NeXT TypedStream Data | 1995-06-12 | 12.1 KB | 293 lines
typedstream
StreamTable
HashTable
Object
[20c]
typedstream
[1023c]
typedstream
HashTable
Object
FirstResponder
HeaderClass
%%%%i@@
firstnib
checkSpelling:
alignSelCenter:
unscript:
pasteFont:
runPageLayout:
superscript:
copyRuler:
copyFont:
selectAll:
pasteRuler:
toggleRuler:
showGuessPanel:
alignSelLeft:
paste:
performClose:
arrangeInFront:
subscript:
copy:
alignSelRight:
delete:
orderFrontColorPanel:
underline:
performMiniaturize:
DrawView
/usr/include/machine/vm_types.h
viewnib
printerPopUpButton
notesText
paramsForm
accessoryBox
stopButton
planePopUpButton
startButton
presetSperm:
presetNapoleon:
presetMandelbrot:
clearNotes:
start:
presetBloodClot:
presetAlien:
presetSpyglass:
presetSnowshoe:
presetLunar:
presetScallops:
parametersChanged:
presetRing:
lastCoords:
presetTieAndCane:
presetWink:
[11193c]
typedstream
HashTable
Object
NibData
@@@@s
Storage
{*@@}
[89{*@@}]
File's Owner
CustomObject
Application
MainMenu
MenuTemplate
*@*@ccc
RatMandel
Matrix
Control
Responder
@:@iiii
MenuCell
ButtonCell
ActionCell
Info...
Helvetica
Preset Values
[12@]
Mandelbrot
Snowshoe
Spyglass
TieAndCane
Napoleon
Sperm
BloodClot
Alien
Lunar
Scallops
ff@@#::s
submenuAction:
Bitmap
menuArrow
Last Coords
Edit
Paste
[11@]
Font Panel...
Italic
Underline
Larger
Smaller
Heavier
Lighter
Superscript
Subscript
Unscript
Spelling...
Check Spelling
Select All
Clear Notes
Print
Print All...
Print View...
MenuItem
MyWindow
WindowTemplate
iiii***@s@
.Mandelbrot Set of Quadratic Rational Functions
Window
Notes on the View
CustomView
DrawView
FormCell
r im:
r re:
s re:
s im:
min re:
min im:
max re:
max im:
Iterates:
Cycles:
Close:
Field:
Button
Start
Helvetica-Bold
- The a-plane section, when b = r a + s, of
OtherViews
1 The (1/a)-plane section, when b = r a + s, of
- The b-plane section, when a = r b + s, of
PopUpList
popUp:
popup
4 the Mandelbrot Set of F(z) = (1/a)(z + b + (1/z))
r re_W
r imZW
s recW
s imgW
min rekW
min imoW
max resW
max imwW
Iterates{W
Cycles
Close
Button3
Panel
TextField
TextFieldCell
2The Mandelbrot Set of Quadratic Rational Functions
Version 1.1 Dec 1992
by William Gilbert
NXImage
RatMan
wgilbert@fatou.uwaterloo.ca
ScrollView
ClipView
ciifffcfffs
[2783c]{\rtf0\ansi{\fonttbl\f0\fswiss Helvetica;}
\margl40
\margr40
{\colortbl\red0\green0\blue0;}
\pard\tx520\tx1060\tx1600\tx2120\tx2660\tx3200\tx3720\tx4260\tx4800\tx5320\f0\b0\i0\ul0\fs24\fc0 The general quadratic rational function\
F(z) = (1/a)(z + b + (1/z))\
has two complex parameters a and b.\
The Mandelbrot set consists of the parameters (a,b), in 4 dimensional space, for which the filled-in Julia set is connected. This program illustrates 2 dimensional sections of this 4 dimensional set where\
b = ra + s (r, s constants).\
The values r = -1 and s = 2, yield the standard \
Mandelbrot set of quadratic polynomials, using the view shown on Plate 189 of Mandelbrot's book, since\
the function F(z) = (1/a)(z + b + (1/z)) is conjugate to the function bz(1 - z) when a + b = 2.\
===========================================\
\b Using the Program
\b0 \
There are various preset values of the parameters that give interesting sections. You can magnify a section of the view by dragging the mouse over the area and recomputing. When the program is running, the user interface is blocked except for the STOP button. If you stop the program before it finishes, you can continue by pressing CONT, assuming you have not changed any parameters.\
===========================================\
\b Printing
\b0 \
The program recomputes the view at a higher resolution when printing, so that it is possible to print at a very fine resolution. This could take up to 30 times as long as the screen viewing, so you should print to a file and then print the PostScript file, in order to avoid blocking the print queue.\
===========================================\
\b The Mathematics of the Program
\b0 \
The function F(z) has critical points at 1 and -1, and one of its three fixed points at infinity. Infinity is an attractive fixed point if and only if |a|<1.\
The program computes the iterates of the critical points of F(z) corresponding to each pixel. The pixel is colored black if the iterates of the critical points are not close and if they do not approach a common k-cycle, where k is less than or equal to the cycles parameter.\
===========================================\
\b References:
\b0 \
B. Mandelbrot, The Fractal Geometry of Nature,\
Freeman, N.Y. 1983.\
J. Milnor, Remarks on Quadratic Rational Maps\
(Preprint, SUNY at StonyBrook Institute for\
Mathematical Sciences, 1992)\
Yin Yongcheng, On the Julia Sets of Quadratic\
Rational Maps, \
Complex Variables, 18 (1992) pp 141-147.\
===========================================\
\b Written
\b0 July 1991 and modified December 1992\
by William Gilbert, Pure Mathematics Department\
University of Waterloo, Waterloo, Ontario, Canada
NXCursor
NXibeam
Scroller
_doScroller:
@@@ffs
University of Waterloo, Canada
Button1
Field1
Field2
VersionNumber
Field
ScrollingText
Field3
AccPrintPanel
Printer Pixel Size
3x3 dots
1 dot
2x2 dots
4x4 dots
5x5 dots
6x6 dots
pWhen using small pixel sizes, print to a file by pressing