home *** CD-ROM | disk | FTP | other *** search
- ;;; -*- Log: code.log; Package: Lisp -*-
- ;;;
- ;;; **********************************************************************
- ;;; This code was written as part of the CMU Common Lisp project at
- ;;; Carnegie Mellon University, and has been placed in the public domain.
- ;;; If you want to use this code or any part of CMU Common Lisp, please contact
- ;;; Scott Fahlman or slisp-group@cs.cmu.edu.
- ;;;
- (ext:file-comment
- "$Header: sort.lisp,v 1.2 91/02/08 13:35:46 ram Exp $")
- ;;;
- ;;; **********************************************************************
- ;;;
- ;;; Sort functions for Spice Lisp
- ;;; these functions are part of the standard spice lisp environment.
- ;;;
- ;;; Written by Jim Large
- ;;; Hacked on and maintained by Skef Wholey
- ;;; Rewritten by Bill Chiles
- ;;;
- ;;; *******************************************************************
-
- (in-package 'lisp)
-
- (export '(sort stable-sort merge))
-
-
-
- (defun sort (sequence predicate &key key)
- "Destructively sorts sequence. Predicate should returns non-Nil if
- Arg1 is to precede Arg2."
- (typecase sequence
- (simple-vector
- (if (> (the fixnum (length (the simple-vector sequence))) 0)
- (sort-simple-vector sequence predicate key)
- sequence))
- (list
- (sort-list sequence predicate key))
- (vector
- (if (> (the fixnum (length sequence)) 0)
- (sort-vector sequence predicate key)
- sequence))
- (t
- (error "~S is not a sequence." sequence))))
-
-
-
- ;;; Sorting Vectors
-
- ;;; Sorting is done with a heap sort.
-
- (eval-when (compile eval)
-
- ;;; HEAPIFY, assuming both sons of root are heaps, percolates the root element
- ;;; through the sons to form a heap at root. Root and max are zero based
- ;;; coordinates, but the heap algorithm only works on arrays indexed from 1
- ;;; through N (not 0 through N-1); This is because a root at I has sons at 2*I
- ;;; and 2*I+1 which does not work for a root at 0. Because of this, boundaries,
- ;;; roots, and termination are computed using 1..N indexes.
-
- (defmacro heapify (seq vector-ref root max pred key)
- (let ((heap-root (gensym)) (heap-max (gensym)) (root-ele (gensym))
- (root-key (gensym)) (heap-max/2 (gensym)) (heap-l-son (gensym))
- (one-son (gensym)) (one-son-ele (gensym)) (one-son-key (gensym))
- (r-son-ele (gensym)) (r-son-key (gensym)) (var-root (gensym)))
- `(let* ((,var-root ,root) ; necessary to not clobber calling root var.
- (,heap-root (1+ ,root))
- (,heap-max (1+ ,max))
- (,root-ele (,vector-ref ,seq ,root))
- (,root-key (apply-key ,key ,root-ele))
- (,heap-max/2 (ash ,heap-max -1))) ; (floor heap-max 2)
- (declare (fixnum ,var-root ,heap-root ,heap-max ,heap-max/2))
- (loop
- (if (> ,heap-root ,heap-max/2) (return))
- (let* ((,heap-l-son (ash ,heap-root 1)) ; (* 2 heap-root)
- ;; l-son index in seq (0..N-1) is one less than heap computation
- (,one-son (1- ,heap-l-son))
- (,one-son-ele (,vector-ref ,seq ,one-son))
- (,one-son-key (apply-key ,key ,one-son-ele)))
- (declare (fixnum ,heap-l-son ,one-son))
- (if (< ,heap-l-son ,heap-max)
- ;; there is a right son.
- (let* ((,r-son-ele (,vector-ref ,seq ,heap-l-son))
- (,r-son-key (apply-key ,key ,r-son-ele)))
- ;; choose the greater of the two sons.
- (when (funcall ,pred ,one-son-key ,r-son-key)
- (setf ,one-son ,heap-l-son)
- (setf ,one-son-ele ,r-son-ele)
- (setf ,one-son-key ,r-son-key))))
- ;; if greater son is less than root, then we've formed a heap again.
- (if (funcall ,pred ,one-son-key ,root-key) (return))
- ;; else put greater son at root and make greater son node be the root.
- (setf (,vector-ref ,seq ,var-root) ,one-son-ele)
- (setf ,heap-root (1+ ,one-son)) ; one plus to be in heap coordinates.
- (setf ,var-root ,one-son))) ; actual index into vector for root ele.
- ;; now really put percolated value into heap at the appropriate root node.
- (setf (,vector-ref ,seq ,var-root) ,root-ele))))
-
-
- ;;; BUILD-HEAP rearranges seq elements into a heap to start heap sorting.
- (defmacro build-heap (seq type len-1 pred key)
- (let ((i (gensym)))
- `(do ((,i (floor ,len-1 2) (1- ,i)))
- ((minusp ,i) ,seq)
- (declare (fixnum ,i))
- (heapify ,seq ,type ,i ,len-1 ,pred ,key))))
-
- ) ; eval-when
-
-
- ;;; Make simple-vector and miscellaneous vector sorting functions.
- (macrolet ((frob-rob (fun-name vector-ref)
- `(defun ,fun-name (seq pred key)
- (let ((len-1 (1- (length (the vector seq)))))
- (declare (fixnum len-1))
- (build-heap seq ,vector-ref len-1 pred key)
- (do* ((i len-1 i-1)
- (i-1 (1- i) (1- i-1)))
- ((zerop i) seq)
- (declare (fixnum i i-1))
- (rotatef (,vector-ref seq 0) (,vector-ref seq i))
- (heapify seq ,vector-ref 0 i-1 pred key))))))
-
- (frob-rob sort-vector aref)
-
- (frob-rob sort-simple-vector svref))
-
-
-
- ;;;; Stable Sorting
-
- (defun stable-sort (sequence predicate &key key)
- "Destructively sorts sequence. Predicate should returns non-Nil if
- Arg1 is to precede Arg2."
- (typecase sequence
- (simple-vector
- (stable-sort-simple-vector sequence predicate key))
- (list
- (sort-list sequence predicate key))
- (vector
- (stable-sort-vector sequence predicate key))
- (t
- (error "~S is not a sequence." sequence))))
-
-
- ;;; Stable Sorting Lists
-
-
- ;;; SORT-LIST uses a bottom up merge sort. First a pass is made over
- ;;; the list grabbing one element at a time and merging it with the next one
- ;;; form pairs of sorted elements. Then n is doubled, and elements are taken
- ;;; in runs of two, merging one run with the next to form quadruples of sorted
- ;;; elements. This continues until n is large enough that the inner loop only
- ;;; runs for one iteration; that is, there are only two runs that can be merged,
- ;;; the first run starting at the beginning of the list, and the second being
- ;;; the remaining elements.
-
- (defun sort-list (list pred key)
- (let ((head (cons :header list)) ; head holds on to everything
- (n 1) ; bottom-up size of lists to be merged
- unsorted ; unsorted is the remaining list to be
- ; broken into n size lists and merged
- list-1 ; list-1 is one length n list to be merged
- last) ; last points to the last visited cell
- (declare (fixnum n))
- (loop
- ;; start collecting runs of n at the first element
- (setf unsorted (cdr head))
- ;; tack on the first merge of two n-runs to the head holder
- (setf last head)
- (let ((n-1 (1- n)))
- (declare (fixnum n-1))
- (loop
- (setf list-1 unsorted)
- (let ((temp (nthcdr n-1 list-1))
- list-2)
- (cond (temp
- ;; there are enough elements for a second run
- (setf list-2 (cdr temp))
- (setf (cdr temp) nil)
- (setf temp (nthcdr n-1 list-2))
- (cond (temp
- (setf unsorted (cdr temp))
- (setf (cdr temp) nil))
- ;; the second run goes off the end of the list
- (t (setf unsorted nil)))
- (multiple-value-bind (merged-head merged-last)
- (merge-lists* list-1 list-2 pred key)
- (setf (cdr last) merged-head)
- (setf last merged-last))
- (if (null unsorted) (return)))
- ;; if there is only one run, then tack it on to the end
- (t (setf (cdr last) list-1)
- (return)))))
- (setf n (ash n 1)) ; (+ n n)
- ;; If the inner loop only executed once, then there were only enough
- ;; elements for two runs given n, so all the elements have been merged
- ;; into one list. This may waste one outer iteration to realize.
- (if (eq list-1 (cdr head))
- (return list-1))))))
-
-
- ;;; APPLY-PRED saves us a function call sometimes.
- (eval-when (compile eval)
- (defmacro apply-pred (one two pred key)
- `(if ,key
- (funcall ,pred (funcall ,key ,one)
- (funcall ,key ,two))
- (funcall ,pred ,one ,two)))
- ) ; eval-when
-
- (defvar *merge-lists-header* (list :header))
-
- ;;; MERGE-LISTS* originally written by Jim Large.
- ;;; modified to return a pointer to the end of the result
- ;;; and to not cons header each time its called.
- ;;; It destructively merges list-1 with list-2. In the resulting
- ;;; list, elements of list-2 are guaranteed to come after equal elements
- ;;; of list-1.
- (defun merge-lists* (list-1 list-2 pred key)
- (do* ((result *merge-lists-header*)
- (P result)) ; P points to last cell of result
- ((or (null list-1) (null list-2)) ; done when either list used up
- (if (null list-1) ; in which case, append the
- (rplacd p list-2) ; other list
- (rplacd p list-1))
- (do ((drag p lead)
- (lead (cdr p) (cdr lead)))
- ((null lead)
- (values (prog1 (cdr result) ; return the result sans header
- (rplacd result nil)) ; (free memory, be careful)
- drag)))) ; and return pointer to last element
- (cond ((apply-pred (car list-2) (car list-1) pred key)
- (rplacd p list-2) ; append the lesser list to last cell of
- (setq p (cdr p)) ; result. Note: test must bo done for
- (pop list-2)) ; list-2 < list-1 so merge will be
- (T (rplacd p list-1) ; stable for list-1
- (setq p (cdr p))
- (pop list-1)))))
-
-
-
- ;;; Stable Sort Vectors
-
- ;;; Stable sorting vectors is done with the same algorithm used for lists,
- ;;; using a temporary vector to merge back and forth between it and the
- ;;; given vector to sort.
-
-
- (eval-when (compile eval)
-
- ;;; STABLE-SORT-MERGE-VECTORS* takes a source vector with subsequences,
- ;;; start-1 (inclusive) ... end-1 (exclusive) and
- ;;; end-1 (inclusive) ... end-2 (exclusive),
- ;;; and merges them into a target vector starting at index start-1.
-
- (defmacro stable-sort-merge-vectors* (source target start-1 end-1 end-2
- pred key source-ref target-ref)
- (let ((i (gensym))
- (j (gensym))
- (target-i (gensym)))
- `(let ((,i ,start-1)
- (,j ,end-1) ; start-2
- (,target-i ,start-1))
- (declare (fixnum ,i ,j ,target-i))
- (loop
- (cond ((= ,i ,end-1)
- (loop (if (= ,j ,end-2) (return))
- (setf (,target-ref ,target ,target-i)
- (,source-ref ,source ,j))
- (incf ,target-i)
- (incf ,j))
- (return))
- ((= ,j ,end-2)
- (loop (if (= ,i ,end-1) (return))
- (setf (,target-ref ,target ,target-i)
- (,source-ref ,source ,i))
- (incf ,target-i)
- (incf ,i))
- (return))
- ((apply-pred (,source-ref ,source ,j)
- (,source-ref ,source ,i)
- ,pred ,key)
- (setf (,target-ref ,target ,target-i)
- (,source-ref ,source ,j))
- (incf ,j))
- (t (setf (,target-ref ,target ,target-i)
- (,source-ref ,source ,i))
- (incf ,i)))
- (incf ,target-i)))))
-
-
- ;;; VECTOR-MERGE-SORT is the same algorithm used to stable sort lists, but
- ;;; it uses a temporary vector. Direction determines whether we are merging
- ;;; into the temporary (T) or back into the given vector (NIL).
-
- (defmacro vector-merge-sort (vector pred key vector-ref)
- (let ((vector-len (gensym)) (n (gensym))
- (direction (gensym)) (unsorted (gensym))
- (start-1 (gensym)) (end-1 (gensym))
- (end-2 (gensym)) (temp-len (gensym))
- (i (gensym)))
- `(let ((,vector-len (length (the vector ,vector)))
- (,n 1) ; bottom-up size of contiguous runs to be merged
- (,direction t) ; t vector --> temp nil temp --> vector
- (,temp-len (length (the simple-vector *merge-sort-temp-vector*)))
- (,unsorted 0) ; unsorted..vector-len are the elements that need
- ; to be merged for a given n
- (,start-1 0)) ; one n-len subsequence to be merged with the next
- (declare (fixnum ,vector-len ,n ,temp-len ,unsorted ,start-1))
- (if (> ,vector-len ,temp-len)
- (setf *merge-sort-temp-vector*
- (make-array (max ,vector-len (+ ,temp-len ,temp-len)))))
- (loop
- ;; for each n, we start taking n-runs from the start of the vector
- (setf ,unsorted 0)
- (loop
- (setf ,start-1 ,unsorted)
- (let ((,end-1 (+ ,start-1 ,n)))
- (declare (fixnum ,end-1))
- (cond ((< ,end-1 ,vector-len)
- ;; there are enough elements for a second run
- (let ((,end-2 (+ ,end-1 ,n)))
- (declare (fixnum ,end-2))
- (if (> ,end-2 ,vector-len) (setf ,end-2 ,vector-len))
- (setf ,unsorted ,end-2)
- (if ,direction
- (stable-sort-merge-vectors*
- ,vector *merge-sort-temp-vector*
- ,start-1 ,end-1 ,end-2 ,pred ,key ,vector-ref svref)
- (stable-sort-merge-vectors*
- *merge-sort-temp-vector* ,vector
- ,start-1 ,end-1 ,end-2 ,pred ,key svref ,vector-ref))
- (if (= ,unsorted ,vector-len) (return))))
- ;; if there is only one run, copy those elements to the end
- (t (if ,direction
- (do ((,i ,start-1 (1+ ,i)))
- ((= ,i ,vector-len))
- (declare (fixnum ,i))
- (setf (svref *merge-sort-temp-vector* ,i)
- (,vector-ref ,vector ,i)))
- (do ((,i ,start-1 (1+ ,i)))
- ((= ,i ,vector-len))
- (declare (fixnum ,i))
- (setf (,vector-ref ,vector ,i)
- (svref *merge-sort-temp-vector* ,i))))
- (return)))))
- ;; If the inner loop only executed once, then there were only enough
- ;; elements for two subsequences given n, so all the elements have
- ;; been merged into one list. Start-1 will have remained 0 upon exit.
- (when (zerop ,start-1)
- (if ,direction
- ;; if we just merged into the temporary, copy it all back
- ;; to the given vector.
- (dotimes (,i ,vector-len)
- (setf (,vector-ref ,vector ,i)
- (svref *merge-sort-temp-vector* ,i))))
- (return ,vector))
- (setf ,n (ash ,n 1)) ; (* 2 n)
- (setf ,direction (not ,direction))))))
-
- ) ; eval-when
-
-
- ;;; Temporary vector for stable sorting vectors.
- (defvar *merge-sort-temp-vector*
- (make-array 50))
-
- (proclaim '(simple-vector *merge-sort-temp-vector*))
-
- (defun stable-sort-simple-vector (vector pred key)
- (declare (simple-vector vector))
- (vector-merge-sort vector pred key svref))
-
- (defun stable-sort-vector (vector pred key)
- (vector-merge-sort vector pred key aref))
-
-
-
- ;;;; Merge
-
- (eval-when (compile eval)
-
- ;;; MERGE-VECTORS returns a new vector which contains an interleaving
- ;;; of the elements of vector-1 and vector-2. Elements from vector-2 are
- ;;; chosen only if they are strictly less than elements of vector-1,
- ;;; (pred elt-2 elt-1), as specified in the manual.
-
- (defmacro merge-vectors (vector-1 length-1 vector-2 length-2
- result-vector pred key access)
- (let ((result-i (gensym))
- (i (gensym))
- (j (gensym)))
- `(let* ((,result-i 0)
- (,i 0)
- (,j 0))
- (declare (fixnum ,result-i ,i ,j))
- (loop
- (cond ((= ,i ,length-1)
- (loop (if (= ,j ,length-2) (return))
- (setf (,access ,result-vector ,result-i)
- (,access ,vector-2 ,j))
- (incf ,result-i)
- (incf ,j))
- (return ,result-vector))
- ((= ,j ,length-2)
- (loop (if (= ,i ,length-1) (return))
- (setf (,access ,result-vector ,result-i)
- (,access ,vector-1 ,i))
- (incf ,result-i)
- (incf ,i))
- (return ,result-vector))
- ((apply-pred (,access ,vector-2 ,j) (,access ,vector-1 ,i)
- ,pred ,key)
- (setf (,access ,result-vector ,result-i)
- (,access ,vector-2 ,j))
- (incf ,j))
- (t (setf (,access ,result-vector ,result-i)
- (,access ,vector-1 ,i))
- (incf ,i)))
- (incf ,result-i)))))
-
- ) ; eval-when
-
- (defun merge (result-type sequence1 sequence2 predicate &key key)
- "The sequences Sequence1 and Sequence2 are destructively merged into
- a sequence of type Result-Type using the Predicate to order the elements."
- (if (eq result-type 'list)
- (let ((result (merge-lists* (coerce sequence1 'list)
- (coerce sequence2 'list)
- predicate key)))
- result)
- (let* ((vector-1 (coerce sequence1 'vector))
- (vector-2 (coerce sequence2 'vector))
- (length-1 (length vector-1))
- (length-2 (length vector-2))
- (result (make-sequence-of-type result-type (+ length-1 length-2))))
- (declare (vector vector-1 vector-2)
- (fixnum length-1 length-2))
- (if (and (simple-vector-p result)
- (simple-vector-p vector-1)
- (simple-vector-p vector-2))
- (merge-vectors vector-1 length-1 vector-2 length-2
- result predicate key svref)
- (merge-vectors vector-1 length-1 vector-2 length-2
- result predicate key aref)))))
-