 65 20 74 61 | 69 6c 0a 20 20 28 6c 61 |efine ta|il. (la|
|00000ca0| 6d 62 64 61 20 28 73 74 | 72 65 61 6d 29 20 28 66 |mbda (st|ream) (f|
|00000cb0| 6f 72 63 65 20 28 63 64 | 72 20 73 74 72 65 61 6d |orce (cd|r stream|
|00000cc0| 29 29 29 29 25 0a 5c 65 | 6e 64 7b 73 63 68 65 6d |))))%.\e|nd{schem|
|00000cd0| 65 6e 6f 69 6e 64 65 6e | 74 7d 0a 0a 5c 62 69 67 |enoinden|t}..\big|
|00000ce0| 73 6b 69 70 0a 54 68 65 | 20 66 6f 6c 6c 6f 77 69 |skip.The| followi|
|00000cf0| 6e 67 20 69 6c 6c 75 73 | 74 72 61 74 65 73 20 74 |ng illus|trates t|
|00000d00| 68 65 20 75 73 65 20 6f | 66 20 5c 69 64 65 7b 69 |he use o|f \ide{i|
|00000d10| 6e 74 65 67 72 61 74 65 | 2d 73 79 73 74 65 6d 7d |ntegrate|-system}|
|00000d20| 20 69 6e 0a 69 6e 74 65 | 67 72 61 74 69 6e 67 20 | in.inte|grating |
|00000d30| 74 68 65 20 73 79 73 74 | 65 6d 0a 24 24 20 43 20 |the syst|em.$$ C |
|00000d40| 7b 64 76 5f 43 20 5c 6f | 76 65 72 20 64 74 7d 20 |{dv_C \o|ver dt} |
|00000d50| 3d 20 2d 69 5f 4c 20 2d | 20 7b 76 5f 43 20 5c 6f |= -i_L -| {v_C \o|
|00000d60| 76 65 72 20 52 7d 24 24 | 5c 6e 6f 62 72 65 61 6b |ver R}$$|\nobreak|
|00000d70| 0a 24 24 20 4c 20 7b 64 | 69 5f 4c 20 5c 6f 76 65 |.$$ L {d|i_L \ove|
|00000d80| 72 20 64 74 7d 20 3d 20 | 76 5f 43 24 24 0a 77 68 |r dt} = |v_C$$.wh|
|00000d90| 69 63 68 20 6d 6f 64 65 | 6c 73 20 61 20 64 61 6d |ich mode|ls a dam|
|00000da0| 70 65 64 20 6f 73 63 69 | 6c 6c 61 74 6f 72 2e 0a |ped osci|llator..|
|00000db0| 0a 5c 62 65 67 69 6e 7b | 73 63 68 65 6d 65 6e 6f |.\begin{|schemeno|
|00000dc0| 69 6e 64 65 6e 74 7d 0a | 28 64 65 66 69 6e 65 20 |indent}.|(define |
|00000dd0| 64 61 6d 70 65 64 2d 6f | 73 63 69 6c 6c 61 74 6f |damped-o|scillato|
|00000de0| 72 0a 20 20 28 6c 61 6d | 62 64 61 20 28 52 20 4c |r. (lam|bda (R L|
|00000df0| 20 43 29 0a 20 20 20 20 | 28 6c 61 6d 62 64 61 20 | C). |(lambda |
|00000e00| 28 73 74 61 74 65 29 0a | 20 20 20 20 20 20 28 6c |(state).| (l|
|00000e10| 65 74 20 28 28 56 63 20 | 28 76 65 63 74 6f 72 2d |et ((Vc |(vector-|
|00000e20| 72 65 66 20 73 74 61 74 | 65 20 30 29 29 0a 20 20 |ref stat|e 0)). |
|00000e30| 20 20 20 20 20 20 20 20 | 20 20 28 49 6c 20 28 76 | | (Il (v|
|00000e40| 65 63 74 6f 72 2d 72 65 | 66 20 73 74 61 74 65 20 |ector-re|f state |
|00000e50| 31 29 29 29 0a 20 20 20 | 20 20 20 20 20 28 76 65 |1))). | (ve|
|00000e60| 63 74 6f 72 20 28 2d 20 | 30 20 28 2b 20 28 2f 20 |ctor (- |0 (+ (/ |
|00000e70| 56 63 20 28 2a 20 52 20 | 43 29 29 20 28 2f 20 49 |Vc (* R |C)) (/ I|
|00000e80| 6c 20 43 29 29 29 0a 20 | 20 20 20 20 20 20 20 20 |l C))). | |
|00000e90| 20 20 20 20 20 20 20 28 | 2f 20 56 63 20 4c 29 29 | (|/ Vc L))|
|00000ea0| 29 29 29 29 0a 0a 28 64 | 65 66 69 6e 65 20 74 68 |))))..(d|efine th|
|00000eb0| 65 2d 73 74 61 74 65 73 | 0a 20 20 28 69 6e 74 65 |e-states|. (inte|
|00000ec0| 67 72 61 74 65 2d 73 79 | 73 74 65 6d 0a 20 20 20 |grate-sy|stem. |
|00000ed0| 20 20 28 64 61 6d 70 65 | 64 2d 6f 73 63 69 6c 6c | (dampe|d-oscill|
|00000ee0| 61 74 6f 72 20 31 30 30 | 30 30 20 31 30 30 30 20 |ator 100|00 1000 |
|00000ef0| 2e 30 30 31 29 0a 20 20 | 20 20 20 27 5c 23 28 31 |.001). | '\#(1|
|00000f00| 20 30 29 0a 20 20 20 20 | 20 2e 30 31 29 29 25 0a | 0). | .01))%.|
|00000f10| 5c 65 6e 64 7b 73 63 68 | 65 6d 65 6e 6f 69 6e 64 |\end{sch|emenoind|
|00000f20| 65 6e 74 7d 0a 0a 5c 74 | 6f 64 6f 7b 53 68 6f 77 |ent}..\t|odo{Show|
|00000f30| 20 73 6f 6d 65 20 6f 75 | 74 70 75 74 3f 7d 0a 0a | some ou|tput?}..|
|00000f40| 25 20 28 6c 65 74 72 65 | 63 20 28 28 6c 6f 6f 70 |% (letre|c ((loop|
|00000f50| 20 28 6c 61 6d 62 64 61 | 20 28 73 29 0a 25 20 20 | (lambda| (s).% |
|00000f60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 28 6e | | (n|
|00000f70| 65 77 6c 69 6e 65 29 0a | 25 20 20 20 20 20 20 20 |ewline).|% |
|00000f80| 20 20 20 20 20 20 20 20 | 20 28 77 72 69 74 65 20 | | (write |
|00000f90| 28 68 65 61 64 20 73 29 | 29 0a 25 20 20 20 20 20 |(head s)|).% |
|00000fa0| 20 20 20 20 20 20 20 20 | 20 20 20 28 6c 6f 6f 70 | | (loop|
|00000fb0| 20 28 74 61 69 6c 20 73 | 29 29 29 29 29 0a 25 20 | (tail s|))))).% |
|00000fc0| 20 20 28 6c 6f 6f 70 20 | 74 68 65 2d 73 74 61 74 | (loop |the-stat|
|00000fd0| 65 73 29 29 0a 0a 25 20 | 23 28 31 20 30 29 0a 25 |es))..% |#(1 0).%|
|00000fe0| 20 23 28 30 2e 39 39 38 | 39 35 30 35 34 20 39 2e | #(0.998|95054 9.|
|00000ff0| 39 39 34 38 33 35 65 2d | 36 29 0a 25 20 23 28 30 |994835e-|6).% #(0|
|00001000| 2e 39 39 37 38 30 32 32 | 36 20 31 2e 39 39 37 38 |.9978022|6 1.9978|
|00001010| 36 38 31 65 2d 35 29 0a | 25 20 23 28 30 2e 39 39 |681e-5).|% #(0.99|
|00001020| 36 35 35 35 34 20 32 2e | 39 39 35 30 35 35 32 65 |65554 2.|9950552e|
|00001030| 2d 35 29 0a 25 20 23 28 | 30 2e 39 39 35 32 31 30 |-5).% #(|0.995210|
|00001040| 32 20 33 2e 39 39 30 39 | 34 36 65 2d 35 29 0a 25 |2 3.9909|46e-5).%|
|00001050| 20 23 28 30 2e 39 39 33 | 37 36 36 38 34 20 34 2e | #(0.993|76684 4.|
|00001060| 39 38 35 34 34 33 65 2d | 35 29 0a 25 20 23 28 30 |985443e-|5).% #(0|
|00001070| 2e 39 39 32 32 32 35 36 | 35 20 35 2e 39 37 38 34 |.9922256|5 5.9784|
|00001080| 34 37 34 65 2d 35 29 0a | 25 20 23 28 30 2e 39 39 |474e-5).|% #(0.99|
|00001090| 30 35 38 36 38 20 36 2e | 39 36 39 38 36 32 65 2d |05868 6.|969862e-|
|000010a0| 35 29 0a 25 20 23 28 30 | 2e 39 38 38 38 35 30 36 |5).% #(0|.9888506|
|000010b0| 20 37 2e 39 35 39 35 38 | 38 34 65 2d 35 29 0a 25 | 7.95958|84e-5).%|
|000010c0| 20 23 28 30 2e 39 38 37 | 30 31 37 33 20 38 2e 39 | #(0.987|0173 8.9|
|000010d0| 34 37 35 33 65 2d 35 29 | 0a |4753e-5)|. |
+--------+-------------------------+-------------------------+--------+--------+