home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Education Sampler 1992 [NeXTSTEP]
/
Education_1992_Sampler.iso
/
NeXT
/
GnuSource
/
cc-61.0.1
/
cc
/
config
/
out-a29k.c
< prev
next >
Wrap
C/C++ Source or Header
|
1991-06-04
|
33KB
|
1,248 lines
/* Subroutines used for code generation on AMD Am29000.
Copyright (C) 1987, 1988, 1990, 1991 Free Software Foundation, Inc.
Contributed by Richard Kenner (kenner@nyu.edu)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "expr.h"
#include "obstack.h"
#include "tree.h"
#define min(A,B) ((A) < (B) ? (A) : (B))
/* This gives the size in words of the register stack for the current
procedure. */
static int a29k_regstack_size;
/* This points to the last insn of the insn prologue. It is set when
an insn without a filled delay slot is found near the start of the
function. */
static char *a29k_last_prologue_insn;
/* This points to the first insn that will be in the epilogue. It is null if
no epilogue is required. */
static char *a29k_first_epilogue_insn;
/* This is nonzero if a a29k_first_epilogue_insn was put in a delay slot. It
indicates that an intermediate label needs to be written. */
static int a29k_first_epilogue_insn_used;
/* Location to hold the name of the current function. We need this prolog to
contain the tag words prior to the declaration. So the name must be stored
away. */
char *a29k_function_name;
/* Save information from a "cmpxx" operation until the branch or scc is
emitted. */
rtx a29k_compare_op0, a29k_compare_op1;
int a29k_compare_fp_p;
/* Gives names for registers. */
extern char *reg_names[];
/* Returns 1 if OP is a 8-bit constant. */
int
cint_8_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffffff00) == 0;
}
/* Returns 1 if OP is a 16-bit constant. */
int
cint_16_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return GET_CODE (op) == CONST_INT && (INTVAL (op) & 0xffff0000) == 0;
}
/* Returns 1 if OP cannot be moved in a single insn. */
int
long_const_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (! CONSTANT_P (op))
return 0;
if (TARGET_29050 && GET_CODE (op) == CONST_INT
&& (INTVAL (op) & 0xffff) == 0)
return 0;
return (GET_CODE (op) != CONST_INT
|| ((INTVAL (op) & 0xffff0000) != 0
&& (INTVAL (op) & 0xffff0000) != 0xffff0000
&& INTVAL (op) != 0x80000000));
}
/* The following four functions detect constants of 0, 8, 16, and 24 used as
a position in ZERO_EXTRACT operations. They can either be the appropriate
constant integer or a shift (which will be produced by combine). */
static int
shift_constant_operand (op, mode, val)
rtx op;
enum machine_mode mode;
int val;
{
return ((GET_CODE (op) == CONST_INT && INTVAL (op) == val)
|| (GET_CODE (op) == ASHIFT
&& GET_CODE (XEXP (op, 0)) == CONST_INT
&& INTVAL (XEXP (op, 0)) == val / 8
&& GET_CODE (XEXP (op, 1)) == CONST_INT
&& INTVAL (XEXP (op, 1)) == 3));
}
int
const_0_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return shift_constant_operand (op, mode, 0);
}
int
const_8_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return shift_constant_operand (op, mode, 8);
}
int
const_16_operand (op, mode)
rtx op;
enum machine_mode;
{
return shift_constant_operand (op, mode, 16);
}
int
const_24_operand (op, mode)
rtx op;
enum machine_mode;
{
return shift_constant_operand (op, mode, 24);
}
/* Returns 1 if OP is a floating-point constant of the proper mode. */
int
float_const_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == mode;
}
/* Returns 1 if OP is a floating-point constant of the proper mode or a
general-purpose register. */
int
gen_reg_or_float_constant_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return float_const_operand (op, mode) || gen_reg_operand (op, mode);
}
/* Returns 1 if OP is a special machine register. */
int
spec_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return GET_MODE (op) == SImode && GET_CODE (op) == REG
&& REGNO (op) >= R_BP && REGNO (op) <= R_EXO;
}
/* Returns 1 if OP is an accumulator register. */
int
accum_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (GET_CODE (op) == REG
&& REGNO (op) >= R_ACC (0) && REGNO (op) <= R_ACC (3));
}
/* Returns 1 if OP is a normal data register. */
int
gen_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return 0;
if (GET_CODE (op) == REG)
regno = REGNO (op);
else if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG)
{
regno = REGNO (SUBREG_REG (op));
if (regno < FIRST_PSEUDO_REGISTER)
regno += SUBREG_WORD (op);
}
else
return 0;
return regno >= FIRST_PSEUDO_REGISTER || regno < R_BP;
}
/* Returns 1 if OP is either an 8-bit constant integer or a general register.
If a register, it must be in the proper mode unless MODE is VOIDmode. */
int
srcb_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (GET_CODE (op) == CONST_INT
&& (mode == QImode
|| (INTVAL (op) & 0xffffff00) == 0))
return 1;
if (GET_MODE (op) != mode && mode != VOIDmode)
return 0;
return gen_reg_operand (op, mode);
}
/* Return 1 if OP is either an immediate or a general register. This is used
for the input operand of mtsr/mtrsim. */
int
gen_reg_or_immediate_operand (op, mode)
rtx op;
enum machine_mode;
{
return gen_reg_operand (op, mode) || immediate_operand (op, mode);
}
/* Return 1 if OP can be used as the second operand of and AND insn. This
includes srcb_operand and a constant whose complement fits in 8 bits. */
int
and_operand (op, mode)
rtx op;
enum machine_mode;
{
return (srcb_operand (op, mode)
|| (GET_CODE (op) == CONST_INT
&& ((unsigned) ((~ INTVAL (op)) & GET_MODE_MASK (mode)) < 256)));
}
/* Return 1 if OP can be used as the second operand of an ADD insn.
This is the same as above, except we use negative, rather than
complement. */
int
add_operand (op, mode)
rtx op;
enum machine_mode;
{
return (srcb_operand (op, mode)
|| (GET_CODE (op) == CONST_INT
&& ((unsigned) ((- INTVAL (op)) & GET_MODE_MASK (mode)) < 256)));
}
/* Return 1 if OP can be used as the input operand for a move insn. */
int
in_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx orig_op = op;
if (! general_operand (op, mode))
return 0;
while (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
switch (GET_CODE (op))
{
case REG:
return 1;
case MEM:
return (GET_MODE_SIZE (mode) >= UNITS_PER_WORD || TARGET_DW_ENABLE);
case CONST_INT:
if (GET_MODE_CLASS (mode) != MODE_INT)
return 0;
return 1;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return (GET_MODE (op) == mode
|| mode == SImode || mode == HImode || mode == QImode);
case CONST_DOUBLE:
return ((GET_MODE_CLASS (mode) == MODE_FLOAT
&& mode == GET_MODE (op))
|| (GET_MODE (op) == VOIDmode
&& GET_MODE_CLASS (mode) == MODE_INT));
default:
return 0;
}
}
/* Return 1 if OP can be used as the output operand for a move insn. */
int
out_operand (op, mode)
rtx op;
enum machine_mode mode;
{
rtx orig_op = op;
if (! general_operand (op, mode))
return 0;
while (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) == REG)
return (mode == SImode || gen_reg_operand (orig_op, mode)
|| (GET_MODE_CLASS (mode) == MODE_FLOAT
&& accum_reg_operand (orig_op, mode)));
else if (GET_CODE (op) == MEM)
return mode == SImode || mode == SFmode || TARGET_DW_ENABLE;
else
return 0;
}
/* Return 1 if OP is some extension operator. */
int
extend_operator (op, mode)
rtx op;
enum machine_mode mode;
{
return ((mode == VOIDmode || GET_MODE (op) == mode)
&& (GET_CODE (op) == ZERO_EXTEND || GET_CODE (op) == SIGN_EXTEND));
}
/* Return 1 if OP is a comparison operator that we have in floating-point. */
int
fp_comparison_operator (op, mode)
rtx op;
enum machine_mode mode;
{
return ((mode == VOIDmode || mode == GET_MODE (op))
&& (GET_CODE (op) == EQ || GET_CODE (op) == GT ||
GET_CODE (op) == GE));
}
/* Return 1 if OP is a valid branch comparison. */
int
branch_operator (op, mode)
rtx op;
enum machine_mode mode;
{
return ((mode == VOIDmode || mode == GET_MODE (op))
&& (GET_CODE (op) == GE || GET_CODE (op) == LT));
}
/* Return 1 if OP is a load multiple operation. It is known to be a
PARALLEL and the first three sections will be tested. */
int
load_multiple_operation (op, mode)
rtx op;
enum machine_mode mode;
{
int count = XVECLEN (op, 0) - 2;
int dest_regno;
rtx src_addr;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != REG
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != MEM)
return 0;
dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, 0)));
src_addr = XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0);
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i + 2);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_DEST (elt)) != REG
|| GET_MODE (SET_DEST (elt)) != SImode
|| REGNO (SET_DEST (elt)) != dest_regno + i
|| GET_CODE (SET_SRC (elt)) != MEM
|| GET_MODE (SET_SRC (elt)) != SImode
|| GET_CODE (XEXP (SET_SRC (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_SRC (elt), 0), 0), src_addr)
|| GET_CODE (XEXP (XEXP (SET_SRC (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_SRC (elt), 0), 1)) != i * 4)
return 0;
}
return 1;
}
/* Similar, but tests for store multiple. */
int
store_multiple_operation (op, mode)
rtx op;
enum machine_mode mode;
{
int num_special = TARGET_NO_STOREM_BUG ? 2 : 1;
int count = XVECLEN (op, 0) - num_special;
int src_regno;
rtx dest_addr;
int i;
/* Perform a quick check so we don't blow up below. */
if (count <= 1
|| GET_CODE (XVECEXP (op, 0, 0)) != SET
|| GET_CODE (SET_DEST (XVECEXP (op, 0, 0))) != MEM
|| GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) != REG)
return 0;
src_regno = REGNO (SET_SRC (XVECEXP (op, 0, 0)));
dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, 0)), 0);
for (i = 1; i < count; i++)
{
rtx elt = XVECEXP (op, 0, i + num_special);
if (GET_CODE (elt) != SET
|| GET_CODE (SET_SRC (elt)) != REG
|| GET_MODE (SET_SRC (elt)) != SImode
|| REGNO (SET_SRC (elt)) != src_regno + i
|| GET_CODE (SET_DEST (elt)) != MEM
|| GET_MODE (SET_DEST (elt)) != SImode
|| GET_CODE (XEXP (SET_DEST (elt), 0)) != PLUS
|| ! rtx_equal_p (XEXP (XEXP (SET_DEST (elt), 0), 0), dest_addr)
|| GET_CODE (XEXP (XEXP (SET_DEST (elt), 0), 1)) != CONST_INT
|| INTVAL (XEXP (XEXP (SET_DEST (elt), 0), 1)) != i * 4)
return 0;
}
return 1;
}
/* Given a special register REG and MASK, a value being masked against a
quantity to which the special register is set, return 1 if the masking
operation is built-in to the setting of that special register. */
int
masks_bits_for_special (reg, mask)
rtx reg;
rtx mask;
{
int needed_mask_value;
if (GET_CODE (reg) != REG || GET_CODE (mask) != CONST_INT)
abort ();
switch (REGNO (reg))
{
case R_BP:
case R_INT:
needed_mask_value = 3;
break;
case R_FC:
needed_mask_value = 31;
break;
case R_CR:
case R_LRU:
needed_mask_value = 255;
break;
case R_FPE:
needed_mask_value = 511;
break;
case R_MMU:
needed_mask_value = 0x3ff;
break;
case R_OPS:
case R_CPS:
case R_RBP:
case R_FPS:
needed_mask_value = 0xffff;
break;
case R_VAB:
needed_mask_value = 0xffff0000;
break;
case R_Q:
case R_CFG:
case R_CHA:
case R_CHD:
case R_CHC:
case R_TMC:
case R_TMR:
case R_PC0:
case R_PC1:
case R_PC2:
return 0;
default:
abort ();
}
return (INTVAL (mask) & ~ needed_mask_value) == 0;
}
/* Return nonzero if this label is that of the return point, but there is
a non-null epilogue. */
int
epilogue_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return next_active_insn (op) == 0 && a29k_first_epilogue_insn != 0;
}
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
enum reg_class
secondary_reload_class (class, mode, in)
enum reg_class class;
enum machine_mode mode;
rtx in;
{
int regno = -1;
if (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
regno = true_regnum (in);
/* We can place anything into GENERAL_REGS and can put GENERAL_REGS
into anything. */
if (class == GENERAL_REGS || regno < R_BP)
return NO_REGS;
/* We can place 16-bit constants into a special register. */
if (GET_CODE (in) == CONST_INT
&& (GET_MODE_BITSIZE (mode) <= 16
|| (unsigned) INTVAL (in) <= 65535)
&& (class == BP_REGS || class == Q_REGS || class == SPECIAL_REGS))
return NO_REGS;
/* Otherwise, we need GENERAL_REGS. */
return GENERAL_REGS;
}
/* START is the zero-based incoming argument register index used (0 is 160,
i.e., the first incoming argument register) and COUNT is the number used.
Mark the corresponding incoming registers as neither fixed nor call used.
For each register used for incoming arguments, we have one less local
register that can be used. So also mark some high-numbered registers as
fixed.
Return the first register number to use for the argument. */
int
incoming_reg (start, count)
int start;
int count;
{
int i;
if (! TARGET_NO_REUSE_ARGS)
/* Mark all the used registers as not fixed and saved over calls. */
for (i = R_AR (start); i < R_AR (16) && i < R_AR (start + count); i++)
{
fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 0;
CLEAR_HARD_REG_BIT (fixed_reg_set, i);
CLEAR_HARD_REG_BIT (call_used_reg_set, i);
CLEAR_HARD_REG_BIT (call_fixed_reg_set, i);
}
/* Shorten the maximum size of the frame. */
for (i = R_AR (0) - start - count; i < R_AR (0) - start; i++)
{
fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
SET_HARD_REG_BIT (fixed_reg_set, i);
SET_HARD_REG_BIT (call_used_reg_set, i);
SET_HARD_REG_BIT (call_fixed_reg_set, i);
}
return R_AR (start);
}
/* These routines are used in finding insns to fill delay slots in the
epilogue. */
/* Return 1 if the current function will adjust the register stack. */
int
needs_regstack_p ()
{
int i;
rtx insn;
if (frame_pointer_needed)
return 1;
/* If any local register is used, we need to adjust the regstack. */
for (i = R_LR (127); i >= R_LR (0); i --)
if (regs_ever_live[i])
return 1;
/* We need a register stack if we make any calls. */
for (insn = get_insns (); insn; insn = next_insn (insn))
if (GET_CODE (insn) == CALL_INSN
|| (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SEQUENCE
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
return 1;
/* Otherwise, we don't. */
return 0;
}
/* Return 1 if X uses a local register. */
int
uses_local_reg_p (x)
rtx x;
{
char *fmt;
int i, j;
switch (GET_CODE (x))
{
case REG:
return REGNO (x) >= R_LR (0) && REGNO (x) <= R_FP;
case CONST_INT:
case CONST:
case PC:
case CC0:
case LABEL_REF:
case SYMBOL_REF:
return 0;
}
fmt = GET_RTX_FORMAT (GET_CODE (x));
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (uses_local_reg_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (uses_local_reg_p (XVECEXP (x, i, j)))
return 1;
}
}
return 0;
}
/* Returns 1 if this function is known to have a null epilogue. */
int
null_epilogue ()
{
return (reload_completed && ! needs_regstack_p ()
&& get_frame_size () == 0
&& current_function_pretend_args_size == 0);
}
/* Write out the assembler form of an operand. Recognize the following
special options:
%N means write the low-order 8 bits of the negative of the constant
%Q means write a QImode operand (truncate constants to 8 bits)
%M means write the low-order 16 bits of the constant
%C means write the low-order 8 bits of the complement of the constant
%X means write the cntl values for LOAD with operand an extension op
%b means write `f' is this is a reversed condition, `t' otherwise
%B means write `t' is this is a reversed condition, `f' otherwise
%J means write the 29k opcode part for a comparison operation
%e means write the label with an extra `X' is this is the epilogue
otherwise the normal label name
%E means write nothing if this insn has a delay slot,
a nop unless this is the epilogue label, in which case
write the first epilogue insn
%F means write just the normal operand if the insn has a delay slot;
otherwise, this is a recursive call so output the
symbol + 4 and write the first prologue insn in the
delay slot.
%L means write the register number plus one ("low order" register)
or the low-order part of a multi-word constant
%O means write the register number plus two
%P means write the register number plus three ("low order" of TImode)
%S means write the number of words in the mode of the operand,
minus one (for CR)
%V means write the number of elements in a PARALLEL minus 1
%# means write nothing if we have a delay slot, "\n\tnop" otherwise
%* means write the register name for TPC. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
char code;
{
char buf[100];
/* These macros test for integers and extract the low-order bits. */
#define INT_P(X) \
((GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST_DOUBLE) \
&& GET_MODE (X) == VOIDmode)
#define INT_LOWPART(X) \
(GET_CODE (X) == CONST_INT ? INTVAL (X) : CONST_DOUBLE_LOW (X))
switch (code)
{
case 'Q':
if (GET_CODE (x) == REG)
break;
else if (! INT_P (x))
output_operand_lossage ("invalid %%Q value");
fprintf (file, "%d", INT_LOWPART (x) & 0xff);
return;
case 'C':
if (! INT_P (x))
output_operand_lossage ("invalid %%C value");
fprintf (file, "%d", (~ INT_LOWPART (x)) & 0xff);
return;
case 'N':
if (! INT_P (x))
output_operand_lossage ("invalid %%N value");
fprintf (file, "%d", (- INT_LOWPART (x)) & 0xff);
return;
case 'M':
if (! INT_P (x))
output_operand_lossage ("invalid %%M value");
fprintf (file, "%d", INT_LOWPART (x) & 0xffff);
return;
case 'X':
fprintf (file, "%d", ((GET_MODE (XEXP (x, 0)) == QImode ? 1 : 2)
+ (GET_CODE (x) == SIGN_EXTEND ? 16 : 0)));
return;
case 'b':
if (GET_CODE (x) == GE)
fprintf (file, "f");
else
fprintf (file, "t");
return;
case 'B':
if (GET_CODE (x) == GE)
fprintf (file, "t");
else
fprintf (file, "f");
return;
case 'J':
/* It so happens that the RTX names for the conditions are the same as
the 29k's insns except for "ne", which requires "neq". */
fprintf (file, GET_RTX_NAME (GET_CODE (x)));
if (GET_CODE (x) == NE)
fprintf (file, "q");
return;
case 'e':
if (optimize && flag_delayed_branch
&& a29k_last_prologue_insn == 0 && epilogue_operand (x, VOIDmode)
&& dbr_sequence_length () == 0)
{
ASM_GENERATE_INTERNAL_LABEL (buf, "LX", CODE_LABEL_NUMBER (x));
assemble_name (file, buf);
}
else
output_asm_label (x);
return;
case 'E':
if (dbr_sequence_length ())
;
else if (a29k_last_prologue_insn)
{
fprintf (file, "\n\t%s", a29k_last_prologue_insn);
a29k_last_prologue_insn = 0;
}
else if (optimize && flag_delayed_branch
&& epilogue_operand (x, VOIDmode))
{
fprintf (file, "\n\t%s", a29k_first_epilogue_insn);
a29k_first_epilogue_insn_used = 1;
}
else
fprintf (file, "\n\tnop");
return;
case 'F':
output_addr_const (file, x);
if (! strcmp (XSTR (x, 0), current_function_name)
&& dbr_sequence_length () == 0)
fprintf (file, "+4\n\t%s,%d",
a29k_regstack_size >= 64 ? "const gr121" : "sub gr1,gr1",
a29k_regstack_size * 4);
return;
case 'L':
if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
{
union real_extract u;
bcopy (&CONST_DOUBLE_LOW (x), &u, sizeof u);
fprintf (file, "$double1(%.20e)", u.d);
}
else if (GET_CODE (x) == REG)
fprintf (file, "%s", reg_names[REGNO (x) + 1]);
else
output_operand_lossage ("invalid %%L value");
return;
case 'O':
if (GET_CODE (x) != REG)
output_operand_lossage ("invalid %%O value");
fprintf (file, "%s", reg_names[REGNO (x) + 2]);
return;
case 'P':
if (GET_CODE (x) != REG)
output_operand_lossage ("invalid %%P value");
fprintf (file, "%s", reg_names[REGNO (x) + 3]);
return;
case 'S':
fprintf (file, "%d", (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD)-1);
return;
case 'V':
if (GET_CODE (x) != PARALLEL)
output_operand_lossage ("invalid %%V value");
fprintf (file, "%d", XVECLEN (x, 0) - 2);
return;
case '#':
if (dbr_sequence_length () == 0)
{
if (a29k_last_prologue_insn)
{
fprintf (file, "\n\t%s", a29k_last_prologue_insn);
a29k_last_prologue_insn = 0;
}
else
fprintf (file, "\n\tnop");
}
return;
case '*':
fprintf (file, "%s", reg_names [R_TPC]);
return;
}
if (GET_CODE (x) == REG)
fprintf (file, "%s", reg_names [REGNO (x)]);
else if (GET_CODE (x) == MEM)
output_address (XEXP (x, 0));
else if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == CONST_DOUBLE)
{
union real_extract u;
if (GET_MODE (SUBREG_REG (XEXP (x, 0))) == SFmode)
fprintf (file, "$float");
else
fprintf (file, "$double%d", SUBREG_WORD (XEXP (x, 0)));
bcopy (&CONST_DOUBLE_LOW (SUBREG_REG (XEXP (x, 0))), &u, sizeof u);
fprintf (file, "(%.20e)", u.d);
}
else if (GET_CODE (x) == CONST_DOUBLE
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
{
union real_extract u;
bcopy (&CONST_DOUBLE_LOW (x), &u, sizeof u);
fprintf (file, "$%s(%.20e)",
GET_MODE (x) == SFmode ? "float" : "double0", u.d);
}
else
output_addr_const (file, x);
}
/* This page contains routines to output function prolog and epilog code. */
/* Output function prolog code to file FILE. Memory stack size is SIZE.
Also sets register names for incoming arguments and frame pointer. */
void
output_prolog (file, size)
FILE *file;
int size;
{
int makes_calls = 0;
int arg_count = 0;
rtx insn;
int i;
unsigned int tag_word;
/* See if we make any calls. We need to set lr1 if so. */
for (insn = get_insns (); insn; insn = next_insn (insn))
if (GET_CODE (insn) == CALL_INSN
|| (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SEQUENCE
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN))
{
makes_calls = 1;
break;
}
/* Find the highest local register used. */
for (i = R_LR (127); i >= R_LR (0); i--)
if (regs_ever_live[i])
break;
a29k_regstack_size = i - (R_LR (0) - 1);
/* If calling routines, ensure we count lr0 & lr1. */
if (makes_calls && a29k_regstack_size < 2)
a29k_regstack_size = 2;
/* Count frame pointer and align to 8 byte boundary (even number of
registers). */
a29k_regstack_size += frame_pointer_needed;
if (a29k_regstack_size & 1) a29k_regstack_size++;
/* See how many incoming arguments we have in registers. */
for (i = R_AR (0); i < R_AR (16); i++)
if (! fixed_regs[i])
arg_count++;
/* The argument count includes the caller's lr0 and lr1. */
arg_count += 2;
/* Set the names of the frame pointer and incoming argument registers. */
reg_names[FRAME_POINTER_REGNUM] = reg_names[R_LR (a29k_regstack_size - 1)];
for (i = 0; i < 16; i++)
reg_names[R_AR (i)] = reg_names[R_LR (a29k_regstack_size + i + 2)];
/* Compute memory stack size. Add in number of bytes that the we should
push and pretend the caller did and the size of outgoing arguments.
Then round to a doubleword boundary. */
size += (current_function_pretend_args_size
+ current_function_outgoing_args_size);
size = (size + 7) & ~7;
/* Write header words. See if one or two word form. */
tag_word = (frame_pointer_needed ? 0x400000 : 0) + (arg_count << 16);
if (size / 8 > 0xff)
fprintf (file, "\t.word %d, 0x%0x\n", (size / 8) << 2,
0x800000 + tag_word);
else
fprintf (file, "\t.word 0x%0x\n", tag_word + ((size / 8) << 3));
/* Define the function name. */
assemble_name (file, a29k_function_name);
fprintf (file, ":\n");
/* Push the register stack by the proper amount. There are two possible
ways to do this. */
if (a29k_regstack_size >= 256/4)
fprintf (file, "\tconst %s,%d\n\tsub gr1,gr1,%s\n",
reg_names[R_TAV], a29k_regstack_size * 4, reg_names[R_TAV]);
else if (a29k_regstack_size)
fprintf (file, "\tsub gr1,gr1,%d\n", a29k_regstack_size * 4);
/* Test that the registers are available. */
if (a29k_regstack_size)
fprintf (file, "\tasgeu V_%sSPILL,gr1,%s\n",
TARGET_KERNEL_REGISTERS ? "K" : "", reg_names[R_RAB]);
/* Set up frame pointer, if one is needed. */
if (frame_pointer_needed)
fprintf (file, "\tsll %s,%s,0\n", reg_names[FRAME_POINTER_REGNUM],
reg_names[R_MSP]);
/* Make room for any frame space. There are three ways to do this. */
if (size >= 256)
{
fprintf (file, "\tconst %s,%d\n", reg_names[R_TAV], size);
if (size >= 65536)
fprintf (file, "\tconsth %s,%d\n", reg_names[R_TAV], size);
if (TARGET_STACK_CHECK)
fprintf (file, "\tcall %s,__msp_check\n", reg_names[R_TPC]);
fprintf (file, "\tsub %s,%s,%s\n",
reg_names[R_MSP], reg_names[R_MSP], reg_names[R_TAV]);
}
else if (size)
{
if (TARGET_STACK_CHECK)
fprintf (file, "\tcall %s,__msp_check\n", reg_names[R_TPC]);
fprintf (file, "\tsub %s,%s,%d\n",
reg_names[R_MSP], reg_names[R_MSP], size);
}
/* If this routine will make calls, set lr1. If we see an insn that
can use a delay slot before a call or jump, save this insn for that
slot (this condition is equivalent to seeing if we have an insn that
needs delay slots before an insn that has a filled delay slot). */
a29k_last_prologue_insn = 0;
if (makes_calls)
{
i = (a29k_regstack_size + arg_count) * 4;
if (i >= 256)
fprintf (file, "\tconst %s,%d\n\tsub lr1,gr1,%s\n",
reg_names[R_TAV], i, reg_names[R_TAV]);
else
{
if (optimize && flag_delayed_branch)
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
{
if (GET_CODE (insn) == CODE_LABEL
|| (GET_CODE (insn) == INSN
&& GET_CODE (PATTERN (insn)) == SEQUENCE))
break;
if (GET_CODE (insn) == NOTE
|| (GET_CODE (insn) == INSN
&& (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER)))
continue;
if (num_delay_slots (insn) > 0)
{
a29k_last_prologue_insn = (char *) oballoc (100);
sprintf (a29k_last_prologue_insn, "add lr1,gr1,%d", i);
break;
}
}
if (a29k_last_prologue_insn == 0)
fprintf (file, "\tadd lr1,gr1,%d\n", i);
}
}
/* Compute the first insn of the epilogue. */
a29k_first_epilogue_insn_used = 0;
if (size == 0 && a29k_regstack_size == 0 && ! frame_pointer_needed)
a29k_first_epilogue_insn = 0;
else
a29k_first_epilogue_insn = (char *) oballoc (100);
if (frame_pointer_needed)
sprintf (a29k_first_epilogue_insn, "sll %s,%s,0",
reg_names[R_MSP], reg_names[FRAME_POINTER_REGNUM]);
else if (a29k_regstack_size)
{
if (a29k_regstack_size >= 256 / 4)
sprintf (a29k_first_epilogue_insn, "const %s,%d",
reg_names[R_TAV], a29k_regstack_size * 4);
else
sprintf (a29k_first_epilogue_insn, "add gr1,gr1,%d",
a29k_regstack_size * 4);
}
else if (size)
{
if (size >= 256)
sprintf (a29k_first_epilogue_insn, "const %s,%d",
reg_names[R_TAV], size);
else
sprintf (a29k_first_epilogue_insn, "add %s,%s",
reg_names[R_MSP], reg_names[R_MSP], size);
}
}
/* Call this after writing what might be the first instruction of the
epilogue. If that first insn was used in a delay slot, an intermediate
label is written. */
static void
check_epilogue_internal_label (file)
FILE *file;
{
rtx insn;
if (! a29k_first_epilogue_insn_used)
return;
for (insn = get_last_insn ();
GET_CODE (insn) != CODE_LABEL;
insn = PREV_INSN (insn))
;
ASM_OUTPUT_INTERNAL_LABEL (file, "LX", CODE_LABEL_NUMBER (insn));
a29k_first_epilogue_insn_used = 0;
}
/* Output the epilog of the last procedure to file FILE. SIZE is the memory
stack size. The register stack size is in the variable
A29K_REGSTACK_SIZE. */
void
output_epilog (file, size)
FILE *file;
int size;
{
rtx insn;
int locals_unavailable = 0; /* True until after first insn
after gr1 update. */
/* If we hit a BARRIER before a real insn or CODE_LABEL, we don't
need to do anything because we are never jumped to. */
insn = get_last_insn ();
if (GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn && GET_CODE (insn) == BARRIER)
return;
/* If a frame pointer was needed we must restore the memory stack pointer
before adjusting the register stack. */
if (frame_pointer_needed)
{
fprintf (file, "\tsll %s,%s,0\n",
reg_names[R_MSP], reg_names[FRAME_POINTER_REGNUM]);
check_epilogue_internal_label (file);
}
/* Restore the register stack. There are two ways to do this. */
if (a29k_regstack_size)
{
if (a29k_regstack_size >= 256/4)
{
fprintf (file, "\tconst %s,%d\n",
reg_names[R_TAV], a29k_regstack_size * 4);
check_epilogue_internal_label (file);
fprintf (file, "\tadd gr1,gr1,%s\n", reg_names[R_TAV]);
}
else
{
fprintf (file, "\tadd gr1,gr1,%d\n", a29k_regstack_size * 4);
check_epilogue_internal_label (file);
}
locals_unavailable = 1;
}
/* Restore the memory stack pointer if there is no frame pointer.
Adjust the size to include any pretend arguments and pushed
arguments and round to doubleword boundary. */
size += (current_function_pretend_args_size
+ current_function_outgoing_args_size);
size = (size + 7) & ~7;
if (size && ! frame_pointer_needed)
{
if (size >= 256)
{
fprintf (file, "\tconst %s,%d\n", reg_names[R_TAV], size);
check_epilogue_internal_label (file);
locals_unavailable = 0;
if (size >= 65536)
fprintf (file, "\tconsth %s,%d\n", reg_names[R_TAV], size);
fprintf (file, "\tadd %s,%s,%s\n",
reg_names[R_MSP], reg_names[R_MSP], reg_names[R_TAV]);
}
else
{
fprintf (file, "\tadd %s,%s,%d\n",
reg_names[R_MSP], reg_names[R_MSP], size);
check_epilogue_internal_label (file);
locals_unavailable = 0;
}
}
if (locals_unavailable)
{
/* If we have an insn for this delay slot, write it. */
if (current_function_epilogue_delay_list)
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
file, write_symbols, 1, -2, 1);
else
fprintf (file, "\tnop\n");
}
fprintf (file, "\tjmpi lr0\n");
if (a29k_regstack_size)
fprintf (file, "\tasleu V_%sFILL,lr1,%s\n",
TARGET_KERNEL_REGISTERS ? "K" : "", reg_names[R_RFB]);
else if (current_function_epilogue_delay_list)
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
file, write_symbols, 1, -2, 1);
else
fprintf (file, "\tnop\n");
}