home *** CD-ROM | disk | FTP | other *** search
- // This may look like C code, but it is really -*- C++ -*-
- /*
- ************************************************************************
- *
- * Verify Operations on Matrices
- *
- ************************************************************************
- */
-
- #include "LinAlg.h"
- #include <math.h>
- #include <builtin.h>
- #include <ostream.h>
-
- /*
- *------------------------------------------------------------------------
- * Service validation functions
- */
-
- static void verify_element_value(const Matrix& m,const REAL val)
- {
- register imax = 0, jmax = 0;
- register double max_dev = 0;
- register int i,j;
- for(i=m.q_row_lwb(); i<=m.q_row_upb(); i++)
- for(j=m.q_col_lwb(); j<=m.q_col_upb(); j++)
- {
- register double dev = abs(m(i,j)-val);
- if( dev >= max_dev )
- imax = i, jmax = j, max_dev = dev;
- }
-
- if( max_dev == 0 )
- return;
- else if( max_dev < 1e-5 )
- message("Element (%d,%d) with value %g differs the most from what\n"
- "was expected, %g, though the deviation %g is small\n",
- imax,jmax,m(imax,jmax),val,max_dev);
- else
- _error("A significant difference from the expected value %g\n"
- "encountered for element (%d,%d) with value %g",
- val,imax,jmax,m(imax,jmax));
- }
-
- static void verify_matrix_identity(const Matrix& m1, const Matrix& m2)
- {
- register imax = 0, jmax = 0;
- register double max_dev = 0;
- register int i,j;
- are_compatible(m1,m2);
- for(i=m1.q_row_lwb(); i<=m1.q_row_upb(); i++)
- for(j=m1.q_col_lwb(); j<=m1.q_col_upb(); j++)
- {
- register double dev = abs(m1(i,j)-m2(i,j));
- if( dev >= max_dev )
- imax = i, jmax = j, max_dev = dev;
- }
-
- if( max_dev == 0 )
- return;
- if( max_dev < 1e-5 )
- message("Two (%d,%d) elements of matrices with values %g and %g\n"
- "differ the most, though the deviation %g is small\n",
- imax,jmax,m1(imax,jmax),m2(imax,jmax),max_dev);
- else
- _error("A significant difference between the matrices encountered\n"
- "at (%d,%d) element, with values %g and %g",
- imax,jmax,m1(imax,jmax),m2(imax,jmax));
- }
-
- /*
- *------------------------------------------------------------------------
- * Test allocation functions and compatibility check
- */
-
- static void test_allocation(void)
- {
-
- cout << "\n\n---> Test allocation and compatibility check\n";
-
- Matrix m1(4,20); m1.set_name("Matrix m1");
- Matrix m2(1,4,1,20); m2.set_name("Matrix m2");
- Matrix m3(1,4,0,19); m3.set_name("Matrix m3");
- Matrix m4(m1); m4.set_name("Matrix m4");
- cout << "The following matrices have been allocated\n";
- m1.info(), m2.info(), m3.info(), m4.info();
-
- cout << "\nStatus information reported for matrix m3:\n";
- cout << " Row lower bound ... " << m3.q_row_lwb() << "\n";
- cout << " Row upper bound ... " << m3.q_row_upb() << "\n";
- cout << " Col lower bound ... " << m3.q_col_lwb() << "\n";
- cout << " Col upper bound ... " << m3.q_col_upb() << "\n";
- cout << " No. rows ..........." << m3.q_nrows() << "\n";
- cout << " No. cols ..........." << m3.q_ncols() << "\n";
- cout << " No. of elements ...." << m3.q_no_elems() << "\n";
- cout << " Name " << m3.q_name() << "\n";
-
- cout << "\nCheck matrices 1 & 2 for compatibility\n";
- are_compatible(m1,m2);
-
- cout << "Check matrices 1 & 4 for compatibility\n";
- are_compatible(m1,m4);
-
- #if 0
- cout << "Check matrices 1 & 3 for compatibility\n";
- are_compatible(m1,m3);
- #endif
-
- cout << "m2 has to be compatible with m3 after resizing to m3\n";
- m2.resize_to(m3);
- are_compatible(m2,m3);
-
- Matrix m5(m1.q_nrows()+1,m1.q_ncols()+5); m5.set_name("Matrix m5");
- cout << "m1 has to be compatible with m5 after resizing to m5\n";
- m5.info();
- m1.resize_to(m5.q_nrows(),m5.q_ncols());
- are_compatible(m1,m5);
-
- }
-
- /*
- *------------------------------------------------------------------------
- * Test uniform element operations
- */
-
- static void test_element_op(const int rsize, const int csize)
- {
- const double pattern = 8.625;
- register int i,j;
-
- cout << "\n\n---> Test operations that treat each element uniformly\n";
-
- Matrix m(-1,rsize-2,1,csize);
- Matrix m1(m);
-
- cout << "Writing zeros to m...\n";
- for(i=m.q_row_lwb(); i<=m.q_row_upb(); i++)
- for(j=m.q_col_lwb(); j<=m.q_col_upb(); j++)
- m(i,j) = 0;
- verify_element_value(m,0);
-
- cout << "Clearing m1 ...\n";
- m1.clear();
- verify_element_value(m1,0);
-
- cout << "Comparing m1 with 0 ...\n";
- assure(m1 == 0, "m1 is not zero!");
-
- cout << "Writing a pattern " << pattern << " by assigning to m(i,j)...\n";
- for(i=m.q_row_lwb(); i<=m.q_row_upb(); i++)
- for(j=m.q_col_lwb(); j<=m.q_col_upb(); j++)
- m(i,j) = pattern;
- verify_element_value(m,pattern);
-
- cout << "Writing the pattern by assigning to m1 as a whole ...\n";
- m1 = pattern;
- verify_element_value(m1,pattern);
-
- cout << "Comparing m and m1 ...\n";
- assure(m == m1, "m and m1 are unexpectedly different!");
- cout << "Comparing (m=0) and m1 ...\n";
- assert(!(m.clear() == m1));
-
- cout << "\nClear m and add the pattern\n";
- m.clear();
- m += pattern;
- verify_element_value(m,pattern);
- cout << " add the doubled pattern with the negative sign\n";
- m += -2*pattern;
- verify_element_value(m,-pattern);
- cout << " subtract the trippled pattern with the negative sign\n";
- m -= -3*pattern;
- verify_element_value(m,2*pattern);
-
- cout << "\nVerify comparison operations\n";
- m = pattern;
- cout << " (m=pattern)>0\n";
- assure( m > 0, "Unexpectedly, v is not greater than 0");
- cout << " (m=pattern)>-pattern\n";
- assert( m > -pattern );
- cout << " (m=-pattern)<-pattern/2\n";
- m -= 2*pattern;
- assert( m < -pattern/2 );
-
- cout << "\nAssign 2*pattern to m by repeating additions\n";
- m = 0; m += pattern; m += pattern;
- cout << "Assign 2*pattern to m1 by multiplying by two \n";
- m1 = pattern; m1 *= 2;
- verify_element_value(m1,2*pattern);
- assert( m == m1 );
- cout << "Multiply m1 by one half returning it to the 1*pattern\n";
- m1 *= 1/2.;
- verify_element_value(m1,pattern);
-
- cout << "\nAssign -pattern to m and m1\n";
- m.clear(); m -= pattern; m1 = -pattern;
- verify_element_value(m,-pattern);
- assert( m == m1 );
- cout << "m = sqrt(sqr(m)); m1 = abs(m1); Now m and m1 have to be the same\n";
- m.sqr();
- verify_element_value(m,pattern*pattern);
- m.sqrt();
- verify_element_value(m,pattern);
- m1.abs();
- verify_element_value(m1,pattern);
- assert( m == m1 );
-
- cout << "\nCheck out to see that sin^2(x) + cos^2(x) = 1\n";
- for(i=m.q_row_lwb(); i<=m.q_row_upb(); i++)
- for(j=m.q_col_lwb(); j<=m.q_col_upb(); j++)
- m(i,j) = 4*PI/m.q_no_elems() * (i*m.q_ncols()+j);
- m1 = m;
- m.user_function(sin);
- m1.user_function(cos);
- m.sqr();
- m1.sqr();
- m += m1;
- verify_element_value(m,1);
-
- cout << "\nDone\n\n";
- }
-
- /*
- *------------------------------------------------------------------------
- * Test binary matrix element-by-element operations
- */
-
- static void test_binary_ebe_op(const int rsize, const int csize)
- {
- const double pattern = 4.25;
- register int i,j;
-
- cout << "\n---> Test Binary Matrix element-by-element operations\n";
-
- Matrix m(2,rsize+1,0,csize-1);
- Matrix m1(m);
- Matrix mp(m);
-
- for(i=mp.q_row_lwb(); i<=mp.q_row_upb(); i++)
- for(j=mp.q_col_lwb(); j<=mp.q_col_upb(); j++)
- mp(i,j) = (i-m.q_nrows()/2.)*j*pattern;
-
-
- cout << "\nVerify assignment of a matrix to the matrix\n";
- m = pattern;
- m1.clear();
- m1 = m;
- verify_element_value(m1,pattern);
- assert( m1 == m );
-
- cout << "\nAdding the matrix to itself, uniform pattern " << pattern << "\n";
- m.clear(); m = pattern;
- m1 = m; m1 += m1;
- verify_element_value(m1,2*pattern);
- cout << " subtracting two matrices ...\n";
- m1 -= m;
- verify_element_value(m1,pattern);
- cout << " subtracting the matrix from itself\n";
- m1 -= m1;
- verify_element_value(m1,0);
- cout << " adding two matrices together\n";
- m1 += m;
- verify_element_value(m1,pattern);
-
- cout << "\nArithmetic operations on matrices with not the same elements\n";
- cout << " adding mp to the zero matrix...\n";
- m.clear(); m += mp;
- verify_matrix_identity(m,mp);
- m1 = m;
- cout << " making m = 3*mp and m1 = 3*mp, via add() and succesive mult\n";
- add(m,2,mp);
- m1 += m1; m1 += mp;
- verify_matrix_identity(m,m1);
- cout << " clear both m and m1, by subtracting from itself and via add()\n";
- m1 -= m1;
- add(m,-3,mp);
- verify_matrix_identity(m,m1);
-
- cout << "\nTesting element-by-element multiplications and divisions\n";
- cout << " squaring each element with sqr() and via multiplication\n";
- m = mp; m1 = mp;
- m.sqr();
- element_mult(m1,m1);
- verify_matrix_identity(m,m1);
- cout << " compare (m = pattern^2)/pattern with pattern\n";
- m = pattern; m1 = pattern;
- m.sqr();
- element_div(m,m1);
- verify_element_value(m,pattern);
- compare(m1,m,"Original vector and vector after squaring and dividing");
-
- cout << "\nDone\n";
- }
-
- /*
- *------------------------------------------------------------------------
- * Verify the determinant evaluation
- */
-
- static void test_determinant(const int msize)
- {
- cout << "\n---> Verify determinant evaluation\n"
- "for a square matrix of size " << msize << "\n";
-
- Matrix m(msize,msize);
-
- cout << "\nCheck to see that the determinant of the unit matrix is one";
- m.unit_matrix();
- cout << "\n determinant is " << m.determinant();
- assert( m.determinant() == 1 );
-
- const double pattern = 2.5;
- cout << "\nCheck the determinant for the matrix with " << pattern <<
- "\n at the diagonal";
- register int i,j;
- for(i=m.q_row_lwb(); i<=m.q_row_upb(); i++)
- for(j=m.q_col_lwb(); j<=m.q_col_upb(); j++)
- m(i,j) = ( i==j ? pattern : 0 );
- cout << "\n determinant is " << m.determinant();
- assert( m.determinant() == pow(pattern,m.q_nrows()) );
-
- cout << "\nCheck the determinant for the matrix with " << pattern <<
- "\n at the anti-diagonal";
- for(i=m.q_row_lwb(); i<=m.q_row_upb(); i++)
- for(j=m.q_col_lwb(); j<=m.q_col_upb(); j++)
- m(i,j) = ( i==(m.q_col_upb()+m.q_col_lwb()-j) ? pattern : 0 );
- assert( m.determinant() == pow(pattern,m.q_nrows()) *
- ( m.q_nrows()*(m.q_nrows()-1)/2 & 1 ? -1 : 1 ) );
-
- cout << "\nCheck the determinant for the singular matrix"
- "\n defined as above with zero first row";
- m.clear();
- for(i=m.q_row_lwb()+1; i<=m.q_row_upb(); i++)
- for(j=m.q_col_lwb(); j<=m.q_col_upb(); j++)
- m(i,j) = ( i==(m.q_col_upb()+m.q_col_lwb()-j) ? pattern : 0 );
- cout << "\n determinant is " << m.determinant();
- assert( m.determinant() == 0 );
-
- cout << "\nCheck out the determinant of the Hilbert matrix";
- Matrix H(3,3);
- H.hilbert_matrix();
- cout << "\n 3x3 Hilbert matrix: exact determinant 1/2160 ";
- cout << "\n computed 1/"<< 1/H.determinant();
-
- H.resize_to(4,4);
- H.hilbert_matrix();
- cout << "\n 4x4 Hilbert matrix: exact determinant 1/6048000 ";
- cout << "\n computed 1/"<< 1/H.determinant();
-
- H.resize_to(5,5);
- H.hilbert_matrix();
- cout << "\n 5x5 Hilbert matrix: exact determinant 3.749295e-12";
- cout << "\n computed "<< H.determinant();
-
- H.resize_to(7,7);
- H.hilbert_matrix();
- cout << "\n 7x7 Hilbert matrix: exact determinant 4.8358e-25";
- cout << "\n computed "<< H.determinant();
-
- H.resize_to(9,9);
- H.hilbert_matrix();
- cout << "\n 9x9 Hilbert matrix: exact determinant 9.72023e-43";
- cout << "\n computed "<< H.determinant();
-
- H.resize_to(10,10);
- H.hilbert_matrix();
- cout << "\n 10x10 Hilbert matrix: exact determinant 2.16418e-53";
- cout << "\n computed "<< H.determinant();
-
- cout << "\nDone\n";
- }
-
- /*
- *------------------------------------------------------------------------
- * Verify the norm calculation
- */
-
- static void test_norms(const int rsize, const int csize)
- {
- cout << "\n---> Verify norm calculations\n";
-
- const double pattern = 10.25;
-
- if( rsize % 2 == 1 || csize %2 == 1 )
- _error("Sorry, size of the matrix to test must be even for this test\n");
-
- Matrix m(rsize,csize);
- Matrix m1(m);
-
- cout << "\nAssign " << pattern << " to all the elements and check norms\n";
- m = pattern;
- cout << " 1. (col) norm should be pattern*nrows\n";
- assert( m.norm_1() == pattern*m.q_nrows() );
- assert( m.norm_1() == m.col_norm() );
- cout << " Inf (row) norm should be pattern*ncols\n";
- assert( m.norm_inf() == pattern*m.q_ncols() );
- assert( m.norm_inf() == m.row_norm() );
- cout << " Square of the Eucl norm has got to be pattern^2 * no_elems\n";
- assert( m.e2_norm() == sqr(pattern)*m.q_no_elems() );
- m1.clear();
- assert( m.e2_norm() == e2_norm(m,m1) );
-
- #if 0
- double ap_step = 1;
- double ap_a0 = -pattern;
- int n = m.q_no_elems();
- cout << "\nAssign the arithm progression with 1. term " << ap_a0 <<
- "\nand the difference " << ap_step << "\n";
- register int i;
- for(i=v.q_lwb(); i<=v.q_upb(); i++)
- v(i) = (i-v.q_lwb())*ap_step + ap_a0;
- int l = min(max((int)ceil(-ap_a0/ap_step),0),n);
- double norm = (2*ap_a0 + (l+n-1)*ap_step)/2*(n-l) +
- (-2*ap_a0-(l-1)*ap_step)/2*l;
- cout << " 1. norm should be " << norm << "\n";
- assert( v.norm_1() == norm );
- norm = n*( sqr(ap_a0) + ap_a0*ap_step*(n-1) + sqr(ap_step)*(n-1)*(2*n-1)/6);
- cout << " Square of the 2. norm has got to be "
- "n*[ a0^2 + a0*q*(n-1) + q^2/6*(n-1)*(2n-1) ], or " << norm << "\n";
- assert( v.norm_2_sqr() == norm );
- norm = max(abs(v(v.q_lwb())),abs(v(v.q_upb())));
- cout << " Inf norm should be max(abs(a0),abs(a0+(n-1)*q)), ie " << norm <<
- "\n";
- assert( v.norm_inf() == norm );
-
- m1.clear();
- compare(m,m1,"Compare the matrix m with a zero matrix");
-
- cout << "\nConstruct v1 to be orthogonal to v as v(n), -v(n-1), v(n-2)...\n";
- for(i=0; i<v1.q_no_elems(); i++)
- v1(i+v1.q_lwb()) = v(v.q_upb()-i) * ( i % 2 == 1 ? -1 : 1 );
- cout << "||v1|| has got to be equal ||v|| regardless of the norm def\n";
- assert( v1.norm_1() == v.norm_1() );
- assert( v1.norm_2_sqr() == v.norm_2_sqr() );
- assert( v1.norm_inf() == v.norm_inf() );
- #endif
-
- cout << "\nDone\n";
- }
-
- /*
- *------------------------------------------------------------------------
- * Root module
- */
-
- main()
- {
- cout << "\n\n" << _Minuses <<
- "\n\t\tVerify Operations on Matrices\n";
-
- #if 1
- test_allocation();
- test_element_op(20,10);
- test_binary_ebe_op(10,20);
- test_norms(40,20);
- #endif
- test_determinant(20);
- }
-
-