home *** CD-ROM | disk | FTP | other *** search
- ;;; -*- Package: C; Log: C.Log -*-
- ;;;
- ;;; **********************************************************************
- ;;; This code was written as part of the CMU Common Lisp project at
- ;;; Carnegie Mellon University, and has been placed in the public domain.
- ;;; If you want to use this code or any part of CMU Common Lisp, please contact
- ;;; Scott Fahlman or slisp-group@cs.cmu.edu.
- ;;;
- (ext:file-comment
- "$Header: array-tran.lisp,v 1.14 91/11/12 14:14:14 ram Exp $")
- ;;;
- ;;; **********************************************************************
- ;;;
- ;;; This file contains array specific optimizers and transforms.
- ;;;
- ;;; Extracted from srctran and extended by William Lott.
- ;;;
- (in-package "C")
-
-
- ;;;; Derive-Type Optimizers
-
- ;;; ASSERT-ARRAY-RANK -- internal
- ;;;
- ;;; Array operations that use a specific number of indices implicitly assert
- ;;; that the array is of that rank.
- ;;;
- (defun assert-array-rank (array rank)
- (assert-continuation-type
- array
- (specifier-type `(array * ,(make-list rank :initial-element '*)))))
-
- ;;; EXTRACT-ELEMENT-TYPE -- internal
- ;;;
- ;;; Array access functions return an object from the array, hence it's type
- ;;; is going to be the array element type.
- ;;;
- (defun extract-element-type (array)
- (let ((type (continuation-type array)))
- (if (array-type-p type)
- (array-type-element-type type)
- *universal-type*)))
-
- ;;; ASSERT-NEW-VALUE-TYPE -- internal
- ;;;
- ;;; The ``new-value'' for array setters must fit in the array, and the
- ;;; return type is going to be the same as the new-value for setf functions.
- ;;;
- (defun assert-new-value-type (new-value array)
- (let ((type (continuation-type array)))
- (when (array-type-p type)
- (assert-continuation-type new-value (array-type-element-type type))))
- (continuation-type new-value))
-
- ;;; Unsupplied-Or-NIL -- Internal
- ;;;
- ;;; Return true if Arg is NIL, or is a constant-continuation whose value is
- ;;; NIL, false otherwise.
- ;;;
- (defun unsupplied-or-nil (arg)
- (declare (type (or continuation null) arg))
- (or (not arg)
- (and (constant-continuation-p arg)
- (not (continuation-value arg)))))
-
-
- ;;; ARRAY-IN-BOUNDS-P -- derive-type optimizer.
- ;;;
- (defoptimizer (array-in-bounds-p derive-type) ((array &rest indices))
- (assert-array-rank array (length indices))
- *universal-type*)
-
- ;;; AREF -- derive-type optimizer.
- ;;;
- (defoptimizer (aref derive-type) ((array &rest indices))
- (assert-array-rank array (length indices))
- (extract-element-type array))
-
- ;;; %ASET -- derive-type optimizer.
- ;;;
- (defoptimizer (%aset derive-type) ((array &rest stuff))
- (assert-array-rank array (1- (length stuff)))
- (assert-new-value-type (car (last stuff)) array))
-
- ;;; DATA-VECTOR-REF -- derive-type optimizer.
- ;;;
- (defoptimizer (data-vector-ref derive-type) ((array index))
- (extract-element-type array))
-
- ;;; DATA-VECTOR-SET -- derive-type optimizer.
- ;;;
- (defoptimizer (data-vector-set derive-type) ((array index new-value))
- (assert-new-value-type new-value array))
-
- ;;; %WITH-ARRAY-DATA -- derive-type optimizer.
- ;;;
- ;;; Figure out the type of the data vector if we know the argument element
- ;;; type.
- ;;;
- (defoptimizer (%with-array-data derive-type) ((array start end))
- (let ((atype (continuation-type array)))
- (when (array-type-p atype)
- (values-specifier-type
- `(values (simple-array ,(type-specifier
- (array-type-element-type atype))
- (*))
- index index index)))))
-
-
- ;;; ARRAY-ROW-MAJOR-INDEX -- derive-type optimizer.
- ;;;
- (defoptimizer (array-row-major-index derive-type) ((array &rest indices))
- (assert-array-rank array (length indices))
- *universal-type*)
-
- ;;; ROW-MAJOR-AREF -- derive-type optimizer.
- ;;;
- (defoptimizer (row-major-aref derive-type) ((array index))
- (extract-element-type array))
-
- ;;; %SET-ROW-MAJOR-AREF -- derive-type optimizer.
- ;;;
- (defoptimizer (%set-row-major-aref derive-type) ((array index new-value))
- (assert-new-value-type new-value array))
-
- ;;; MAKE-ARRAY -- derive-type optimizer.
- ;;;
- (defoptimizer (make-array derive-type)
- ((dims &key initial-element element-type initial-contents
- adjustable fill-pointer displaced-index-offset displaced-to))
- (let ((simple (and (unsupplied-or-nil adjustable)
- (unsupplied-or-nil displaced-to)
- (unsupplied-or-nil fill-pointer))))
- (specifier-type
- `(,(if simple 'simple-array 'array)
- ,(cond ((not element-type) 't)
- ((constant-continuation-p element-type)
- (continuation-value element-type))
- (t
- '*))
- ,(cond ((not simple)
- '*)
- ((constant-continuation-p dims)
- (let ((val (continuation-value dims)))
- (if (listp val) val (list val))))
- ((csubtypep (continuation-type dims)
- (specifier-type 'integer))
- '(*))
- (t
- '*))))))
-
-
- ;;;; Constructors.
-
- ;;; VECTOR -- source-transform.
- ;;;
- ;;; Convert VECTOR into a make-array followed by setfs of all the elements.
- ;;;
- (def-source-transform vector (&rest elements)
- (let ((len (length elements))
- (n -1))
- (once-only ((n-vec `(make-array ,len)))
- `(progn
- ,@(mapcar #'(lambda (el)
- (once-only ((n-val el))
- `(locally (declare (optimize (safety 0)))
- (setf (svref ,n-vec ,(incf n)) ,n-val))))
- elements)
- ,n-vec))))
-
-
- ;;; MAKE-STRING -- source-transform.
- ;;;
- ;;; Just convert it into a make-array.
- ;;;
- (def-source-transform make-string (length &key (initial-element #\NULL))
- `(make-array (the index ,length)
- :element-type 'base-char
- :initial-element ,initial-element))
-
- (defconstant array-info
- '((base-char #\NULL 8 vm:simple-string-type)
- (single-float 0.0s0 32 vm:simple-array-single-float-type)
- (double-float 0.0d0 64 vm:simple-array-double-float-type)
- (bit 0 1 vm:simple-bit-vector-type)
- ((unsigned-byte 2) 0 2 vm:simple-array-unsigned-byte-2-type)
- ((unsigned-byte 4) 0 4 vm:simple-array-unsigned-byte-4-type)
- ((unsigned-byte 8) 0 8 vm:simple-array-unsigned-byte-8-type)
- ((unsigned-byte 16) 0 16 vm:simple-array-unsigned-byte-16-type)
- ((unsigned-byte 32) 0 32 vm:simple-array-unsigned-byte-32-type)
- (t 0 32 vm:simple-vector-type)))
-
- ;;; MAKE-ARRAY -- source-transform.
- ;;;
- ;;; The integer type restriction on the length assures that it will be a
- ;;; vector. The lack of adjustable, fill-pointer, and displaced-to keywords
- ;;; assures that it will be simple.
- ;;;
- (deftransform make-array ((length &key initial-element element-type)
- (integer &rest *))
- (let* ((eltype (cond ((not element-type) t)
- ((not (constant-continuation-p element-type))
- (give-up "Element-Type is not constant."))
- (t
- (continuation-value element-type))))
- (len (if (constant-continuation-p length)
- (continuation-value length)
- '*))
- (spec `(simple-array ,eltype (,len)))
- (eltype-type (specifier-type eltype)))
- (multiple-value-bind
- (default-initial-element element-size typecode)
- (dolist (info array-info
- (give-up "Cannot open-code creation of ~S" spec))
- (when (csubtypep eltype-type (specifier-type (car info)))
- (return (values-list (cdr info)))))
- (let* ((nwords-form
- (if (>= element-size vm:word-bits)
- `(* length ,(/ element-size vm:word-bits))
- (let ((elements-per-word (/ 32 element-size)))
- `(truncate (+ length
- ,(if (eq 'vm:simple-string-type typecode)
- elements-per-word
- (1- elements-per-word)))
- ,elements-per-word))))
- (constructor
- `(truly-the ,spec
- (allocate-vector ,typecode length ,nwords-form))))
- (values
- (if (and default-initial-element
- (or (null initial-element)
- (and (constant-continuation-p initial-element)
- (eql (continuation-value initial-element)
- default-initial-element))))
- constructor
- `(truly-the ,spec (fill ,constructor initial-element)))
- '((declare (type index length))))))))
-
- ;;; MAKE-ARRAY -- transform.
- ;;;
- ;;; The list type restriction does not assure that the result will be a
- ;;; multi-dimensional array. But the lack of
- ;;;
- (deftransform make-array ((dims &key initial-element element-type)
- (list &rest *))
- (unless (or (null element-type) (constant-continuation-p element-type))
- (give-up "Element-type not constant; cannot open code array creation"))
- (unless (constant-continuation-p dims)
- (give-up "Dimension list not constant; cannot open code array creation"))
- (let ((dims (continuation-value dims)))
- (unless (every #'integerp dims)
- (give-up "Dimension list contains something other than an integer: ~S"
- dims))
- (if (= (length dims) 1)
- `(make-array ',(car dims)
- ,@(when initial-element
- '(:initial-element initial-element))
- ,@(when element-type
- '(:element-type element-type)))
- (let* ((total-size (reduce #'* dims))
- (rank (length dims))
- (spec `(simple-array
- ,(cond ((null element-type) t)
- ((constant-continuation-p element-type)
- (continuation-value element-type))
- (t '*))
- ,(make-list rank :initial-element '*))))
- `(let ((header (make-array-header vm:simple-array-type ,rank)))
- (setf (%array-fill-pointer header) ,total-size)
- (setf (%array-fill-pointer-p header) nil)
- (setf (%array-available-elements header) ,total-size)
- (setf (%array-data-vector header)
- (make-array ,total-size
- ,@(when element-type
- '(:element-type element-type))
- ,@(when initial-element
- '(:initial-element initial-element))))
- (setf (%array-displaced-p header) nil)
- ,@(let ((axis -1))
- (mapcar #'(lambda (dim)
- `(setf (%array-dimension header ,(incf axis))
- ,dim))
- dims))
- (truly-the ,spec header))))))
-
-
- ;;;; Random properties of arrays.
-
- ;;; Transforms for various random array properties. If the property is know
- ;;; at compile time because of a type spec, use that constant value.
-
- ;;; ARRAY-RANK -- transform.
- ;;;
- ;;; If we can tell the rank from the type info, use it instead.
- ;;;
- (deftransform array-rank ((array))
- (let ((array-type (continuation-type array)))
- (unless (array-type-p array-type)
- (give-up))
- (let ((dims (array-type-dimensions array-type)))
- (if (not (listp dims))
- (give-up "Array rank not known at compile time: ~S" dims)
- (length dims)))))
-
- ;;; ARRAY-DIMENSION -- transform.
- ;;;
- ;;; If we know the dimensions at compile time, just use it. Otherwise, if
- ;;; we can tell that the axis is in bounds, convert to %array-dimension
- ;;; (which just indirects the array header) or length (if it's simple and a
- ;;; vector).
- ;;;
- (deftransform array-dimension ((array axis)
- (array index))
- (unless (constant-continuation-p axis)
- (give-up "Axis not constant."))
- (let ((array-type (continuation-type array))
- (axis (continuation-value axis)))
- (unless (array-type-p array-type)
- (give-up))
- (let ((dims (array-type-dimensions array-type)))
- (unless (listp dims)
- (give-up
- "Array dimensions unknown, must call array-dimension at runtime."))
- (unless (> (length dims) axis)
- (abort-transform "Array has dimensions ~S, ~D is too large."
- dims axis))
- (let ((dim (nth axis dims)))
- (cond ((integerp dim)
- dim)
- ((= (length dims) 1)
- (ecase (array-type-complexp array-type)
- ((t)
- '(%array-dimension array 0))
- ((nil)
- '(length array))
- (*
- (give-up "Can't tell if array is simple."))))
- (t
- '(%array-dimension array axis)))))))
-
- ;;; LENGTH -- transform.
- ;;;
- ;;; If the length has been declared and it's simple, just return it.
- ;;;
- (deftransform length ((vector)
- ((simple-array * (*))))
- (let ((type (continuation-type vector)))
- (unless (array-type-p type)
- (give-up))
- (let ((dims (array-type-dimensions type)))
- (unless (and (listp dims) (integerp (car dims)))
- (give-up "Vector length unknown, must call length at runtime."))
- (car dims))))
-
- ;;; LENGTH -- transform.
- ;;;
- ;;; All vectors can get their length by using vector-length. If it's simple,
- ;;; it will extract the length slot from the vector. It it's complex, it will
- ;;; extract the fill pointer slot from the array header.
- ;;;
- (deftransform length ((vector) (vector))
- '(vector-length vector))
-
-
- ;;; If a simple array with known dimensions, then vector-length is a
- ;;; compile-time constant.
- ;;;
- (deftransform vector-length ((vector) ((simple-array * (*))))
- (let ((vtype (continuation-type vector)))
- (if (array-type-p vtype)
- (let ((dim (first (array-type-dimensions vtype))))
- (when (eq dim '*) (give-up))
- dim)
- (give-up))))
-
-
- ;;; ARRAY-TOTAL-SIZE -- transform.
- ;;;
- ;;; Again, if we can tell the results from the type, just use it. Otherwise,
- ;;; if we know the rank, convert into a computation based on array-dimension.
- ;;; We can wrap a truly-the index around the multiplications because we know
- ;;; that the total size must be an index.
- ;;;
- (deftransform array-total-size ((array)
- (array))
- (let ((array-type (continuation-type array)))
- (unless (array-type-p array-type)
- (give-up))
- (let ((dims (array-type-dimensions array-type)))
- (unless (listp dims)
- (give-up "Can't tell the rank at compile time."))
- (if (member '* dims)
- (do ((form 1 `(truly-the index
- (* (array-dimension array ,i) ,form)))
- (i 0 (1+ i)))
- ((= i (length dims)) form))
- (reduce #'* dims)))))
-
- ;;; ARRAY-HAS-FILL-POINTER-P -- transform.
- ;;;
- ;;; Only complex vectors have fill pointers.
- ;;;
- (deftransform array-has-fill-pointer-p ((array))
- (let ((array-type (continuation-type array)))
- (unless (array-type-p array-type)
- (give-up))
- (let ((dims (array-type-dimensions array-type)))
- (if (and (listp dims) (not (= (length dims) 1)))
- nil
- (ecase (array-type-complexp array-type)
- ((t)
- t)
- ((nil)
- nil)
- (*
- (give-up "Array type ambiguous; must call ~
- array-has-fill-pointer-p at runtime.")))))))
-
- ;;; %CHECK-BOUND -- transform.
- ;;;
- ;;; Primitive used to verify indicies into arrays. If we can tell at
- ;;; compile-time or we are generating unsafe code, don't bother with the VOP.
- ;;;
- (deftransform %check-bound ((array dimension index))
- (unless (constant-continuation-p dimension)
- (give-up))
- (let ((dim (continuation-value dimension)))
- `(the (integer 0 ,dim) index)))
- ;;;
- (deftransform %check-bound ((array dimension index) * *
- :policy (and (> speed safety) (= safety 0)))
- 'index)
-
-
- ;;; WITH-ROW-MAJOR-INDEX -- internal.
- ;;;
- ;;; Handy macro for computing the row-major index given a set of indices. We
- ;;; wrap each index with a call to %check-bound to assure that everything
- ;;; works out correctly. We can wrap all the interior arith with truly-the
- ;;; index because we know the the resultant row-major index must be an index.
- ;;;
- (eval-when (compile eval)
- ;;;
- (defmacro with-row-major-index ((array indices index &optional new-value)
- &rest body)
- `(let (n-indices dims)
- (dotimes (i (length ,indices))
- (push (make-symbol (format nil "INDEX-~D" i)) n-indices)
- (push (make-symbol (format nil "DIM-~D" i)) dims))
- (setf n-indices (nreverse n-indices))
- (setf dims (nreverse dims))
- `(lambda (,',array ,@n-indices ,@',(when new-value (list new-value)))
- (let* (,@(let ((,index -1))
- (mapcar #'(lambda (name)
- `(,name (array-dimension ,',array
- ,(incf ,index))))
- dims))
- (,',index
- ,(if (null dims)
- 0
- (do* ((dims dims (cdr dims))
- (indices n-indices (cdr indices))
- (last-dim nil (car dims))
- (form `(%check-bound ,',array
- ,(car dims)
- ,(car indices))
- `(truly-the index
- (+ (truly-the index
- (* ,form
- ,last-dim))
- (%check-bound
- ,',array
- ,(car dims)
- ,(car indices))))))
- ((null (cdr dims)) form)))))
- ,',@body))))
- ;;;
- ); eval-when
-
- ;;; ARRAY-ROW-MAJOR-INDEX -- transform.
- ;;;
- ;;; Just return the index after computing it.
- ;;;
- (deftransform array-row-major-index ((array &rest indices))
- (with-row-major-index (array indices index)
- index))
-
-
-
- ;;;; Array accessors:
-
- ;;; SVREF, %SVSET, SCHAR, %SCHARSET, CHAR,
- ;;; %CHARSET, SBIT, %SBITSET, BIT, %BITSET
- ;;; -- source transforms.
- ;;;
- ;;; We convert all typed array accessors into aref and %aset with type
- ;;; assertions on the array.
- ;;;
- (macrolet ((frob (reffer setter type)
- `(progn
- (def-source-transform ,reffer (a &rest i)
- `(aref (the ,',type ,a) ,@i))
- (def-source-transform ,setter (a &rest i)
- `(%aset (the ,',type ,a) ,@i)))))
- (frob svref %svset simple-vector)
- (frob schar %scharset simple-string)
- (frob char %charset string)
- (frob sbit %sbitset (simple-array bit))
- (frob bit %bitset (array bit)))
-
- ;;; AREF, %ASET -- transform.
- ;;;
- ;;; Convert into a data-vector-ref (or set) with the set of indices replaced
- ;;; with the an expression for the row major index.
- ;;;
- (deftransform aref ((array &rest indices))
- (with-row-major-index (array indices index)
- (data-vector-ref array index)))
- ;;;
- (deftransform %aset ((array &rest stuff))
- (let ((indices (butlast stuff)))
- (with-row-major-index (array indices index new-value)
- (data-vector-set array index new-value))))
-
- ;;; ROW-MAJOR-AREF, %SET-ROW-MAJOR-AREF -- transform.
- ;;;
- ;;; Just convert into a data-vector-ref (or set) after checking that the
- ;;; index is inside the array total size.
- ;;;
- (deftransform row-major-aref ((array index))
- `(data-vector-ref array (%check-bound array (array-total-size array) index)))
- ;;;
- (deftransform %set-row-major-aref ((array index new-value))
- `(data-vector-set array
- (%check-bound array (array-total-size array) index)
- new-value))
-
-
- ;;;; Bit-vector array operation canonicalization:
- ;;;
- ;;; We convert all bit-vector operations to have the result array specified.
- ;;; This allows any result allocation to be open-coded, and eliminates the need
- ;;; for any VM-dependent transforms to handle these cases.
-
- (dolist (fun '(bit-and bit-ior bit-xor bit-eqv bit-nand bit-nor bit-andc1
- bit-andc2 bit-orc1 bit-orc2))
- ;;
- ;; Make a result array if result is NIL or unsupplied.
- (deftransform fun ((bit-array-1 bit-array-2 &optional result-bit-array)
- '(bit-vector bit-vector &optional null) '*
- :eval-name t :policy (>= speed space))
- `(,fun bit-array-1 bit-array-2
- (make-array (length bit-array-1) :element-type 'bit)))
- ;;
- ;; If result its T, make it the first arg.
- (deftransform fun ((bit-array-1 bit-array-2 result-bit-array)
- '(bit-vector bit-vector (member t)) '*
- :eval-name t)
- `(,fun bit-array-1 bit-array-2 bit-array-1)))
-
- ;;; Similar for BIT-NOT, but there is only one arg...
- ;;;
- (deftransform bit-not ((bit-array-1 &optional result-bit-array)
- (bit-vector &optional null) *
- :policy (>= speed space))
- '(bit-not bit-array-1
- (make-array (length bit-array-1) :element-type 'bit)))
- ;;;
- (deftransform bit-not ((bit-array-1 result-bit-array)
- (bit-vector (constant-argument t)))
- '(bit-not bit-array-1 bit-array-1)))
-