home *** CD-ROM | disk | FTP | other *** search
- ;;; -*- Package: C; Log: C.Log -*-
- ;;;
- ;;; **********************************************************************
- ;;; This code was written as part of the CMU Common Lisp project at
- ;;; Carnegie Mellon University, and has been placed in the public domain.
- ;;; If you want to use this code or any part of CMU Common Lisp, please contact
- ;;; Scott Fahlman or slisp-group@cs.cmu.edu.
- ;;;
- (ext:file-comment
- "$Header: constraint.lisp,v 1.13 92/06/03 20:03:37 ram Exp $")
- ;;;
- ;;; **********************************************************************
- ;;;
- ;;; This file implements the constraint propagation phase of the compiler,
- ;;; which uses global flow analysis to obtain dynamic type information.
- ;;;
- ;;; Written by Rob MacLachlan
- ;;;
- (in-package 'c)
-
- (defstruct (constraint
- (:include sset-element)
- (:constructor make-constraint (number kind x y not-p)))
- ;;
- ;; The kind of constraint we have:
- ;;
- ;; TYPEP
- ;; X is a LAMBDA-VAR and Y is a CTYPE. The value of X is constrained to
- ;; be of type Y.
- ;;
- ;; >, <
- ;; X is a lambda-var and Y is a CTYPE. The relation holds between X and
- ;; some object of type Y.
- ;;
- ;; EQL
- ;; X is a LAMBDA-VAR Y is a LAMBDA-VAR or a CONSTANT. The relation is
- ;; asserted to hold.
- ;;
- (kind nil :type (member typep < > eql))
- ;;
- ;; The operands to the relation.
- (x nil :type lambda-var)
- (y nil :type (or ctype lambda-var constant))
- ;;
- ;; If true, negates the sense of the constraint. The relation is does *not*
- ;; hold.
- (not-p nil :type boolean))
-
-
- (defvar *constraint-number*)
-
- ;;; FIND-CONSTRAINT -- Interface
- ;;;
- ;;; Return a constraint for the specified arguments. We only create a new
- ;;; constraint if there isn't already an equivalent old one, guaranteeing that
- ;;; all equivalent constraints are EQ. This shouldn't be called on lambda-vars
- ;;; with no CONSTRAINTS set.
- ;;;
- (defun find-constraint (kind x y not-p)
- (declare (type lambda-var x) (type (or constant lambda-var ctype) y)
- (type boolean not-p))
- (or (etypecase y
- (ctype
- (do-elements (con (lambda-var-constraints x) nil)
- (when (and (eq (constraint-kind con) kind)
- (eq (constraint-not-p con) not-p)
- (type= (constraint-y con) y))
- (return con))))
- (constant
- (do-elements (con (lambda-var-constraints x) nil)
- (when (and (eq (constraint-kind con) kind)
- (eq (constraint-not-p con) not-p)
- (eq (constraint-y con) y))
- (return con))))
- (lambda-var
- (do-elements (con (lambda-var-constraints x) nil)
- (when (and (eq (constraint-kind con) kind)
- (eq (constraint-not-p con) not-p)
- (let ((cx (constraint-x con)))
- (eq (if (eq cx x)
- (constraint-y con)
- cx)
- y)))
- (return con)))))
- (let ((new (make-constraint (incf *constraint-number*) kind x y not-p)))
- (sset-adjoin new (lambda-var-constraints x))
- (when (lambda-var-p y)
- (sset-adjoin new (lambda-var-constraints y)))
- new)))
-
-
- ;;; OK-REF-LAMBDA-VAR -- Internal
- ;;;
- ;;; If Ref is to a Lambda-Var with Constraints (i.e. we can do flow analysis
- ;;; on it), then return the Lambda-Var, otherwise NIL.
- ;;;
- (proclaim '(inline ok-ref-lambda-var))
- (defun ok-ref-lambda-var (ref)
- (declare (type ref ref))
- (let ((leaf (ref-leaf ref)))
- (when (and (lambda-var-p leaf)
- (lambda-var-constraints leaf))
- leaf)))
-
-
- ;;; OK-CONT-LAMBDA-VAR -- Internal
- ;;;
- ;;; If Cont's Use is a Ref, then return OK-REF-LAMBDA-VAR of the Use,
- ;;; otherwise NIL.
- ;;;
- (proclaim '(inline ok-cont-lambda-var))
- (defun ok-cont-lambda-var (cont)
- (declare (type continuation cont))
- (let ((use (continuation-use cont)))
- (when (ref-p use)
- (ok-ref-lambda-var use))))
-
-
- ;;; ADD-TEST-CONSTRAINT -- Internal
- ;;;
- ;;; Add the indicated test constraint to Block, marking the block as having
- ;;; a new assertion when the constriant was not already present. We don't add
- ;;; the constraint if the block has multiple predecessors, since it only holds
- ;;; on this particular path.
- ;;;
- (defun add-test-constraint (block fun x y not-p)
- (unless (rest (block-pred block))
- (let ((con (find-constraint fun x y not-p))
- (old (or (block-test-constraint block)
- (setf (block-test-constraint block) (make-sset)))))
- (when (sset-adjoin con old)
- (setf (block-type-asserted block) t))))
- (undefined-value))
-
-
- ;;; ADD-COMPLEMENT-CONSTRAINTS -- Internal
- ;;;
- ;;; Add complementary constraints to the consequent and alternative blocks
- ;;; of If. We do nothing if X is NIL.
- ;;;
- (proclaim '(inline add-complement-constraints))
- (defun add-complement-constraints (if fun x y not-p)
- (when x
- (add-test-constraint (if-consequent if) fun x y not-p)
- (add-test-constraint (if-alternative if) fun x y (not not-p)))
- (undefined-value))
-
-
- ;;; ADD-TEST-CONSTRAINTS -- Internal
- ;;;
- ;;; Add test constraints to the consequent and alternative blocks of the
- ;;; test represented by Use.
- ;;;
- (defun add-test-constraints (use if)
- (declare (type node use) (type cif if))
- (typecase use
- (ref
- (add-complement-constraints if 'typep (ok-ref-lambda-var use)
- *null-type* t))
- (combination
- (let ((name (continuation-function-name
- (basic-combination-fun use)))
- (args (basic-combination-args use)))
- (case name
- (%typep
- (let ((type (second args)))
- (when (constant-continuation-p type)
- (let ((val (continuation-value type)))
- (add-complement-constraints if 'typep
- (ok-cont-lambda-var (first args))
- (if (ctype-p val)
- val
- (specifier-type val))
- nil)))))
- ((eq eql)
- (let* ((var1 (ok-cont-lambda-var (first args)))
- (arg2 (second args))
- (var2 (ok-cont-lambda-var arg2)))
- (cond ((not var1))
- (var2
- (add-complement-constraints if 'eql var1 var2 nil))
- ((constant-continuation-p arg2)
- (add-complement-constraints if 'eql var1
- (ref-leaf
- (continuation-use arg2))
- nil)))))
- ((< >)
- (let* ((arg1 (first args))
- (var1 (ok-cont-lambda-var arg1))
- (arg2 (second args))
- (var2 (ok-cont-lambda-var arg2)))
- (when var1
- (add-complement-constraints if name var1 (continuation-type arg2)
- nil))
- (when var2
- (add-complement-constraints if (if (eq name '<) '> '<)
- var2 (continuation-type arg1)
- nil))))
- (t
- (let ((ptype (gethash name (backend-predicate-types *backend*))))
- (when ptype
- (add-complement-constraints if 'typep
- (ok-cont-lambda-var (first args))
- ptype nil))))))))
- (undefined-value))
-
-
-
- ;;; FIND-TEST-CONSTRAINTS -- Internal
- ;;;
- ;;; Set the Test-Constraint in the successors of Block according to the
- ;;; condition it tests.
- ;;;
- (defun find-test-constraints (block)
- (declare (type cblock block))
- (let ((last (block-last block)))
- (when (if-p last)
- (let ((use (continuation-use (if-test last))))
- (when use
- (add-test-constraints use last)))))
-
- (setf (block-test-modified block) nil)
- (undefined-value))
-
-
- ;;; FIND-BLOCK-TYPE-CONSTRAINTS -- Internal
- ;;;
- ;;; Compute the initial flow analysis sets for Block:
- ;;; -- For any lambda-var ref with a type check, add that constraint.
- ;;; -- For any lambda-var set, delete all constraints on that var, and add
- ;;; those constraints to the set nuked by this block.
- ;;;
- (defun find-block-type-constraints (block)
- (declare (type cblock block))
- (let ((gen (make-sset)))
- (collect ((kill nil adjoin))
-
- (let ((test (block-test-constraint block)))
- (when test
- (sset-union gen test)))
-
- (do-nodes (node cont block)
- (typecase node
- (ref
- (when (continuation-type-check cont)
- (let ((var (ok-ref-lambda-var node)))
- (when var
- (let* ((atype (continuation-derived-type cont))
- (con (find-constraint 'typep var atype nil)))
- (sset-adjoin con gen))))))
- (cset
- (let ((var (set-var node)))
- (when (lambda-var-p var)
- (kill var)
- (let ((cons (lambda-var-constraints var)))
- (when cons
- (sset-difference gen cons))))))))
-
- (setf (block-in block) nil)
- (setf (block-gen block) gen)
- (setf (block-kill block) (kill))
- (setf (block-out block) (copy-sset gen))
- (setf (block-type-asserted block) nil)
- (undefined-value))))
-
-
- ;;; INTEGER-TYPE-P -- Internal
- ;;;
- ;;; Return true if X is an integer NUMERIC-TYPE.
- ;;;
- (defun integer-type-p (x)
- (declare (type ctype x))
- (and (numeric-type-p x)
- (eq (numeric-type-class x) 'integer)
- (eq (numeric-type-complexp x) :real)))
-
-
- ;;; CONSTRAIN-INTEGER-TYPE -- Internal
- ;;;
- ;;; Given that an inequality holds on values of type X any Y, return a new
- ;;; type for X. If Greater is true, then X was greater than Y, otherwise less.
- ;;; If Or-Equal is true, then the inequality was inclusive, i.e. >=.
- ;;;
- ;;; If Greater (or not), then we max (or min) in Y's lower (or upper) bound
- ;;; into X and return that result. If not Or-Equal, we can go one greater
- ;;; (less) than Y's bound.
- ;;;
- (defun constrain-integer-type (x y greater or-equal)
- (declare (type numeric-type x y))
- (flet ((exclude (x)
- (cond ((not x) nil)
- (or-equal x)
- (greater (1+ x))
- (t (1- x))))
- (bound (x)
- (if greater (numeric-type-low x) (numeric-type-high x))))
- (let* ((x-bound (bound x))
- (y-bound (exclude (bound y)))
- (new-bound (cond ((not x-bound) y-bound)
- ((not y-bound) x-bound)
- (greater (max x-bound y-bound))
- (t (min x-bound y-bound))))
- (res (copy-numeric-type x)))
- (if greater
- (setf (numeric-type-low res) new-bound)
- (setf (numeric-type-high res) new-bound))
- res)))
-
-
- ;;; CONSTRAIN-REF-TYPE -- Internal
- ;;;
- ;;; Given the set of Constraints for a variable and the current set of
- ;;; restrictions from flow analysis In, set the type for Ref accordingly.
- ;;;
- (defun constrain-ref-type (ref constraints in)
- (declare (type ref ref) (type sset constraints in))
- (let ((var-cons (copy-sset constraints)))
- (sset-intersection var-cons in)
- (let ((res (single-value-type (node-derived-type ref)))
- (not-res *empty-type*)
- (leaf (ref-leaf ref)))
- (do-elements (con var-cons)
- (let* ((x (constraint-x con))
- (y (constraint-y con))
- (not-p (constraint-not-p con))
- (other (if (eq x leaf) y x))
- (kind (constraint-kind con)))
- (case kind
- (typep
- (if not-p
- (setq not-res (type-union not-res other))
- (setq res (type-intersection res other))))
- (eql
- (let ((other-type (leaf-type other)))
- (if not-p
- (when (and (constant-p other)
- (member-type-p other-type))
- (setq not-res (type-union not-res other-type)))
- (let ((leaf-type (leaf-type leaf)))
- (when (or (constant-p other)
- (and (csubtypep other-type leaf-type)
- (not (type= other-type leaf-type))))
- (change-ref-leaf ref other)
- (when (constant-p other) (return)))))))
- ((< >)
- (when (and (integer-type-p res) (integer-type-p y))
- (let ((greater (eq kind '>)))
- (let ((greater (if not-p (not greater) greater)))
- (setq res
- (constrain-integer-type res y greater not-p)))))))))
-
- (let* ((cont (node-cont ref))
- (dest (continuation-dest cont)))
- (cond ((and (if-p dest)
- (csubtypep *null-type* not-res)
- (eq (continuation-asserted-type cont) *wild-type*))
- (setf (node-derived-type ref) *wild-type*)
- (change-ref-leaf ref (find-constant 't)))
- (t
- (derive-node-type ref (or (type-difference res not-res)
- res)))))))
-
- (undefined-value))
-
-
- ;;; USE-RESULT-CONSTRAINTS -- Internal
- ;;;
- ;;; Deliver the results of constraint propagation to REFs in Block. During
- ;;; this pass, we also do local constraint propagation by adding in constraints
- ;;; as we seem them during the pass through the block.
- ;;;
- (defun use-result-constraints (block)
- (declare (type cblock block))
- (let ((in (block-in block)))
-
- (let ((test (block-test-constraint block)))
- (when test
- (sset-union in test)))
-
- (do-nodes (node cont block)
- (typecase node
- (ref
- (let ((var (ref-leaf node)))
- (when (lambda-var-p var)
- (let ((con (lambda-var-constraints var)))
- (when con
- (constrain-ref-type node con in)
- (when (continuation-type-check cont)
- (sset-adjoin
- (find-constraint 'typep var
- (continuation-asserted-type cont)
- nil)
- in)))))))
- (cset
- (let ((var (set-var node)))
- (when (lambda-var-p var)
- (let ((cons (lambda-var-constraints var)))
- (when cons
- (sset-difference in cons))))))))))
-
-
- ;;; CLOSURE-VAR-P -- Internal
- ;;;
- ;;; Return true if Var would have to be closed over if environment analysis
- ;;; ran now (i.e. if there are any uses that have a different home lambda than
- ;;; the var's home.)
- ;;;
- (defun closure-var-p (var)
- (declare (type lambda-var var))
- (let ((home (lambda-home (lambda-var-home var))))
- (flet ((frob (l)
- (dolist (node l nil)
- (unless (eq (node-home-lambda node) home)
- (return t)))))
- (or (frob (leaf-refs var))
- (frob (basic-var-sets var))))))
-
-
- ;;; INIT-VAR-CONSTRAINTS -- Internal
- ;;;
- ;;; Give an empty constraints set to any var that doesn't have one and isn't
- ;;; a set closure var. Since a var that we previously rejected looks identical
- ;;; to one that is new, so we optimistically keep hoping that vars stop being
- ;;; closed over or lose their sets.
- ;;;
- (defun init-var-constraints (component)
- (declare (type component component))
- (dolist (fun (component-lambdas component))
- (flet ((frob (x)
- (dolist (var (lambda-vars x))
- (unless (lambda-var-constraints var)
- (when (or (null (lambda-var-sets var))
- (not (closure-var-p var)))
- (setf (lambda-var-constraints var) (make-sset)))))))
- (frob fun)
- (dolist (let (lambda-lets fun))
- (frob let)))))
-
-
- ;;; FLOW-PROPAGATE-CONSTRAINTS -- Internal
- ;;;
- ;;; BLOCK-IN becomes the intersection of the OUT of the prececessors. Our
- ;;; OUT is:
- ;;; out U (in - kill)
- ;;;
- ;;; BLOCK-KILL is just a list of the lambda-vars killed, so we must compute
- ;;; the kill set when there are any vars killed. We bum this a bit by
- ;;; special-casing when only one var is killed, and just using that var's
- ;;; constraints as the kill set. This set could possibly be precomputed, but
- ;;; it would have to be invalidated whenever any constraint is added, which
- ;;; would be a pain.
- ;;;
- (defun flow-propagate-constraints (block)
- (let* ((pred (block-pred block))
- (in (cond (pred
- (let ((res (copy-sset (block-out (first pred)))))
- (dolist (b (rest pred))
- (sset-intersection res (block-out b)))
- res))
- (t
- (when *check-consistency*
- (let ((*compiler-error-context* (block-last block)))
- (compiler-warning
- "*** Unreachable code in constraint ~
- propagation... Bug?")))
- (make-sset))))
- (kill (block-kill block))
- (out (block-out block)))
-
- (setf (block-in block) in)
- (cond ((null kill)
- (sset-union (block-out block) in))
- ((null (rest kill))
- (let ((con (lambda-var-constraints (first kill))))
- (if con
- (sset-union-of-difference out in con)
- (sset-union out in))))
- (t
- (let ((kill-set (make-sset)))
- (dolist (var kill)
- (let ((con (lambda-var-constraints var)))
- (when con
- (sset-union kill-set con))))
- (sset-union-of-difference (block-out block) in kill-set))))))
-
-
- ;;; CONSTRAINT-PROPAGATE -- Interface
- ;;;
- (defun constraint-propagate (component)
- (declare (type component component))
- (init-var-constraints component)
-
- (do-blocks (block component)
- (when (block-test-modified block)
- (find-test-constraints block)))
-
- (do-blocks (block component)
- (cond ((block-type-asserted block)
- (find-block-type-constraints block))
- (t
- (setf (block-in block) nil)
- (setf (block-out block) (copy-sset (block-gen block))))))
-
- (setf (block-out (component-head component)) (make-sset))
-
- (let ((did-something nil))
- (loop
- (do-blocks (block component)
- (when (flow-propagate-constraints block)
- (setq did-something t)))
-
- (unless did-something (return))
- (setq did-something nil)))
-
- (do-blocks (block component)
- (use-result-constraints block))
-
- (undefined-value))
-