home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Education Sampler 1992 [NeXTSTEP]
/
Education_1992_Sampler.iso
/
NeXT
/
GnuSource
/
cc-61.0.1
/
cc
/
combine.c
< prev
next >
Wrap
C/C++ Source or Header
|
1992-05-27
|
243KB
|
7,389 lines
/* Optimize by combining instructions for GNU compiler.
Copyright (C) 1987-1991 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
/* This module is essentially the "combiner" phase of the U. of Arizona
Portable Optimizer, but redone to work on our list-structured
representation for RTL instead of their string representation.
The LOG_LINKS of each insn identify the most recent assignment
to each REG used in the insn. It is a list of previous insns,
each of which contains a SET for a REG that is used in this insn
and not used or set in between. LOG_LINKs never cross basic blocks.
They were set up by the preceding pass (lifetime analysis).
We try to combine each pair of insns joined by a logical link.
We also try to combine triples of insns A, B and C when
C has a link back to B and B has a link back to A.
LOG_LINKS does not have links for use of the CC0. They don't
need to, because the insn that sets the CC0 is always immediately
before the insn that tests it. So we always regard a branch
insn as having a logical link to the preceding insn. The same is true
for an insn explicitly using CC0.
We check (with use_crosses_set_p) to avoid combining in such a way
as to move a computation to a place where its value would be different.
Combination is done by mathematically substituting the previous
insn(s) values for the regs they set into the expressions in
the later insns that refer to these regs. If the result is a valid insn
for our target machine, according to the machine description,
we install it, delete the earlier insns, and update the data flow
information (LOG_LINKS and REG_NOTES) for what we did.
There are a few exceptions where the dataflow information created by
flow.c aren't completely updated:
- reg_live_length is not updated
- reg_n_refs is not adjusted in the rare case when a register is
no longer required in a computation
- there are extremely rare cases (see distribute_regnotes) when a
REG_DEAD note is lost
- a LOG_LINKS entry that refers to an insn with multiple SETs may be
removed because there is no way to know which register it was
linking
To simplify substitution, we combine only when the earlier insn(s)
consist of only a single assignment. To simplify updating afterward,
we never combine when a subroutine call appears in the middle.
Since we do not represent assignments to CC0 explicitly except when that
is all an insn does, there is no LOG_LINKS entry in an insn that uses
the condition code for the insn that set the condition code.
Fortunately, these two insns must be consecutive.
Therefore, every JUMP_INSN is taken to have an implicit logical link
to the preceding insn. This is not quite right, since non-jumps can
also use the condition code; but in practice such insns would not
combine anyway. */
#include <stdio.h>
#include "config.h"
#include "gvarargs.h"
#include "rtl.h"
#include "flags.h"
#include "regs.h"
#include "expr.h"
#include "basic-block.h"
#include "insn-config.h"
#include "insn-flags.h"
#include "insn-codes.h"
#include "insn-attr.h"
#include "recog.h"
#include "real.h"
#define max(A,B) ((A) > (B) ? (A) : (B))
#define min(A,B) ((A) < (B) ? (A) : (B))
/* It is not safe to use ordinary gen_lowpart in combine.
Use gen_lowpart_for_combine instead. See comments there. */
#define gen_lowpart dont_use_gen_lowpart_you_dummy
/* Number of attempts to combine instructions in this function. */
static int combine_attempts;
/* Number of attempts that got as far as substitution in this function. */
static int combine_merges;
/* Number of instructions combined with added SETs in this function. */
static int combine_extras;
/* Number of instructions combined in this function. */
static int combine_successes;
/* Totals over entire compilation. */
static int total_attempts, total_merges, total_extras, total_successes;
/* Vector mapping INSN_UIDs to cuids.
The cuids are like uids but increase monononically always.
Combine always uses cuids so that it can compare them.
But actually renumbering the uids, which we used to do,
proves to be a bad idea because it makes it hard to compare
the dumps produced by earlier passes with those from later passes. */
static int *uid_cuid;
/* Get the cuid of an insn. */
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
/* Maximum register number, which is the size of the tables below. */
static int combine_max_regno;
/* Record last point of death of (hard or pseudo) register n. */
static rtx *reg_last_death;
/* Record last point of modification of (hard or pseudo) register n. */
static rtx *reg_last_set;
/* Record the cuid of the last insn that invalidated memory
(anything that writes memory, and subroutine calls, but not pushes). */
static int mem_last_set;
/* Record the cuid of the last CALL_INSN
so we can tell whether a potential combination crosses any calls. */
static int last_call_cuid;
/* When `subst' is called, this is the insn that is being modified
(by combining in a previous insn). The PATTERN of this insn
is still the old pattern partially modified and it should not be
looked at, but this may be used to examine the successors of the insn
to judge whether a simplification is valid. */
static rtx subst_insn;
/* This is the lowest CUID that `subst' is currently dealing with.
get_last_value will not return a value if the register was set at or
after this CUID. If not for this mechanism, we could get confused if
I2 or I1 in try_combine were an insn that used the old value of a register
to obtain a new value. In that case, we might erroneously get the
new value of the register when we wanted the old one. */
static int subst_low_cuid;
/* This is the value of undobuf.num_undo when we started processing this
substitution. This will prevent gen_rtx_combine from re-used a piece
from the previous expression. Doing so can produce circular rtl
structures. */
static int previous_num_undos;
/* The next group of arrays allows the recording of the last value assigned
to (hard or pseudo) register n. We use this information to see if a
operation being processed is redundant given the a prior operation peformed
on the register. For example, an `and' with a constant is redundant if
all the zero bits are already known to be turned off.
We use an approach similar to that used by cse, but change it in the
following ways:
(1) We do not want to reinitialize at each label.
(2) It is useful, but not critical, to know the actual value assigned
to a register. Often just its form is helpful.
Therefore, we maintain the following arrays:
reg_last_set_value the last value assigned
reg_last_set_label records the value of label_tick when the
register was assigned
reg_last_set_table_tick records the value of label_tick when a
value using the register is assigned
reg_last_set_invalid set to non-zero when it is not valid
to use the value of this register in some
register's value
To understand the usage of these tables, it is important to understand
the distinction between the value in reg_last_set_value being valid
and the register being validly contained in some other expression in the
table.
Entry I in reg_last_set_value is valid if it is non-zero, and either
reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
Register I may validly appear in any expression returned for the value
of another register if reg_n_sets[i] is 1. It may also appear in the
value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
reg_last_set_invalid[j] is zero.
If an expression is found in the table containing a register which may
not validly appear in an expression, the register is replaced by
something that won't match, (clobber (const_int 0)).
reg_last_set_invalid[i] is set non-zero when register I is being assigned
to and reg_last_set_table_tick[i] == label_tick. */
/* Record last value assigned to (hard or pseudo) register n. */
static rtx *reg_last_set_value;
/* Record the value of label_tick when the value for register n is placed in
reg_last_set_value[n]. */
static short *reg_last_set_label;
/* Record the value of label_tick when an expression involving register n
is placed in reg_last_set_value. */
static short *reg_last_set_table_tick;
/* Set non-zero if references to register n in expressions should not be
used. */
static char *reg_last_set_invalid;
/* Incremented for each label. */
static short label_tick;
/* Some registers that are set more than once and used in more than one
basic block are nevertheless always set in similar ways. For example,
a QImode register may be loaded from memory in two places on a machine
where byte loads zero extend.
We record in the following array what we know about the significant
bits of a register, specifically which bits are known to be zero.
If an entry is zero, it means that we don't know anything special. */
static int *reg_significant;
/* Mode used to compute significance in reg_significant. It is the largest
integer mode that can fit in HOST_BITS_PER_INT. */
static enum machine_mode significant_mode;
/* Nonzero when reg_significant can be safely used. It is zero while
computing reg_significant. This prevents propagating values based
on previously set values, which can be incorrect if a variable
is modified in a loop. */
static int significant_valid;
/* Record one modification to rtl structure
to be undone by storing old_contents into *where.
is_int is 1 if the contents are an int. */
struct undo
{
rtx *where;
rtx old_contents;
int is_int;
};
struct undo_int
{
int *where;
int old_contents;
int is_int;
};
/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
num_undo says how many are currently recorded.
storage is nonzero if we must undo the allocation of new storage.
The value of storage is what to pass to obfree.
other_insn is nonzero if we have modified some other insn in the process
of working on subst_insn. It must be verified too. */
#define MAX_UNDO 50
struct undobuf
{
int num_undo;
char *storage;
struct undo undo[MAX_UNDO];
rtx other_insn;
};
static struct undobuf undobuf;
/* Substitute NEWVAL, an rtx expression, into INTO, a place in a some
insn. The substitution can be undone by undo_all. If INTO is already
set to NEWVAL, do not record this change. */
#define SUBST(INTO, NEWVAL) \
do { if (undobuf.num_undo < MAX_UNDO) \
{ \
undobuf.undo[undobuf.num_undo].where = &INTO; \
undobuf.undo[undobuf.num_undo].old_contents = INTO; \
undobuf.undo[undobuf.num_undo].is_int = 0; \
INTO = NEWVAL; \
if (undobuf.undo[undobuf.num_undo].old_contents != INTO) \
undobuf.num_undo++; \
} \
} while (0)
/* Similar to SUBST, but NEWVAL is an int. INTO will normally be an XINT
expression.
Note that substitution for the value of a CONST_INT is not safe. */
#define SUBST_INT(INTO, NEWVAL) \
do { if (undobuf.num_undo < MAX_UNDO) \
{ \
struct undo_int *u \
= (struct undo_int *)&undobuf.undo[undobuf.num_undo]; \
u->where = (int *) &INTO; \
u->old_contents = INTO; \
u->is_int = 1; \
INTO = NEWVAL; \
if (u->old_contents != INTO) \
undobuf.num_undo++; \
} \
} while (0)
/* Number of times the pseudo being substituted for
was found and replaced. */
static int n_occurrences;
static void set_significant ();
static void move_deaths ();
rtx remove_death ();
static void record_value_for_reg ();
static void record_dead_and_set_regs ();
static int use_crosses_set_p ();
static rtx try_combine ();
static rtx *find_split_point ();
static rtx subst ();
static void undo_all ();
static void copy_substitutions ();
static int reg_dead_at_p ();
static rtx expand_compound_operation ();
static rtx expand_field_assignment ();
static rtx make_extraction ();
static int get_pos_from_mask ();
static rtx make_field_assignment ();
static rtx make_compound_operation ();
static rtx apply_distributive_law ();
static rtx simplify_and_const_int ();
static unsigned significant_bits ();
static int merge_outer_ops ();
static rtx simplify_shift_const ();
static int recog_for_combine ();
static rtx gen_lowpart_for_combine ();
static rtx gen_rtx_combine ();
static rtx gen_binary ();
static rtx gen_unary ();
static enum rtx_code simplify_comparison ();
static int reversible_comparison_p ();
static int get_last_value_validate ();
static rtx get_last_value ();
static void distribute_notes ();
static void distribute_links ();
/* Main entry point for combiner. F is the first insn of the function.
NREGS is the first unused pseudo-reg number. */
void
combine_instructions (f, nregs)
rtx f;
int nregs;
{
register rtx insn, next, prev;
register int i;
register rtx links, nextlinks;
combine_attempts = 0;
combine_merges = 0;
combine_extras = 0;
combine_successes = 0;
combine_max_regno = nregs;
reg_last_death = (rtx *) alloca (nregs * sizeof (rtx));
reg_last_set = (rtx *) alloca (nregs * sizeof (rtx));
reg_last_set_value = (rtx *) alloca (nregs * sizeof (rtx));
reg_last_set_table_tick = (short *) alloca (nregs * sizeof (short));
reg_last_set_label = (short *) alloca (nregs * sizeof (short));
reg_last_set_invalid = (char *) alloca (nregs * sizeof (short));
reg_significant = (int *) alloca (nregs * sizeof (int));
bzero (reg_last_death, nregs * sizeof (rtx));
bzero (reg_last_set, nregs * sizeof (rtx));
bzero (reg_last_set_value, nregs * sizeof (rtx));
bzero (reg_last_set_table_tick, nregs * sizeof (short));
bzero (reg_last_set_invalid, nregs * sizeof (char));
bzero (reg_significant, nregs * sizeof (int));
init_recog_no_volatile ();
/* Compute maximum uid value so uid_cuid can be allocated. */
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
if (INSN_UID (insn) > i)
i = INSN_UID (insn);
uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
significant_mode = mode_for_size (HOST_BITS_PER_INT, MODE_INT, 0);
/* Don't use reg_significant when computing it. This can cause problems
when, for example, we have j <<= 1 in a loop. */
significant_valid = 0;
/* Compute the mapping from uids to cuids.
Cuids are numbers assigned to insns, like uids,
except that cuids increase monotonically through the code.
Scan all SETs and see if we can deduce anything about what
bits are significant for some registers. */
for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
{
INSN_CUID (insn) = ++i;
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
note_stores (PATTERN (insn), set_significant);
}
significant_valid = 1;
/* Now scan all the insns in forward order. */
label_tick = 1;
last_call_cuid = 0;
mem_last_set = 0;
for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
{
next = 0;
if (GET_CODE (insn) == CODE_LABEL)
label_tick++;
else if (GET_CODE (insn) == INSN
|| GET_CODE (insn) == CALL_INSN
|| GET_CODE (insn) == JUMP_INSN)
{
/* Try this insn with each insn it links back to. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
if ((next = try_combine (insn, XEXP (links, 0), 0)) != 0)
goto retry;
/* Try each sequence of three linked insns ending with this one. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
for (nextlinks = LOG_LINKS (XEXP (links, 0)); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, XEXP (links, 0),
XEXP (nextlinks, 0))) != 0)
goto retry;
#ifdef HAVE_cc0
/* Try to combine a jump insn that uses CC0
with a preceding insn that sets CC0, and maybe with its
logical predecessor as well.
This is how we make decrement-and-branch insns.
We need this special code because data flow connections
via CC0 do not get entered in LOG_LINKS. */
if (GET_CODE (insn) == JUMP_INSN
&& (prev = prev_nonnote_insn (insn)) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev)))
{
if ((next = try_combine (insn, prev, 0)) != 0)
goto retry;
for (nextlinks = LOG_LINKS (prev); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, prev,
XEXP (nextlinks, 0))) != 0)
goto retry;
}
/* Do the same for an insn that explicitly references CC0. */
if (GET_CODE (insn) == INSN
&& (prev = prev_nonnote_insn (insn)) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev))
&& GET_CODE (PATTERN (insn)) == SET
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
{
if ((next = try_combine (insn, prev, 0)) != 0)
goto retry;
for (nextlinks = LOG_LINKS (prev); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, prev,
XEXP (nextlinks, 0))) != 0)
goto retry;
}
/* Finally, see if any of the insns that this insn links to
explicitly references CC0. If so, try this insn, that insn,
and its prececessor if it sets CC0. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
if (GET_CODE (XEXP (links, 0)) == INSN
&& GET_CODE (PATTERN (XEXP (links, 0))) == SET
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
&& (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
&& GET_CODE (prev) == INSN
&& sets_cc0_p (PATTERN (prev))
&& (next = try_combine (insn, XEXP (links, 0), prev)) != 0)
goto retry;
#endif
/* Try combining an insn with two different insns whose results it
uses. */
for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
for (nextlinks = XEXP (links, 1); nextlinks;
nextlinks = XEXP (nextlinks, 1))
if ((next = try_combine (insn, XEXP (links, 0),
XEXP (nextlinks, 0))) != 0)
goto retry;
if (GET_CODE (insn) != NOTE)
record_dead_and_set_regs (insn);
retry:
;
}
}
total_attempts += combine_attempts;
total_merges += combine_merges;
total_extras += combine_extras;
total_successes += combine_successes;
}
/* Called via note_stores. If X is a pseudo that is used in more than
one basic block, is narrower that HOST_BITS_PER_INT, and is being
set, record what bits are significant. If we are clobbering X,
ignore this "set" because the clobbered value won't be used.
If we are setting only a portion of X and we can't figure out what
portion, assume all bits will be used since we don't know what will
be happening. */
static void
set_significant (x, set)
rtx x;
rtx set;
{
if (GET_CODE (x) == REG
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
&& reg_n_sets[REGNO (x)] > 1
&& reg_basic_block[REGNO (x)] < 0
&& GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_INT)
{
if (GET_CODE (set) == CLOBBER)
return;
/* If this is a complex assignment, see if we can convert it into a
simple assignent. */
set = expand_field_assignment (set);
if (SET_DEST (set) == x)
reg_significant[REGNO (x)]
|= significant_bits (SET_SRC (set), significant_mode);
else
reg_significant[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
}
}
/* See if INSN can be combined into I3. PRED and SUCC are optionally
insns that were previously combined into I3 or that will be combined
into the merger of INSN and I3.
Return 0 if the combination is not allowed for any reason.
If the combination is allowed, *PDEST will be set to the single
destination of INSN and *PSRC to the single source, and this function
will return 1. */
static int
can_combine_p (insn, i3, pred, succ, pdest, psrc)
rtx insn;
rtx i3;
rtx pred, succ;
rtx *pdest, *psrc;
{
int i;
rtx set = 0, src, dest;
rtx p, link;
int all_adjacent = (succ ? (next_active_insn (insn) == succ
&& next_active_insn (succ) == i3)
: next_active_insn (insn) == i3);
/* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
or a PARALLEL consisting of such a SET and CLOBBERs.
If INSN has CLOBBER parallel parts, ignore them for our processing.
By definition, these happen during the execution of the insn. When it
is merged with another insn, all bets are off. If they are, in fact,
needed and aren't also supplied in I3, they may be added by
recog_for_combine. Otherwise, it won't match.
We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
note.
Get the source and destination of INSN. If more than one, can't
combine. */
if (GET_CODE (PATTERN (insn)) == SET)
set = PATTERN (insn);
else if (GET_CODE (PATTERN (insn)) == PARALLEL
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
{
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
{
rtx elt = XVECEXP (PATTERN (insn), 0, i);
switch (GET_CODE (elt))
{
/* We can ignore CLOBBERs. */
case CLOBBER:
break;
case SET:
/* Ignore SETs whose result isn't used but not those that
have side-effects. */
if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
&& ! side_effects_p (elt))
break;
/* If we have already found a SET, this is a second one and
so we cannot combine with this insn. */
if (set)
return 0;
set = elt;
break;
default:
/* Anything else means we can't combine. */
return 0;
}
}
if (set == 0
/* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
so don't do anything with it. */
|| GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
return 0;
}
else
return 0;
if (set == 0)
return 0;
set = expand_field_assignment (set);
src = SET_SRC (set), dest = SET_DEST (set);
/* Don't eliminate a store in the stack pointer. */
if (dest == stack_pointer_rtx
/* Don't install a subreg involving two modes not tieable.
It can worsen register allocation, and can even make invalid reload
insns, since the reg inside may need to be copied from in the
outside mode, and that may be invalid if it is an fp reg copied in
integer mode. */
|| (GET_CODE (src) == SUBREG
&& ! MODES_TIEABLE_P (GET_MODE (src), GET_MODE (SUBREG_REG (src))))
/* Don't combine with an insn that sets a register to itself if it has
a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
|| (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, 0))
/* Can't merge a function call. */
|| GET_CODE (src) == CALL
/* Don't substitute into an incremented register. */
|| FIND_REG_INC_NOTE (i3, dest)
|| (succ && FIND_REG_INC_NOTE (succ, dest))
/* Make sure that DEST is not used after SUCC but before I3. */
|| (succ && ! all_adjacent
&& reg_used_between_p (dest, succ, i3))
/* Make sure that the value that is to be substituted for the register
does not use any registers whose values alter in between. However,
If the insns are adjacent, a use can't cross a set even though we
think it might (this can happen for a sequence of insns each setting
the same destination; reg_last_set of that register might point to
a NOTE). Also, don't move a volatile asm across any other insns. */
|| (! all_adjacent
&& (use_crosses_set_p (src, INSN_CUID (insn))
|| (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))))
/* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
better register allocation by not doing the combine. */
|| find_reg_note (i3, REG_NO_CONFLICT, dest)
|| (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
/* Don't combine across a CALL_INSN, because that would possibly
change whether the life span of some REGs crosses calls or not,
and it is a pain to update that information.
Exception: if source is a constant, moving it later can't hurt.
Accept that special case, because it helps -fforce-addr a lot. */
|| (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
return 0;
/* DEST must either be a REG or CC0. */
if (GET_CODE (dest) == REG)
{
/* If register alignment is being enforced for multi-word items in all
cases except for parameters, it is possible to have a register copy
insn referencing a hard register that is not allowed to contain the
mode being copied and which would not be valid as an operand of most
insns. Eliminate this problem by not combining with such an insn.
Also, on some machines we don't want to extend the life of a hard
register. */
if (GET_CODE (src) == REG
&& ((REGNO (dest) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
#ifdef SMALL_REGISTER_CLASSES
/* Don't extend the life of a hard register. */
|| REGNO (src) < FIRST_PSEUDO_REGISTER
#else
|| (REGNO (src) < FIRST_PSEUDO_REGISTER
&& ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))
#endif
))
return 0;
}
else if (GET_CODE (dest) != CC0)
return 0;
/* Don't substitute for a register intended as a clobberable operand. */
if (GET_CODE (PATTERN (i3)) == PARALLEL)
for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
&& rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest))
return 0;
/* If INSN contains anything volatile, reject, unless nothing
volatile comes between it and I3, with the exception of SUCC. */
if (volatile_refs_p (src))
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
&& p != succ && volatile_refs_p (PATTERN (p)))
return 0;
/* If INSN or I2 contains an autoincrement or autodecrement,
make sure that register is not used between there and I3,
and not already used in I3 either.
Also insist that I3 not be a jump; if it were one
and the incremented register were spilled, we would lose. */
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& (GET_CODE (i3) == JUMP_INSN
|| reg_used_between_p (XEXP (link, 0), insn, i3)
|| reg_mentioned_p (XEXP (link, 0), PATTERN (i3))))
return 0;
#endif
#ifdef HAVE_cc0
/* Don't combine an insn that follows a CC0-setting insn.
An insn that uses CC0 must not be separated from the one that sets it.
We do, however, allow I2 to follow a CC0-setting insn if that insn
is passed as I1; in that case it will be deleted also.
We also allow combining in this case if all the insns are adjacent
because that would leave the two CC0 insns adjacent as well.
It would be more logical to test whether CC0 occurs inside I1 or I2,
but that would be much slower, and this ought to be equivalent. */
p = prev_nonnote_insn (insn);
if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
&& ! all_adjacent)
return 0;
#endif
/* If we get here, we have passed all the tests and the combination is
to be allowed. */
*pdest = dest;
*psrc = src;
return 1;
}
/* Try to combine the insns I1 and I2 into I3.
Here I1 and I2 appear earlier than I3.
I1 can be zero; then we combine just I2 into I3.
It we are combining three insns and the resulting insn is not recognized,
try splitting it into two insns. If that happens, I2 and I3 are retained
and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
are pseudo-deleted.
If we created two insns, return I2; otherwise return I3.
Return 0 if the combination does not work. Then nothing is changed. */
static rtx
try_combine (i3, i2, i1)
register rtx i3, i2, i1;
{
/* New patterns for I3 and I3, respectively. */
rtx newpat, newi2pat = 0;
/* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
int added_sets_1, added_sets_2;
/* Total number of SETs to put into I3. */
int total_sets;
/* Nonzero is I2's body now appears in I3. */
int i2_is_used;
/* INSN_CODEs for new I3, new I2, and user of condition code. */
int insn_code_number, i2_code_number, other_code_number;
/* Contains I3 if the destination of I3 is used in its source, which means
that the old life of I3 is being killed. If that usage is placed into
I2 and not in I3, a REG_DEAD note must be made. */
rtx i3dest_killed = 0;
/* SET_DEST and SET_SRC of I2 and I1. */
rtx i2dest, i2src, i1dest, i1src;
/* PATTERN (I2), or a copy of it in certain cases. */
rtx i2pat;
/* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
int i2dest_in_i2src, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
/* Notes that must be added to REG_NOTES in I3 and I2. */
rtx new_i3_notes, new_i2_notes;
int maxreg;
rtx temp;
register rtx link;
int i;
/* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
This can occur when flow deletes an insn that it has merged into an
auto-increment address. */
if (GET_RTX_CLASS (GET_CODE (i3)) != 'i'
|| GET_RTX_CLASS (GET_CODE (i2)) != 'i'
|| (i1 && GET_RTX_CLASS (GET_CODE (i1)) != 'i'))
return 0;
combine_attempts++;
undobuf.num_undo = previous_num_undos = 0;
undobuf.other_insn = 0;
/* Save the current high-water-mark so we can free storage if we didn't
accept this combination. */
undobuf.storage = (char *) oballoc (0);
/* If I1 and I2 both feed I3, they can be in any order. To simplify the
code below, set I1 to be the earlier of the two insns. */
if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
temp = i1, i1 = i2, i2 = temp;
/* First check for one important special-case that the code below will
not handle. Namely, the case where I1 is zero, I2 has multiple sets,
and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
we may be able to replace that destination with the destination of I3.
This occurs in the common code where we compute both a quotient and
remainder into a structure, in which case we want to do the computation
directly into the structure to avoid register-register copies.
We make very conservative checks below and only try to handle the
most common cases of this. For example, we only handle the case
where I2 and I3 are adjacent to avoid making difficult register
usage tests. */
if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
&& REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
#ifdef SMALL_REGISTER_CLASSES
&& (GET_CODE (SET_DEST (PATTERN (i3))) != REG
|| REGNO (SET_DEST (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER)
#endif
&& find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
&& GET_CODE (PATTERN (i2)) == PARALLEL
&& ! side_effects_p (SET_DEST (PATTERN (i3)))
&& ! reg_mentioned_p (SET_SRC (PATTERN (i3)), SET_DEST (PATTERN (i3)))
&& next_real_insn (i2) == i3)
for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
if (SET_DEST (XVECEXP (PATTERN (i2), 0, i)) == SET_SRC (PATTERN (i3)))
{
combine_merges++;
subst_insn = i3;
subst_low_cuid = INSN_CUID (i2);
added_sets_2 = 0;
i2dest = SET_SRC (PATTERN (i3));
/* Replace the dest in I2 with our dest and make the resulting
insn the new pattern for I3. Then skip to where we
validate the pattern. Everything was set up above. */
SUBST (SET_DEST (XVECEXP (PATTERN (i2), 0, i)),
SET_DEST (PATTERN (i3)));
newpat = PATTERN (i2);
goto validate_replacement;
}
#ifndef HAVE_cc0
/* If we have no I1 and I2 looks like:
(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
(set Y OP)])
make up a dummy I1 that is
(set Y OP)
and change I2 to be
(set (reg:CC X) (compare:CC Y (const_int 0)))
(We can ignore any trailing CLOBBERs.)
This undoes a previous combination and allows us to match a branch-and-
decrement insn. */
if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
&& XVECLEN (PATTERN (i2), 0) >= 2
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
&& (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
== MODE_CC)
&& GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
&& XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
&& GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
&& GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
&& rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
{
for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
break;
if (i == 1)
{
/* We make I1 with the same INSN_UID as I2. This gives it
the same INSN_CUID for value tracking. Our fake I1 will
never appear in the insn stream so giving it the same INSN_UID
as I2 will not cause a problem. */
i1 = gen_rtx (INSN, VOIDmode, INSN_UID (i2), 0, i2,
XVECEXP (PATTERN (i2), 0, 1), -1, 0, 0);
SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
SET_DEST (PATTERN (i1)));
}
}
#endif
/* Verify that I2 and I1 are valid for combining. */
if (! can_combine_p (i2, i3, i1, 0, &i2dest, &i2src)
|| (i1 && ! can_combine_p (i1, i3, 0, i2, &i1dest, &i1src)))
{
undo_all ();
return 0;
}
/* Record whether I2DEST is used in I2SRC and similarly for the other
cases. Knowing this will help in register status updating below. */
i2dest_in_i2src = reg_mentioned_p (i2dest, i2src);
i1dest_in_i1src = i1 && reg_mentioned_p (i1dest, i1src);
i2dest_in_i1src = i1 && reg_mentioned_p (i2dest, i1src);
/* We probably don't need this any more now that LIMIT_RELOAD_CLASS
was added. */
#if 0
/* If it is better that two different modes keep two different pseudos,
avoid combining them. This avoids producing the following pattern
on a 386:
(set (subreg:SI (reg/v:QI 21) 0)
(lshiftrt:SI (reg/v:SI 20)
(const_int 24)))
If that were made, reload could not handle the pair of
reg 20/21, since it would try to get any GENERAL_REGS
but some of them don't handle QImode. */
if (GET_CODE (PATTERN (i3)) == SET)
{
rtx i3src = SET_SRC (PATTERN (i3));
rtx i3dest = SET_DEST (PATTERN (i3));
while (GET_CODE (i3dest) == SUBREG
|| GET_CODE (i3dest) == STRICT_LOW_PART
|| GET_CODE (i3dest) == SIGN_EXTRACT
|| GET_CODE (i3dest) == ZERO_EXTRACT)
i3dest = SUBREG_REG (i3dest);
while (GET_CODE (i3src) == SUBREG
|| GET_CODE (i3src) == STRICT_LOW_PART
|| GET_CODE (i3src) == SIGN_EXTRACT
|| GET_CODE (i3src) == ZERO_EXTRACT)
i3src = SUBREG_REG (i3src);
if (rtx_equal_p (i3src, i2dest)
&& GET_CODE (i3dest) == REG
&& ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (i3dest)))
return 0;
}
#endif
/* If I3 modifies its output, as opposed to replacing it entirely,
we can't allow the output to contain I2DEST or I1DEST as doing so would
produce an insn that is not equivalent to the original insns.
Consider:
(set (reg:DI 101) (reg:DI 100))
(set (subreg:SI (reg:DI 101) 0) <foo>)
This is NOT equivalent to:
(parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
(set (reg:DI 101) (reg:DI 100))])
Not only does this modify 100 (in which case it might still be valid
if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
Scan each SET in I3 first trying to expand a field assignment into a
set of logical operations, then checking for the above condition, and
then recording any destination that is also used in a source.
We can also run into a problem if I2 sets a register that I1
uses and I1 gets directly substituted into I3 (not via I2). In that
case, we would be getting the wrong value of I2DEST into I3, so we
must reject the combination. This case occurs when I2 and I1 both
feed into I3, rather than when I1 feeds into I2, which feeds into I3. */
if (GET_CODE (PATTERN (i3)) == SET)
{
rtx set = expand_field_assignment (PATTERN (i3));
rtx i3dest;
SUBST (PATTERN (i3), set);
i3dest = SET_DEST (set);
if (((GET_CODE (i3dest) == ZERO_EXTRACT
|| GET_CODE (i3dest) == STRICT_LOW_PART
|| GET_CODE (i3dest) == SUBREG)
&& (reg_mentioned_p (i2dest, XEXP (i3dest, 0))
|| (i1 && reg_mentioned_p (i1dest, XEXP (i3dest, 0)))))
#ifdef SMALL_REGISTER_CLASSES
|| (GET_CODE (i3dest) == REG
&& REGNO (i3dest) < FIRST_PSEUDO_REGISTER)
#endif
|| (i1 && reg_mentioned_p (i2dest, i1src)
&& ! reg_mentioned_p (i1dest, i2src)
&& reg_mentioned_p (i1dest, SET_SRC (set))))
{
undo_all (0);
return 0;
}
/* If I3DEST is used in SET_SRC, it is being killed in this insn,
so record that for later. */
if (GET_CODE (i3dest) == REG
&& reg_mentioned_p (i3dest, SET_SRC (PATTERN (i3))))
i3dest_killed = i3dest;
}
else if (GET_CODE (PATTERN (i3)) == PARALLEL)
for (i = 0; i < XVECLEN (PATTERN (i3), 0); i++)
if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == SET)
{
rtx orig_set = XVECEXP (PATTERN (i3), 0, i);
rtx set = expand_field_assignment (orig_set);
rtx i3dest;
int j;
SUBST (XVECEXP (PATTERN (i3), 0, i), set);
i3dest = SET_DEST (set);
if (((GET_CODE (i3dest) == ZERO_EXTRACT
|| GET_CODE (i3dest) == STRICT_LOW_PART
|| GET_CODE (i3dest) == SUBREG)
&& (reg_mentioned_p (i2dest, XEXP (i3dest, 0))
|| (i1 && reg_mentioned_p (i1dest, XEXP (i3dest, 0)))))
#ifdef SMALL_REGISTER_CLASSES
|| (GET_CODE (i3dest) == REG
&& REGNO (i3dest) < FIRST_PSEUDO_REGISTER)
#endif
|| (i1 && reg_mentioned_p (i2dest, i1src)
&& ! reg_mentioned_p (i1dest, i2src)
&& reg_mentioned_p (i1dest, SET_SRC (set))))
{
undo_all ();
return 0;
}
if (GET_CODE (i3dest) == REG)
for (j = 0; j < XVECLEN (PATTERN (i3), 0); j++)
if (GET_CODE (XVECEXP (PATTERN (i3), 0, j)) == SET
&& reg_mentioned_p (i3dest,
SET_SRC (XVECEXP (PATTERN (i3), 0, j))))
{
/* We only support recording one killed register. In the
highly unlikely case there are two, don't do the
combine. */
if (i3dest_killed)
{
undo_all ();
return 0;
}
i3dest_killed = i3dest;
}
}
/* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
We used to do this EXCEPT in one case: I3 has a post-inc in an
output operand. However, that exception can give rise to insns like
mov r3,(r3)+
which is a famous insn on the PDP-11 where the value of r3 used as the
source was model-dependant. Avoid this sort of thing. */
#if 0
if (!(GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == REG
&& GET_CODE (SET_DEST (PATTERN (i3))) == MEM
&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
|| GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
/* It's not the exception. */
#endif
#ifdef AUTO_INC_DEC
for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC
&& (reg_mentioned_p (XEXP (link, 0), PATTERN (i2))
|| (i1 != 0
&& reg_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
{
undo_all ();
return 0;
}
#endif
/* See if the SETs in I1 or I2 need to be kept around in the merged
instruction: whenever the value set there is still needed past I3.
For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
For the SET in I1, we have two cases: If I1 and I2 independently
feed into I3, the set in I1 needs to be kept around if I1DEST dies
or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
in I1 needs to be kept around unless I1DEST dies or is set in either
I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
I1DEST. If so, we know I1 feeds into I2. */
added_sets_2 = ! dead_or_set_p (i3, i2dest);
added_sets_1
= i1 && ! (reg_mentioned_p (i1dest, i2src)
? (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest))
: dead_or_set_p (i3, i1dest));
/* If the set in I2 needs to be kept around and I1DEST is present in
I1SRC, we must make a copy of PATTERN (I2), so that when we
substitute I1SRC for I1DEST in PATTERN (I2), we are only substituing
for the original I1DEST, not into an already-substituted copy. This
also prevents making self-referential rtx. If I2 is a PARALLEL, we
just need the piece that assigns I2SRC to I2DEST. */
i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
? gen_rtx (SET, VOIDmode, i2dest, i2src)
: PATTERN (i2));
if (added_sets_2 && i1dest_in_i1src)
i2pat = copy_rtx (i2pat);
combine_merges++;
/* Substitute in the latest insn for the regs set by the earlier ones. */
maxreg = max_reg_num ();
subst_insn = i3;
subst_low_cuid = i1 ? INSN_CUID (i1) : INSN_CUID (i2);
/* It is possible that the source of I2 or I1 may be performing an
unneeded operation, such as a ZERO_EXTEND of something that is known
to have the high part zero. Handle that case by letting subst look at
the innermost one of them.
Another way to do this would be to have a function that tries to
simplify a single insn instead of merging two or more insns. We don't
do this because of the potential of infinite loops and because
of the potential extra memory required. However, doing it the way
we are is a bit of a kludge and doesn't catch all cases.
But only do this if -fexpensive-optimizations since it slows things down
and doesn't usually win. */
if (flag_expensive_optimizations)
{
/* Pass pc_rtx so no substitutions are done, just simplifications.
The cases that we are interested in here do not involve the few
cases were is_replaced is checked. */
if (i1)
i1src = subst (i1src, pc_rtx, pc_rtx, 0);
else
i2src = subst (i2src, pc_rtx, pc_rtx, 0);
previous_num_undos = undobuf.num_undo;
}
#ifndef HAVE_cc0
/* Many machines that don't use CC0 have insns that can both perform an
arithmetic operation and set the condition code. These operations will
be represented as a PARALLEL with the first element of the vector
being a COMPARE of an arithmetic operation with the constant zero.
The second element of the vector will set some pseudo to the result
of the same arithmetic operation. If we simplify the COMPARE, we won't
match such a pattern and so will generate an extra insn. Here we test
for this case, where both the comparison and the operation result are
needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
I2SRC. Later we will make the PARALLEL that contains I2. */
if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
&& GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
&& XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
&& rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
{
newpat = PATTERN (i3);
SUBST (XEXP (SET_SRC (newpat), 0), i2src);
i2_is_used = 1;
}
else
#endif
{
n_occurrences = 0; /* `subst' counts here */
newpat = subst (PATTERN (i3), i2dest, i2src, 0);
previous_num_undos = undobuf.num_undo;
/* Record whether i2's body now appears within i3's body. */
i2_is_used = n_occurrences;
}
if (i1)
{
/* Before we can do this substitution, we must redo the test done
above (see detailed comments there) that ensures that I1DEST
isn't mentioned in any SETs in NEWPAT that are field assignments. */
if (GET_CODE (newpat) == SET)
{
newpat = expand_field_assignment (newpat);
if ((GET_CODE (SET_DEST (newpat)) == ZERO_EXTRACT
|| GET_CODE (SET_DEST (newpat)) == STRICT_LOW_PART
|| GET_CODE (SET_DEST (newpat)) == SUBREG)
&& reg_mentioned_p (i1dest, XEXP (SET_DEST (newpat), 0)))
{
undo_all ();
return 0;
}
}
else if (GET_CODE (newpat) == PARALLEL)
{
for (i = 0; i < XVECLEN (newpat, 0); i++)
{
rtx set = expand_field_assignment (XVECEXP (newpat, 0, i));
if ((GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
|| GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
|| GET_CODE (SET_DEST (set)) == SUBREG)
&& reg_mentioned_p (i1dest, XEXP (SET_DEST (set), 0)))
{
undo_all ();
return 0;
}
SUBST (XVECEXP (newpat, 0, i), set);
}
}
else
{
undo_all ();
return 0;
}
n_occurrences = 0;
newpat = subst (newpat, i1dest, i1src, 0);
previous_num_undos = undobuf.num_undo;
}
if (max_reg_num () != maxreg)
abort ();
/* If the actions of the earlier insns must be kept
in addition to substituting them into the latest one,
we must make a new PARALLEL for the latest insn
to hold additional the SETs. */
if (added_sets_1 || added_sets_2)
{
combine_extras++;
if (GET_CODE (newpat) == PARALLEL)
{
rtvec old = XVEC (newpat, 0);
total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
bcopy (&old->elem[0], &XVECEXP (newpat, 0, 0),
sizeof (old->elem[0]) * old->num_elem);
}
else
{
rtx old = newpat;
total_sets = 1 + added_sets_1 + added_sets_2;
newpat = gen_rtx (PARALLEL, VOIDmode, rtvec_alloc (total_sets));
XVECEXP (newpat, 0, 0) = old;
}
if (added_sets_1)
XVECEXP (newpat, 0, --total_sets)
= (GET_CODE (PATTERN (i1)) == PARALLEL
? gen_rtx (SET, VOIDmode, i1dest, i1src) : PATTERN (i1));
if (added_sets_2)
{
/* If there is no I1, use I2's body as is. We used to also not do
the subst call below if I2 was substituted into I3,
but that could lose a simplification. */
if (i1 == 0)
XVECEXP (newpat, 0, --total_sets) = i2pat;
else
/* See comment where i2pat is assigned. */
XVECEXP (newpat, 0, --total_sets)
= subst (i2pat, i1dest, i1src, 0);
}
}
/* Fail if an autoincrement side-effect has been duplicated. */
if ((i2_is_used > 1 && FIND_REG_INC_NOTE (i2, 0) != 0)
|| (i1 != 0 && n_occurrences > 1 && FIND_REG_INC_NOTE (i1, 0) != 0))
{
undo_all ();
return 0;
}
/* We come here when we are replacing a destination in I2 with the
destination of I3. */
validate_replacement:
/* Is the result of combination a valid instruction? */
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
/* If we were combining three insns and the result is a simple SET
with no ASM_OPERANDS that wasn't recognized, try to split it into two
insns. */
if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
&& asm_noperands (newpat) < 0)
{
rtx *split = find_split_point (&newpat);
/* If we can split it and use I2DEST, go ahead and see if that
helps things be recognized. Verify that none of the registers
are set between I2 and I3. */
if (split
#ifdef HAVE_cc0
&& GET_CODE (i2dest) == REG
#endif
/* We need I2DEST in the proper mode. If it is a hard register
or the only use of a pseudo, we can change its mode. */
&& (GET_MODE (*split) == GET_MODE (i2dest)
|| GET_MODE (*split) == VOIDmode
|| REGNO (i2dest) < FIRST_PSEUDO_REGISTER
|| (reg_n_sets[REGNO (i2dest)] == 1
&& ! REG_USERVAR_P (i2dest)))
&& (next_real_insn (i2) == i3
|| ! use_crosses_set_p (*split, INSN_CUID (i2)))
/* We can't overwrite I2DEST if its value is still used by
NEWPAT. */
&& ! reg_referenced_p (i2dest, newpat))
{
rtx newdest = i2dest;
/* Get NEWDEST as a register in the proper mode. We have already
validated that we can do this. */
if (GET_MODE (i2dest) != GET_MODE (*split)
&& GET_MODE (*split) != VOIDmode)
{
newdest = gen_rtx (REG, GET_MODE (*split), REGNO (i2dest));
if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
}
/* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
an ASHIFT. This can occur if it was inside a PLUS and hence
appeared to be a memory address. This is a kludge. */
if (GET_CODE (*split) == MULT
&& GET_CODE (XEXP (*split, 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
SUBST (*split, gen_rtx_combine (ASHIFT, GET_MODE (*split),
XEXP (*split, 0),
gen_rtx (CONST_INT, VOIDmode, i)));
#ifdef INSN_SCHEDULING
/* If *SPLIT is a paradoxical SUBREG, when we split it, it should
be written as a ZERO_EXTEND. */
if (GET_CODE (*split) == SUBREG
&& GET_CODE (SUBREG_REG (*split)) == MEM)
SUBST (*split, gen_rtx_combine (ZERO_EXTEND, GET_MODE (*split),
XEXP (*split, 0)));
#endif
newi2pat = gen_rtx_combine (SET, VOIDmode, newdest, *split);
SUBST (*split, newdest);
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
if (i2_code_number >= 0)
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
}
}
/* Check for a case where we loaded from memory in a narrow mode and
then sign extended it, but we need both registers. In that case,
we have a PARALLEL with both loads from the same memory location.
We can split this into a load from memory followed by a register-register
copy. This saves at least one insn, more if register allocation can
eliminate the copy. */
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
&& GET_CODE (newpat) == PARALLEL
&& XVECLEN (newpat, 0) == 2
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
&& GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
&& rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
&& ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
INSN_CUID (i2))
&& ! reg_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
SET_SRC (XVECEXP (newpat, 0, 1)))
&& ! find_reg_note (i3, REG_UNUSED,
SET_DEST (XVECEXP (newpat, 0, 0))))
{
newi2pat = XVECEXP (newpat, 0, 0);
newpat = XVECEXP (newpat, 0, 1);
SUBST (SET_SRC (newpat),
gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)),
SET_DEST (newi2pat)));
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
if (i2_code_number >= 0)
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
}
/* If it still isn't recognized, fail and change things back the way they
were. */
if ((insn_code_number < 0
/* Is the result a reasonable ASM_OPERANDS? */
&& (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
{
undo_all ();
return 0;
}
/* If we had to change another insn, make sure it is valid also. */
if (undobuf.other_insn)
{
rtx other_notes = REG_NOTES (undobuf.other_insn);
rtx new_other_notes;
rtx note, next;
other_code_number = recog_for_combine (&PATTERN (undobuf.other_insn),
undobuf.other_insn,
&new_other_notes);
if (other_code_number < 0
&& ! check_asm_operands (PATTERN (undobuf.other_insn)))
{
undo_all ();
return 0;
}
/* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
are still valid. Then add any non-duplicate notes added by
recog_for_combine. */
for (note = REG_NOTES (undobuf.other_insn); note; note = next)
{
next = XEXP (note, 1);
if (REG_NOTE_KIND (note) == REG_UNUSED
&& ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
remove_note (undobuf.other_insn, note);
}
distribute_notes (new_other_notes, undobuf.other_insn,
undobuf.other_insn, 0, 0, 0);
}
/* We now know that we can do this combination. Merge the insns and
update the status of registers and LOG_LINKS. */
{
rtx i3notes, i2notes, i1notes = 0;
rtx i3links, i2links, i1links = 0;
int all_adjacent = (next_real_insn (i2) == i3
&& (i1 == 0 || next_real_insn (i1) == i2));
register int regno;
/* Compute which registers we expect to eliminate. */
rtx elim_i2 = (newi2pat || i2dest_in_i2src || i2dest_in_i1src
? 0 : i2dest);
rtx elim_i1 = i1 == 0 || i1dest_in_i1src ? 0 : i1dest;
INSN_CODE (i3) = insn_code_number;
PATTERN (i3) = newpat;
if (undobuf.other_insn)
INSN_CODE (undobuf.other_insn) = other_code_number;
/* Get the old REG_NOTES and LOG_LINKS from all our insns and
clear them. */
i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
if (i1)
i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
/* We had one special case above where I2 had more than one set and
we replaced a destination of one of those sets with the destination
of I3. In that case, we have to update LOG_LINKS of insns later
in this basic block. Note that this (expensive) case is rare. */
if (GET_CODE (PATTERN (i2)) == PARALLEL)
for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
&& SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
&& ! find_reg_note (i2, REG_UNUSED,
SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
{
register rtx insn;
for (insn = NEXT_INSN (i2); insn; insn = NEXT_INSN (insn))
{
if (insn != i3 && GET_RTX_CLASS (GET_CODE (insn)) == 'i')
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
if (XEXP (link, 0) == i2)
XEXP (link, 0) = i3;
if (GET_CODE (insn) == CODE_LABEL
|| GET_CODE (insn) == JUMP_INSN)
break;
}
}
LOG_LINKS (i3) = 0;
REG_NOTES (i3) = 0;
LOG_LINKS (i2) = 0;
REG_NOTES (i2) = 0;
if (newi2pat)
{
INSN_CODE (i2) = i2_code_number;
PATTERN (i2) = newi2pat;
}
else
{
PUT_CODE (i2, NOTE);
NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (i2) = 0;
}
if (i1)
{
LOG_LINKS (i1) = 0;
REG_NOTES (i1) = 0;
PUT_CODE (i1, NOTE);
NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
NOTE_SOURCE_FILE (i1) = 0;
}
/* If anything was substituted more than once,
copy it to avoid invalid shared rtl structure. */
copy_substitutions ();
/* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
if (i3notes)
distribute_notes (i3notes, i3, i3, newi2pat ? i2 : 0, elim_i2, elim_i1);
if (i2notes)
distribute_notes (i2notes, i2, i3, newi2pat ? i2 : 0, elim_i2, elim_i1);
if (i1notes)
distribute_notes (i1notes, i1, i3, newi2pat ? i2 : 0, elim_i2, elim_i1);
/* Distribute any notes added to I2 or I3 by recog_for_combine. We
know these are REG_UNUSED and want them to go to the desired insn,
so we always pass it as i3. */
if (new_i2_notes && newi2pat)
distribute_notes (new_i2_notes, i2, i2, 0, 0, 0);
if (new_i3_notes)
distribute_notes (new_i3_notes, i3, i3, 0, 0, 0);
/* If I3DEST was used in I3SRC, it really died in I3. We may need to
put a REG_DEAD note for it somewhere. Similarly for I2 and I1. */
if (i3dest_killed)
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i3dest_killed, 0),
0, i3, newi2pat ? i2 : 0, 0, 0);
if (i2dest_in_i2src)
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i2dest, 0),
0, i3, newi2pat ? i2 : 0, 0, 0);
if (i1dest_in_i1src)
distribute_notes (gen_rtx (EXPR_LIST, REG_DEAD, i1dest, 0),
0, i3, newi2pat ? i2 : 0, 0, 0);
distribute_links (i3links, i3, newi2pat ? i2 : 0, all_adjacent);
distribute_links (i2links, i3, newi2pat ? i2 : 0, all_adjacent);
distribute_links (i1links, i3, newi2pat ? i2 : 0, all_adjacent);
/* Adjust the deaths if necessary, for everything that now is used
in I3. */
move_deaths (newpat, i1 ? INSN_CUID (i1) : INSN_CUID (i2), i3);
if (newi2pat)
move_deaths (newi2pat, INSN_CUID (i1), i2);
if (GET_CODE (i2dest) == REG)
{
/* The insn that previously set this register doesn't exist, and
this life of the register may not exist either. Show that
we don't know its value any more. If we don't do this and
I2 set the register to a value that depended on its old
contents, we will get confused. If this insn is used, thing
will be set correctly in combine_instructions. */
record_value_for_reg (i2dest, 0, 0);
/* If the reg formerly set in I2 died only once and that was in I3,
zero its use count so it won't make `reload' do any work. */
if (! added_sets_2 && newi2pat == 0)
{
regno = REGNO (i2dest);
reg_n_sets[regno]--;
if (reg_n_sets[regno] == 0
&& ! (basic_block_live_at_start[0][regno / HOST_BITS_PER_INT]
& (1 << (regno % HOST_BITS_PER_INT))))
reg_n_refs[regno] = 0;
}
}
if (i1 && GET_CODE (i1dest) == REG)
{
record_value_for_reg (i1dest, 0, 0);
regno = REGNO (i1dest);
if (! added_sets_1)
{
reg_n_sets[regno]--;
if (reg_n_sets[regno] == 0
&& ! (basic_block_live_at_start[0][regno / HOST_BITS_PER_INT]
& (1 << (regno % HOST_BITS_PER_INT))))
reg_n_refs[regno] = 0;
}
}
}
combine_successes++;
return newi2pat ? i2 : i3;
}
/* Undo all the modifications recorded in undobuf. */
static void
undo_all ()
{
register int i;
if (undobuf.num_undo > MAX_UNDO)
undobuf.num_undo = MAX_UNDO;
for (i = undobuf.num_undo - 1; i >= 0; i--)
*undobuf.undo[i].where = undobuf.undo[i].old_contents;
obfree (undobuf.storage);
undobuf.num_undo = 0;
}
/* If a substitution was used more than once, copy all but one,
so that no invalid shared substructure is introduced. */
static void
copy_substitutions ()
{
register int i, j;
for (i = undobuf.num_undo - 1; i >= 1; i--)
if (! undobuf.undo[i].is_int)
for (j = i - 1; j >= 0; j--)
if (*undobuf.undo[i].where == *undobuf.undo[j].where)
*undobuf.undo[j].where = copy_rtx (*undobuf.undo[j].where);
}
/* Find the innermost point within the rtx at LOC, possibly LOC itself,
where we have an arithmetic expression and return that point.
try_combine will call this function to see if an insn can be split into
two insns. */
static rtx *
find_split_point (loc)
rtx *loc;
{
rtx x = *loc;
enum rtx_code code = GET_CODE (x);
rtx *split;
int len = 0, pos, unsignedp;
rtx inner;
/* First special-case some codes. */
switch (code)
{
case SUBREG:
#ifdef INSN_SCHEDULING
/* If we are making a paradoxical SUBREG invalid, it becomes a split
point. */
if (GET_CODE (SUBREG_REG (x)) == MEM)
return loc;
#endif
return find_split_point (&SUBREG_REG (x));
#ifdef HAVE_lo_sum
case MEM:
/* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
using LO_SUM and HIGH. */
if (GET_CODE (XEXP (x, 0)) == CONST
|| GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
{
SUBST (XEXP (x, 0),
gen_rtx_combine (LO_SUM, Pmode,
gen_rtx_combine (HIGH, Pmode, XEXP (x, 0)),
XEXP (x, 0)));
return &XEXP (XEXP (x, 0), 0);
}
break;
#endif
case SET:
#ifdef HAVE_cc0
/* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
ZERO_EXTRACT, the most likely reason why this doesn't match is that
we need to put the operand into a register. So split at that
point. */
if (SET_DEST (x) == cc0_rtx
&& GET_CODE (SET_SRC (x)) != COMPARE
&& GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
&& GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
&& ! (GET_CODE (SET_SRC (x)) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
return &SET_SRC (x);
#endif
/* See if we can split SET_SRC as it stands. */
split = find_split_point (&SET_SRC (x));
if (split && split != &SET_SRC (x))
return split;
/* See if this is a bitfield assignment with everything constant. If
so, this is an IOR of an AND, so split it into that. */
if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
<= HOST_BITS_PER_INT)
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
&& GET_CODE (SET_SRC (x)) == CONST_INT
&& ((INTVAL (XEXP (SET_DEST (x), 1))
+ INTVAL (XEXP (SET_DEST (x), 2)))
<= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
&& ! side_effects_p (XEXP (SET_DEST (x), 0)))
{
int pos = INTVAL (XEXP (SET_DEST (x), 2));
int len = INTVAL (XEXP (SET_DEST (x), 1));
int src = INTVAL (SET_SRC (x));
rtx dest = XEXP (SET_DEST (x), 0);
enum machine_mode mode = GET_MODE (dest);
unsigned int mask = (1 << len) - 1;
#if BITS_BIG_ENDIAN
pos = GET_MODE_BITSIZE (mode) - len - pos;
#endif
if (src == mask)
SUBST (SET_SRC (x),
gen_binary (IOR, mode, dest,
gen_rtx (CONST_INT, VOIDmode, src << pos)));
else
SUBST (SET_SRC (x),
gen_binary (IOR, mode,
gen_binary (AND, mode, dest,
gen_rtx (CONST_INT, VOIDmode,
(~ (mask << pos)
& GET_MODE_MASK (mode)))),
gen_rtx (CONST_INT, VOIDmode, src << pos)));
SUBST (SET_DEST (x), dest);
split = find_split_point (&SET_SRC (x));
if (split && split != &SET_SRC (x))
return split;
}
/* Otherwise, see if this is an operation that we can split into two.
If so, try to split that. */
code = GET_CODE (SET_SRC (x));
switch (code)
{
case SIGN_EXTEND:
inner = XEXP (SET_SRC (x), 0);
pos = 0;
len = GET_MODE_BITSIZE (GET_MODE (inner));
unsignedp = 0;
break;
case SIGN_EXTRACT:
case ZERO_EXTRACT:
if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
&& GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
{
inner = XEXP (SET_SRC (x), 0);
len = INTVAL (XEXP (SET_SRC (x), 1));
pos = INTVAL (XEXP (SET_SRC (x), 2));
#if BITS_BIG_ENDIAN
pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
#endif
unsignedp = (code == ZERO_EXTRACT);
}
break;
}
if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
{
enum machine_mode mode = GET_MODE (SET_SRC (x));
if (unsignedp && len < HOST_BITS_PER_INT)
{
SUBST (SET_SRC (x),
gen_rtx_combine
(AND, mode,
gen_rtx_combine (LSHIFTRT, mode,
gen_lowpart_for_combine (mode, inner),
gen_rtx (CONST_INT, VOIDmode, pos)),
gen_rtx (CONST_INT, VOIDmode, (1 << len) - 1)));
split = find_split_point (&SET_SRC (x));
if (split && split != &SET_SRC (x))
return split;
}
else
{
SUBST (SET_SRC (x),
gen_rtx_combine
(ASHIFTRT, mode,
gen_rtx_combine (ASHIFT, mode,
gen_lowpart_for_combine (mode, inner),
gen_rtx (CONST_INT, VOIDmode,
(GET_MODE_BITSIZE (mode)
- len - pos))),
gen_rtx (CONST_INT, VOIDmode,
GET_MODE_BITSIZE (mode) - len)));
split = find_split_point (&SET_SRC (x));
if (split && split != &SET_SRC (x))
return split;
}
}
/* See if this is a simple operation with a constant as the second
operand. It might be that this constant is out of range and hence
could be used as a split point. */
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
&& CONSTANT_P (XEXP (SET_SRC (x), 1))
&& (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
|| (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
&& (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
== 'o'))))
return &XEXP (SET_SRC (x), 1);
/* Finally, see if this is a simple operation with its first operand
not in a register. The operation might require this operand in a
register, so return it as a split point. We can always do this
because if the first operand were another operation, we would have
already found it as a split point. */
if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
|| GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
&& ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
return &XEXP (SET_SRC (x), 0);
return 0;
case AND:
case IOR:
/* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
it is better to write this as (not (ior A B)) so we can split it.
Similarly for IOR. */
if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
{
SUBST (*loc,
gen_rtx_combine (NOT, GET_MODE (x),
gen_rtx_combine (code == IOR ? AND : IOR,
GET_MODE (x),
XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 1), 0))));
return find_split_point (loc);
}
/* Many RISC machines have a large set of logical insns. If the
second operand is a NOT, put it first so we will try to split the
other operand first. */
if (GET_CODE (XEXP (x, 1)) == NOT)
{
rtx tem = XEXP (x, 0);
SUBST (XEXP (x, 0), XEXP (x, 1));
SUBST (XEXP (x, 1), tem);
}
break;
}
/* Otherwise, select our actions depending on our rtx class. */
switch (GET_RTX_CLASS (code))
{
case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
case '3':
split = find_split_point (&XEXP (x, 2));
if (split)
return split;
/* ... fall through ... */
case '2':
case 'c':
case '<':
split = find_split_point (&XEXP (x, 1));
if (split)
return split;
/* ... fall through ... */
case '1':
/* Some machines have (and (shift ...) ...) insns. If X is not
an AND, but XEXP (X, 0) is, use it as our split point. */
if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
return &XEXP (x, 0);
split = find_split_point (&XEXP (x, 0));
if (split)
return split;
return loc;
}
/* Otherwise, we don't have a split point. */
return 0;
}
/* Throughout X, replace FROM with TO, and return the result.
The result is TO if X is FROM;
otherwise the result is X, but its contents may have been modified.
If they were modified, a record was made in undobuf so that
undo_all will (among other things) return X to its original state.
If the number of changes necessary is too much to record to undo,
the excess changes are not made, so the result is invalid.
The changes already made can still be undone.
undobuf.num_undo is incremented for such changes, so by testing that
the caller can tell whether the result is valid.
`n_occurrences' is incremented each time FROM is replaced.
IN_DEST is non-zero if we are processing the SET_DEST of a SET. */
static rtx
subst (x, from, to, in_dest)
register rtx x, from, to;
int in_dest;
{
register char *fmt;
register int len, i;
register enum rtx_code code = GET_CODE (x), orig_code = code;
rtx temp;
enum machine_mode mode = GET_MODE (x);
enum machine_mode op0_mode = VOIDmode;
rtx other_insn;
rtx *cc_use;
int n_restarts = 0;
/* FAKE_EXTEND_SAFE_P (MODE, FROM) is 1 if (subreg:MODE FROM 0) is a safe
replacement for (zero_extend:MODE FROM) or (sign_extend:MODE FROM).
If it is 0, that cannot be done. We can now do this for any MEM
because (SUBREG (MEM...)) is guaranteed to cause the MEM to be reloaded.
If not for that, MEM's would very rarely be safe. */
/* Reject MODEs bigger than a word, because we might not be able
to reference a two-register group starting with an arbitrary register
(and currently gen_lowpart might crash for a SUBREG). */
#define FAKE_EXTEND_SAFE_P(MODE, FROM) \
(GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
/* Two expressions are equal if they are identical copies of a shared
RTX or if they are both registers with the same register number
and mode. */
#define COMBINE_RTX_EQUAL_P(X,Y) \
((X) == (Y) \
|| (GET_CODE (X) == REG && GET_CODE (Y) == REG \
&& REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
if (COMBINE_RTX_EQUAL_P (x, from))
return to;
/* If X and FROM are the same register but different modes, they will
not have been seen as equal above. However, flow.c will make a
LOG_LINKS entry for that case. If we do nothing, we will try to
rerecognize our original insn and, when it succeeds, we will
delete the feeding insn, which is incorrect.
So force this insn not to match in this (rare) case. */
if (code == REG && GET_CODE (from) == REG
&& REGNO (x) == REGNO (from))
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
/* If this is an object, we are done unless it is a MEM or LO_SUM, both
of which may contain things that can be combined. */
if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
return x;
/* It is possible to have a subexpression appear twice in the insn.
Suppose that FROM is a register that appears within TO.
Then, after that subexpression has been scanned once by `subst',
the second time it is scanned, TO may be found. If we were
to scan TO here, we would find FROM within it and create a
self-referent rtl structure which is completely wrong. */
if (COMBINE_RTX_EQUAL_P (x, to))
return to;
len = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
/* Don't replace FROM where it is being stored in rather than used. */
if (code == SET && COMBINE_RTX_EQUAL_P (SET_DEST (x), from))
fmt = "ie";
if (code == SET && GET_CODE (SET_DEST (x)) == SUBREG
&& COMBINE_RTX_EQUAL_P (SUBREG_REG (SET_DEST (x)), from))
fmt = "ie";
/* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a constant. */
if (fmt[0] == 'e')
op0_mode = GET_MODE (XEXP (x, 0));
for (i = 0; i < len; i++)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
{
register rtx new;
if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
new = to, n_occurrences++;
else
new = subst (XVECEXP (x, i, j), from, to, 0);
SUBST (XVECEXP (x, i, j), new);
}
}
else if (fmt[i] == 'e')
{
register rtx new;
if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
{
new = to;
n_occurrences++;
}
else
/* If we are in a SET_DEST, suppress most cases unless we
have gone inside a MEM, in which case we want to
simplify the address. We assume here that things that
are actually part of the destination have their inner
parts in the first expression. This is true for SUBREG,
STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
things aside from REG and MEM that should appear in a
SET_DEST. */
new = subst (XEXP (x, i), from, to,
(((in_dest
&& (code == SUBREG || code == STRICT_LOW_PART
|| code == ZERO_EXTRACT))
|| code == SET)
&& i == 0));
/* If we found that we will have to reject this combination,
indicate that by returning the CLOBBER ourselves, rather than
an expression containing it. This will speed things up as
well as prevent accidents where two CLOBBERs are considered
to be equal, thus producing an incorrect simplification. But
don't do this if we are inside a SET. */
if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx
&& code != SET)
return new;
SUBST (XEXP (x, i), new);
}
}
/* If this is a commutative operation, put a constant last and a complex
expression first. We don't need to do this for comparisons here. */
if (GET_RTX_CLASS (code) == 'c'
&& ((CONSTANT_P (XEXP (x, 0)) && GET_CODE (XEXP (x, 1)) != CONST_INT)
|| (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'o'
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')
|| (GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == 'o'
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o')))
{
temp = XEXP (x, 0);
SUBST (XEXP (x, 0), XEXP (x, 1));
SUBST (XEXP (x, 1), temp);
}
/* Try to fold this expression in case we have constants that weren't
present before. */
temp = 0;
switch (GET_RTX_CLASS (code))
{
case '1':
temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
break;
case '<':
case 'c':
case '2':
temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
break;
case 'b':
case '3':
temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
XEXP (x, 1), XEXP (x, 2));
break;
}
if (temp)
x = temp;
/* We come back to here if we have replaced the expression with one of
a different code and it is likely that further simplification will be
possible. */
restart:
/* If we have restarted more than 4 times, we are probably looping, so
give up. */
if (++n_restarts > 4)
return x;
code = GET_CODE (x);
/* First see if we can apply the inverse distributive law. */
if (code == PLUS || code == MINUS || code == IOR || code == XOR)
{
x = apply_distributive_law (x);
code = GET_CODE (x);
}
/* If CODE is an associative operation not otherwise handled, see if we
can associate some operands. This can win if they are constants or
if they are logically related (i.e. (a & b) & a. */
if ((code == PLUS || code == MINUS
|| code == MULT || code == AND || code == IOR || code == XOR
|| code == DIV || code == UDIV)
&& (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| GET_MODE_CLASS (mode) == MODE_INT))
{
if (GET_CODE (XEXP (x, 0)) == code)
{
rtx other = XEXP (XEXP (x, 0), 0);
rtx inner = simplify_binary_operation (code == MINUS ? PLUS
: code == DIV ? MULT
: code == UDIV ? MULT
: code,
mode, XEXP (XEXP (x, 0), 1),
XEXP (x, 1));
/* For commutative operations, try the other pair if that one
didn't simplify. */
if (inner == 0 && GET_RTX_CLASS (code) == 'c')
{
other = XEXP (XEXP (x, 0), 1);
inner = simplify_binary_operation (code, mode,
XEXP (XEXP (x, 0), 0),
XEXP (x, 1));
}
if (inner)
{
x = gen_binary (code, mode, other, inner);
goto restart;
}
}
}
/* A little bit of algebraic simplification here. */
switch (code)
{
case MEM:
/* Ensure that our address has any ASHIFTs converted to MULT in case
address-recognizing predicates are called later. */
temp = make_compound_operation (XEXP (x, 0), MEM);
SUBST (XEXP (x, 0), temp);
break;
case SUBREG:
/* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
is paradoxical. If we can't do that safely, then it becomes
something nonsensical so that this combination won't take place. */
if (GET_CODE (SUBREG_REG (x)) == MEM
&& (GET_MODE_SIZE (mode)
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
{
rtx inner = SUBREG_REG (x);
int endian_offset = 0;
/* Don't change the mode of the MEM
if that would change the meaning of the address. */
if (MEM_VOLATILE_P (SUBREG_REG (x))
|| mode_dependent_address_p (XEXP (inner, 0)))
return gen_rtx (CLOBBER, mode, const0_rtx);
#if BYTES_BIG_ENDIAN
if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
endian_offset += UNITS_PER_WORD - GET_MODE_SIZE (mode);
if (GET_MODE_SIZE (GET_MODE (inner)) < UNITS_PER_WORD)
endian_offset -= UNITS_PER_WORD - GET_MODE_SIZE (GET_MODE (inner));
#endif
/* Note if the plus_constant doesn't make a valid address
then this combination won't be accepted. */
x = gen_rtx (MEM, mode,
plus_constant (XEXP (inner, 0),
(SUBREG_WORD (x) * UNITS_PER_WORD
+ endian_offset)));
MEM_VOLATILE_P (x) = MEM_VOLATILE_P (inner);
RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (inner);
MEM_IN_STRUCT_P (x) = MEM_IN_STRUCT_P (inner);
return x;
}
/* If we are in a SET_DEST, these other cases can't apply. */
if (in_dest)
return x;
/* Changing mode twice with SUBREG => just change it once,
or not at all if changing back to starting mode. */
if (GET_CODE (SUBREG_REG (x)) == SUBREG)
{
if (mode == GET_MODE (SUBREG_REG (SUBREG_REG (x)))
&& SUBREG_WORD (x) == 0 && SUBREG_WORD (SUBREG_REG (x)) == 0)
return SUBREG_REG (SUBREG_REG (x));
SUBST_INT (SUBREG_WORD (x),
SUBREG_WORD (x) + SUBREG_WORD (SUBREG_REG (x)));
SUBST (SUBREG_REG (x), SUBREG_REG (SUBREG_REG (x)));
}
/* SUBREG of a hard register => just change the register number
and/or mode. */
if (GET_CODE (SUBREG_REG (x)) == REG
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
return gen_rtx (REG, mode, REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
/* For a constant, try to pick up the part we want. Handle a full
word and low-order part. */
if (CONSTANT_P (SUBREG_REG (x)) && op0_mode != VOIDmode
&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
&& GET_MODE_CLASS (mode) == MODE_INT)
{
temp = operand_subword (SUBREG_REG (x), SUBREG_WORD (x),
0, op0_mode);
if (temp)
return temp;
}
if (CONSTANT_P (SUBREG_REG (x)) && subreg_lowpart_p (x))
return gen_lowpart_for_combine (mode, SUBREG_REG (x));
/* If we are narrowing the object, we need to see if we can simplify
the expression for the object knowing that we only need the
low-order bits. We do this by computing an AND of the object
with only the bits we care about. That will produce any needed
simplifications. If the resulting computation is just the
AND with the significant bits, our operand is the first operand
of the AND. Otherwise, it is the resulting expression. */
if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
&& subreg_lowpart_p (x)
&& GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= HOST_BITS_PER_INT)
{
temp = simplify_and_const_int (0, GET_MODE (SUBREG_REG (x)),
SUBREG_REG (x), GET_MODE_MASK (mode));
if (GET_CODE (temp) == AND && GET_CODE (XEXP (temp, 1)) == CONST_INT
&& INTVAL (XEXP (temp, 1)) == GET_MODE_MASK (mode))
temp = XEXP (temp, 0);
return gen_lowpart_for_combine (mode, temp);
}
break;
case NOT:
/* (not (plus X -1)) can become (neg X). */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 1) == constm1_rtx)
{
x = gen_rtx_combine (NEG, mode, XEXP (XEXP (x, 0), 0));
goto restart;
}
/* Similarly, (not (neg X)) is (plus X -1). */
if (GET_CODE (XEXP (x, 0)) == NEG)
{
x = gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
goto restart;
}
/* (not (ashift C X)) is (or (rotate ~C X) C2) where C2 is a mask
of N low-order bits of 1 where N is floor_log2 (C). This is a
clear win in the common case of C == 1, but may also simplify
other cases as well. */
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == CONST_INT
&& XEXP (XEXP (x, 0), 0) != const0_rtx
&& ((i = floor_log2 (INTVAL (XEXP (XEXP (x, 0), 0))))
<= HOST_BITS_PER_INT))
{
x = gen_binary (IOR, mode,
gen_rtx (ROTATE, mode,
gen_unary (NOT, mode,
XEXP (XEXP (x, 0), 0)),
XEXP (XEXP (x, 0), 1)),
gen_rtx (CONST_INT, VOIDmode, (1 << i) - 1));
goto restart;
}
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
&& GET_CODE (XEXP (SUBREG_REG (XEXP (x, 0)), 0)) == CONST_INT
&& XEXP (SUBREG_REG (XEXP (x, 0)), 0) != const0_rtx
&& ((i = floor_log2 (INTVAL (XEXP (SUBREG_REG (XEXP (x, 0)), 0))))
<= HOST_BITS_PER_INT))
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
x = gen_binary (IOR, inner_mode,
gen_rtx (ROTATE, inner_mode,
gen_unary (NOT, inner_mode,
XEXP (SUBREG_REG (XEXP (x, 0)), 0)),
XEXP (SUBREG_REG (XEXP (x, 0)), 1)),
gen_rtx (CONST_INT, VOIDmode, (1 << i) - 1));
x = gen_lowpart_for_combine (mode, x);
goto restart;
}
/* Similarly for (not (lshiftrt C X)). Here we OR with a mask that
is 1 for the high-order bits higher than the lowest-order bit in C, if
any. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == CONST_INT
&& XEXP (XEXP (x, 0), 0) != const0_rtx
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT)
{
int const_val = INTVAL (XEXP (XEXP (x, 0), 0));
int low_bit = exact_log2 (const_val & - const_val);
unsigned mask;
if (low_bit + 1 == GET_MODE_BITSIZE (mode))
mask = ~0;
else
mask = (1 << (low_bit + 1)) - 1;
x = gen_binary (IOR, mode,
gen_rtx (ROTATERT, mode,
gen_unary (NOT, mode,
XEXP (XEXP (x, 0), 0)),
XEXP (XEXP (x, 0), 1)),
gen_unary (NOT, mode,
gen_rtx (CONST_INT, VOIDmode, mask)));
goto restart;
}
if (GET_CODE (XEXP (x, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (x, 0))
&& (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
&& GET_CODE (XEXP (SUBREG_REG (XEXP (x, 0)), 0)) == CONST_INT
&& XEXP (SUBREG_REG (XEXP (x, 0)), 0) != const0_rtx
&& (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (x, 0))))
<= HOST_BITS_PER_INT))
{
enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
int const_val = INTVAL (XEXP (SUBREG_REG (XEXP (x, 0)), 0));
int low_bit = exact_log2 (const_val & - const_val);
unsigned mask;
if (low_bit + 1 == GET_MODE_BITSIZE (inner_mode))
mask = ~0;
else
mask = (1 << (low_bit + 1)) - 1;
x = gen_binary (IOR, inner_mode,
gen_rtx (ROTATERT, inner_mode,
gen_unary (NOT, inner_mode,
XEXP (SUBREG_REG (XEXP (x, 0)), 0)),
XEXP (SUBREG_REG (XEXP (x, 0)), 1)),
gen_unary (NOT, inner_mode,
gen_rtx (CONST_INT, VOIDmode, mask)));
x = gen_lowpart_for_combine (mode, x);
goto restart;
}
#if STORE_FLAG_VALUE == -1
/* (not (comparison foo bar)) can be done by reversing the comparison
code if valid. */
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& reversible_comparison_p (XEXP (x, 0)))
return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1));
#endif
/* Apply De Morgan's laws to reduce number of patterns for machines
with negating logical insns (and-not, nand, etc.). If result has
only one NOT, put it first, since that is how the patterns are
coded. */
if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
{
rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
if (GET_CODE (in1) == NOT)
in1 = XEXP (in1, 0);
else
in1 = gen_rtx_combine (NOT, GET_MODE (in1), in1);
if (GET_CODE (in2) == NOT)
in2 = XEXP (in2, 0);
else if (GET_CODE (in2) == CONST_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT)
in2 = gen_rtx (CONST_INT, VOIDmode,
GET_MODE_MASK (mode) & ~ INTVAL (in2));
else
in2 = gen_rtx_combine (NOT, GET_MODE (in2), in2);
if (GET_CODE (in2) == NOT)
{
rtx tem = in2;
in2 = in1; in1 = tem;
}
x = gen_rtx_combine (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
mode, in1, in2);
goto restart;
}
break;
case NEG:
/* (neg (plus X 1)) can become (not X). */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& XEXP (XEXP (x, 0), 1) == const1_rtx)
{
x = gen_rtx_combine (NOT, mode, XEXP (XEXP (x, 0), 0));
goto restart;
}
/* Similarly, (neg (not X)) is (plus X 1). */
if (GET_CODE (XEXP (x, 0)) == NOT)
{
x = gen_rtx_combine (PLUS, mode, XEXP (XEXP (x, 0), 0), const1_rtx);
goto restart;
}
/* (neg (abs X)) is X if X is a value known to be either -1 or 0. */
if (GET_CODE (XEXP (x, 0)) == ABS
&& ((GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTRACT
&& XEXP (XEXP (XEXP (x, 0), 0), 1) == const1_rtx)
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
== GET_MODE_BITSIZE (mode) - 1))
|| ((temp = get_last_value (XEXP (XEXP (x, 0), 0))) != 0
&& ((GET_CODE (temp) == SIGN_EXTRACT
&& XEXP (temp, 1) == const1_rtx)
|| (GET_CODE (temp) == ASHIFTRT
&& GET_CODE (XEXP (temp, 1)) == CONST_INT
&& (INTVAL (XEXP (temp, 1))
== GET_MODE_BITSIZE (mode) - 1))))))
return XEXP (XEXP (x, 0), 0);
/* (neg (minus X Y)) can become (minus Y X). */
if (GET_CODE (XEXP (x, 0)) == MINUS
&& (GET_MODE_CLASS (mode) != MODE_FLOAT
/* x-y != -(y-x) with IEEE floating point. */
|| TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT))
{
x = gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
XEXP (XEXP (x, 0), 0));
goto restart;
}
temp = expand_compound_operation (XEXP (x, 0));
/* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
replaced by (lshiftrt X C). This will convert
(neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
if (GET_CODE (temp) == ASHIFTRT
&& GET_CODE (XEXP (temp, 1)) == CONST_INT
&& INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
{
x = simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
INTVAL (XEXP (temp, 1)));
goto restart;
}
/* If X has only a single bit significant, say, bit I, convert
(neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
(sign_extract X 1 Y). But only do this if TEMP isn't a register
or a SUBREG of one since we'd be making the expression more
complex if it was just a register. */
if (GET_CODE (temp) != REG
&& ! (GET_CODE (temp) == SUBREG
&& GET_CODE (SUBREG_REG (temp)) == REG)
&& (i = exact_log2 (significant_bits (temp, mode))) >= 0)
{
rtx temp1 = simplify_shift_const
(0, ASHIFTRT, mode,
simplify_shift_const (0, ASHIFT, mode, temp,
GET_MODE_BITSIZE (mode) - 1 - i),
GET_MODE_BITSIZE (mode) - 1 - i);
/* If all we did was surround TEMP with the two shifts, we
haven't improved anything, so don't use it. Otherwise,
we are better off with TEMP1. */
if (GET_CODE (temp1) != ASHIFTRT
|| GET_CODE (XEXP (temp1, 0)) != ASHIFT
|| XEXP (XEXP (temp1, 0), 0) != temp)
{
x = temp1;
goto restart;
}
}
break;
case FLOAT_TRUNCATE:
/* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
return XEXP (XEXP (x, 0), 0);
break;
#ifdef HAVE_cc0
case COMPARE:
/* Convert (compare FOO (const_int 0)) to FOO unless we aren't
using cc0, in which case we want to leave it as a COMPARE
so we can distinguish it from a register-register-copy. */
if (XEXP (x, 1) == const0_rtx)
return XEXP (x, 0);
/* In IEEE floating point, x-0 is not the same as x. */
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
if (XEXP (x, 1) == fconst0_rtx || XEXP (x, 1) == dconst0_rtx)
return XEXP (x, 0);
break;
#endif
case CONST:
/* (const (const X)) can become (const X). Do it this way rather than
returning the inner CONST since CONST can be shared with a
REG_EQUAL note. */
if (GET_CODE (XEXP (x, 0)) == CONST)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
#ifdef HAVE_lo_sum
case LO_SUM:
/* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
can add in an offset. find_split_point will split this address up
again if it doesn't match. */
if (GET_CODE (XEXP (x, 0)) == HIGH
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
return XEXP (x, 1);
break;
#endif
case PLUS:
/* (C1 - A) + C2 becomes (C1 + C2) - A. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (x, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == CONST_INT
&& 0 != (temp = simplify_binary_operation (PLUS, mode, XEXP (x, 1),
XEXP (XEXP (x, 0), 0))))
return gen_rtx (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
/* If we have (plus (plus (A const) B)), associate it so that CONST is
outermost. That's because that's the way indexed addresses are
supposed to appear. This code used to check many more cases, but
they are now checked elsewhere. */
if (GET_CODE (XEXP (x, 0)) == PLUS
&& CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
return gen_binary (PLUS, mode,
gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
XEXP (x, 1)),
XEXP (XEXP (x, 0), 1));
/* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
when c is (const_int (pow2 + 1) / 2) is a sign extension of a
bit-field and can be replaced by either a sign_extend or a
sign_extract. The `and' may be a zero_extend. */
if (GET_CODE (XEXP (x, 0)) == XOR
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == - INTVAL (XEXP (XEXP (x, 0), 1))
&& (i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
&& ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
== (1 << (i + 1)) - 1))
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
== i + 1))))
{
x = simplify_shift_const
(0, ASHIFTRT, mode,
simplify_shift_const (0, ASHIFT, mode,
XEXP (XEXP (XEXP (x, 0), 0), 0),
GET_MODE_BITSIZE (mode) - (i + 1)),
GET_MODE_BITSIZE (mode) - (i + 1));
goto restart;
}
/* If only the low-order bit of X is significant, (plus x -1)
can become (ashiftrt (ashift (xor x 1) C) C) where C is
the bitsize of the mode - 1. This allows simplification of
"a = (b & 8) == 0;" */
if (XEXP (x, 1) == constm1_rtx
&& GET_CODE (XEXP (x, 0)) != REG
&& ! (GET_CODE (XEXP (x,0)) == SUBREG
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
&& significant_bits (XEXP (x, 0), mode) == 1)
{
x = simplify_shift_const
(0, ASHIFTRT, mode,
simplify_shift_const (0, ASHIFT, mode,
gen_rtx_combine (XOR, mode,
XEXP (x, 0), const1_rtx),
GET_MODE_BITSIZE (mode) - 1),
GET_MODE_BITSIZE (mode) - 1);
goto restart;
}
break;
case MINUS:
/* C1 - (x + C2) becomes (C1 - C2) - x */
if (GET_CODE (XEXP (x, 0)) == CONST_INT
&& GET_CODE (XEXP (x, 1)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& 0 != (temp = simplify_binary_operation (MINUS, mode, XEXP (x, 0),
XEXP (XEXP (x, 1), 1))))
return gen_rtx (MINUS, mode, temp, XEXP (XEXP (x, 1), 0));
/* C1 - (C2 - x) becomes (C1 - C2) + x. */
if (GET_CODE (XEXP (x, 0)) == CONST_INT
&& GET_CODE (XEXP (x, 1)) == MINUS
&& GET_CODE (XEXP (XEXP (x, 1), 0)) == CONST_INT
&& 0 != (temp = simplify_binary_operation (MINUS, mode,
XEXP (x, 0),
XEXP (XEXP (x, 1), 0)))
&& GET_CODE (temp) == CONST_INT)
return plus_constant (XEXP (XEXP (x, 1), 1), INTVAL (temp));
/* (minus <foo> (and <foo> (const_int -pow2))) becomes
(and <foo> (const_int pow2-1)) */
if (GET_CODE (XEXP (x, 1)) == AND
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& exact_log2 (- INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
&& rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
{
x = simplify_and_const_int (0, mode, XEXP (x, 0),
- INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
goto restart;
}
break;
case MULT:
/* If we have (mult (plus A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. This
occurs mostly in addresses, often when unrolling loops. */
if (GET_CODE (XEXP (x, 0)) == PLUS)
{
x = apply_distributive_law
(gen_binary (PLUS, mode,
gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
gen_binary (MULT, mode,
XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
if (GET_CODE (x) != MULT)
goto restart;
}
/* If this is multiplication by a power of two and its first operand is
a shift, treat the multiply as a shift to allow the shifts to
possibly combine. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
&& (GET_CODE (XEXP (x, 0)) == ASHIFT
|| GET_CODE (XEXP (x, 0)) == LSHIFTRT
|| GET_CODE (XEXP (x, 0)) == ASHIFTRT
|| GET_CODE (XEXP (x, 0)) == ROTATE
|| GET_CODE (XEXP (x, 0)) == ROTATERT))
{
x = simplify_shift_const (0, ASHIFT, mode, XEXP (x, 0), i);
goto restart;
}
break;
case UDIV:
/* If this is a divide by a power of two, treat it as a shift if
its first operand is a shift. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
&& (GET_CODE (XEXP (x, 0)) == ASHIFT
|| GET_CODE (XEXP (x, 0)) == LSHIFTRT
|| GET_CODE (XEXP (x, 0)) == ASHIFTRT
|| GET_CODE (XEXP (x, 0)) == ROTATE
|| GET_CODE (XEXP (x, 0)) == ROTATERT))
{
x = simplify_shift_const (0, LSHIFTRT, mode, XEXP (x, 0), i);
goto restart;
}
break;
case EQ: case NE:
case GT: case GTU: case GE: case GEU:
case LT: case LTU: case LE: case LEU:
/* If the first operand is a condition code, we can't do anything
with it. */
if (GET_CODE (XEXP (x, 0)) == COMPARE
|| (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
#ifdef HAVE_cc0
&& XEXP (x, 0) != cc0_rtx
#endif
))
{
rtx op0 = XEXP (x, 0);
rtx op1 = XEXP (x, 1);
enum rtx_code new_code;
if (GET_CODE (op0) == COMPARE)
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
/* Simplify our comparison, if possible. */
new_code = simplify_comparison (code, &op0, &op1);
#if STORE_FLAG_VALUE == 1
/* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
if only the low-order bit is significant in X (such as when
X is a ZERO_EXTRACT of one bit. Similarly, we can convert
EQ to (xor X 1). */
if (new_code == NE && mode != VOIDmode
&& op1 == const0_rtx
&& significant_bits (op0, GET_MODE (op0)) == 1)
return gen_lowpart_for_combine (mode, op0);
else if (new_code == EQ && mode != VOIDmode
&& op1 == const0_rtx
&& significant_bits (op0, GET_MODE (op0)) == 1)
return gen_rtx_combine (XOR, mode,
gen_lowpart_for_combine (mode, op0),
const1_rtx);
#endif
#if STORE_FLAG_VALUE == -1
/* If STORE_FLAG_VALUE is -1, we can convert (ne x 0)
to (neg x) if only the low-order bit of X is significant.
This converts (ne (zero_extract X 1 Y) 0) to
(sign_extract X 1 Y). */
if (new_code == NE && mode != VOIDmode
&& op1 == const0_rtx
&& significant_bits (op0, GET_MODE (op0)) == 1)
{
x = gen_rtx_combine (NEG, mode,
gen_lowpart_for_combine (mode, op0));
goto restart;
}
#endif
/* If STORE_FLAG_VALUE says to just test the sign bit and X has just
one significant bit, we can convert (ne x 0) to (ashift x c)
where C puts the bit in the sign bit. Remove any AND with
STORE_FLAG_VALUE when we are done, since we are only going to
test the sign bit. */
if (new_code == NE && mode != VOIDmode
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
&& STORE_FLAG_VALUE == 1 << (GET_MODE_BITSIZE (mode) - 1)
&& op1 == const0_rtx
&& mode == GET_MODE (op0)
&& (i = exact_log2 (significant_bits (op0, GET_MODE (op0)))) >= 0)
{
x = simplify_shift_const (0, ASHIFT, mode, op0,
GET_MODE_BITSIZE (mode) - 1 - i);
if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
return XEXP (x, 0);
else
return x;
}
/* If the code changed, return a whole new comparison. */
if (new_code != code)
return gen_rtx_combine (new_code, mode, op0, op1);
/* Otherwise, keep this operation, but maybe change its operands.
This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
SUBST (XEXP (x, 0), op0);
SUBST (XEXP (x, 1), op1);
}
break;
case IF_THEN_ELSE:
/* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
reversed, do so to avoid needing two sets of patterns for
subtract-and-branch insns. */
if (XEXP (x, 1) == pc_rtx && reversible_comparison_p (XEXP (x, 0)))
{
SUBST (XEXP (x, 0),
gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
GET_MODE (XEXP (x, 0)),
XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1)));
SUBST (XEXP (x, 1), XEXP (x, 2));
SUBST (XEXP (x, 2), pc_rtx);
}
break;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case ZERO_EXTEND:
case SIGN_EXTEND:
/* If we are processing SET_DEST, we are done. */
if (in_dest)
return x;
x = expand_compound_operation (x);
if (GET_CODE (x) != code)
goto restart;
break;
case SET:
/* Convert this into a field assignment operation, if possible. */
x = make_field_assignment (x);
/* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some
operation, and X being a REG or (subreg (reg)), we may be able to
convert this to (set (subreg:m2 x) (op)).
We can always do this if M1 is narrower than M2 because that
means that we only care about the low bits of the result.
However, on most machines (those with BYTE_LOADS_ZERO_EXTEND
not defined), we cannot perform a narrower operation that
requested since the high-order bits will be undefined. On
machine where BYTE_LOADS_ZERO_EXTEND are defined, however, this
transformation is safe as long as M1 and M2 have the same number
of words. */
if (GET_CODE (SET_SRC (x)) == SUBREG && SUBREG_WORD (SET_SRC (x)) == 0
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) != 'o'
#ifdef BYTE_LOADS_ZERO_EXTEND
&& (((GET_MODE_SIZE (GET_MODE (SET_SRC (x))) + (UNITS_PER_WORD - 1))
/ UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x))))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
#else
&& (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
#endif
&& (GET_CODE (SET_DEST (x)) == REG
|| (GET_CODE (SET_DEST (x)) == SUBREG
&& GET_CODE (SUBREG_REG (SET_DEST (x))) == REG)))
{
SUBST (SET_DEST (x),
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_SRC (x))),
SET_DEST (x)));
SUBST (SET_SRC (x), SUBREG_REG (SET_SRC (x)));
}
/* If we are setting CC0 or if the source is a COMPARE, look for the
use of the comparison result and try to simplify it unless we already
have used undobuf.other_insn. */
if ((GET_CODE (SET_SRC (x)) == COMPARE
#ifdef HAVE_cc0
|| SET_DEST (x) == cc0_rtx
#endif
)
&& (cc_use = find_single_use (SET_DEST (x), subst_insn,
&other_insn)) != 0
&& (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
&& GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
&& XEXP (*cc_use, 0) == SET_DEST (x))
{
enum rtx_code old_code = GET_CODE (*cc_use);
enum rtx_code new_code;
rtx op0, op1;
int other_changed = 0;
enum machine_mode compare_mode = GET_MODE (SET_DEST (x));
if (GET_CODE (SET_SRC (x)) == COMPARE)
op0 = XEXP (SET_SRC (x), 0), op1 = XEXP (SET_SRC (x), 1);
else
op0 = SET_SRC (x), op1 = const0_rtx;
/* Simplify our comparison, if possible. */
new_code = simplify_comparison (old_code, &op0, &op1);
#if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
/* If this machine has CC modes other than CCmode, check to see
if we need to use a different CC mode here. */
compare_mode = SELECT_CC_MODE (new_code, op0);
/* If the mode changed, we have to change SET_DEST, the mode
in the compare, and the mode in the place SET_DEST is used.
If SET_DEST is a hard register, just build new versions with
the proper mode. If it is a pseudo, we lose unless it is only
time we set the pseudo, in which case we can safely change
its mode. */
if (compare_mode != GET_MODE (SET_DEST (x)))
{
int regno = REGNO (SET_DEST (x));
rtx new_dest = gen_rtx (REG, compare_mode, regno);
if (regno < FIRST_PSEUDO_REGISTER
|| (reg_n_sets[regno] == 1
&& ! REG_USERVAR_P (SET_DEST (x))))
{
if (regno >= FIRST_PSEUDO_REGISTER)
SUBST (regno_reg_rtx[regno], new_dest);
SUBST (SET_DEST (x), new_dest);
SUBST (XEXP (*cc_use, 0), new_dest);
other_changed = 1;
}
}
#endif
/* If the code changed, we have to build a new comparison
in undobuf.other_insn. */
if (new_code != old_code)
{
unsigned mask;
SUBST (*cc_use, gen_rtx_combine (new_code, GET_MODE (*cc_use),
SET_DEST (x), const0_rtx));
/* If the only change we made was to change an EQ into an
NE or vice versa, OP0 has only one significant bit,
and OP1 is zero, check if changing the user of the condition
code will produce a valid insn. If it won't, we can keep
the original code in that insn by surrounding our operation
with an XOR. */
if (((old_code == NE && new_code == EQ)
|| (old_code == EQ && new_code == NE))
&& ! other_changed && op1 == const0_rtx
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
&& (exact_log2 (mask = significant_bits (op0,
GET_MODE (op0)))
>= 0))
{
rtx pat = PATTERN (other_insn), note = 0;
if ((recog_for_combine (&pat, undobuf.other_insn, ¬e) < 0
&& ! check_asm_operands (pat)))
{
PUT_CODE (*cc_use, old_code);
other_insn = 0;
op0 = gen_binary (XOR, GET_MODE (op0), op0,
gen_rtx (CONST_INT, VOIDmode, mask));
}
}
other_changed = 1;
}
if (other_changed)
undobuf.other_insn = other_insn;
#ifdef HAVE_cc0
/* If we are now comparing against zero, change our source if
needed. If we do not use cc0, we always have a COMPARE. */
if (op1 == const0_rtx && SET_DEST (x) == cc0_rtx)
SUBST (SET_SRC (x), op0);
else
#endif
/* Otherwise, if we didn't previously have a COMPARE in the
correct mode, we need one. */
if (GET_CODE (SET_SRC (x)) != COMPARE
|| GET_MODE (SET_SRC (x)) != compare_mode)
SUBST (SET_SRC (x), gen_rtx_combine (COMPARE, compare_mode,
op0, op1));
else
{
/* Otherwise, update the COMPARE if needed. */
SUBST (XEXP (SET_SRC (x), 0), op0);
SUBST (XEXP (SET_SRC (x), 1), op1);
}
}
else
{
/* Get SET_SRC in a form where we have placed back any
compound expressions. Then do the checks below. */
temp = make_compound_operation (SET_SRC (x), SET);
SUBST (SET_SRC (x), temp);
}
#ifdef BYTE_LOADS_ZERO_EXTEND
/* If we have (set FOO (subreg:M (mem:N BAR) 0)) with
M wider than N, this would require a paradoxical subreg.
Replace the subreg with a zero_extend to avoid the reload that
would otherwise be required. */
if (GET_CODE (SET_SRC (x)) == SUBREG
&& SUBREG_WORD (SET_SRC (x)) == 0
&& (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_SRC (x)))))
&& GET_CODE (SUBREG_REG (SET_SRC (x))) == MEM)
SUBST (SET_SRC (x), gen_rtx_combine (ZERO_EXTEND,
GET_MODE (SET_SRC (x)),
XEXP (SET_SRC (x), 0)));
#endif
break;
case AND:
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
x = simplify_and_const_int (x, mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)));
/* If we have (ior (and (X C1) C2)) and the next restart would be
the last, simplify this by making C1 as small as possible
and then exit. */
if (n_restarts >= 3 && GET_CODE (x) == IOR
&& GET_CODE (XEXP (x, 0)) == AND
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (x, 1)) == CONST_INT)
{
temp = gen_binary (AND, mode, XEXP (XEXP (x, 0), 0),
gen_rtx (CONST_INT, VOIDmode,
(INTVAL (XEXP (XEXP (x, 0), 1))
& ~ INTVAL (XEXP (x, 1)))));
return gen_binary (IOR, mode, temp, XEXP (x, 1));
}
if (GET_CODE (x) != AND)
goto restart;
}
/* Convert (A | B) & A to A. */
if (GET_CODE (XEXP (x, 0)) == IOR
&& (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
|| rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
&& ! side_effects_p (XEXP (XEXP (x, 0), 0))
&& ! side_effects_p (XEXP (XEXP (x, 0), 1)))
return XEXP (x, 1);
/* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
insn (and may simplify more). */
else if (GET_CODE (XEXP (x, 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
&& ! side_effects_p (XEXP (x, 1)))
{
x = gen_binary (AND, mode,
gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
XEXP (x, 1));
goto restart;
}
else if (GET_CODE (XEXP (x, 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
&& ! side_effects_p (XEXP (x, 1)))
{
x = gen_binary (AND, mode,
gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
XEXP (x, 1));
goto restart;
}
/* Similarly for (~ (A ^ B)) & A. */
else if (GET_CODE (XEXP (x, 0)) == NOT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 0), XEXP (x, 1))
&& ! side_effects_p (XEXP (x, 1)))
{
x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 1),
XEXP (x, 1));
goto restart;
}
else if (GET_CODE (XEXP (x, 0)) == NOT
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == XOR
&& rtx_equal_p (XEXP (XEXP (XEXP (x, 0), 0), 1), XEXP (x, 1))
&& ! side_effects_p (XEXP (x, 1)))
{
x = gen_binary (AND, mode, XEXP (XEXP (XEXP (x, 0), 0), 0),
XEXP (x, 1));
goto restart;
}
/* In the follow group of tests (and those in case IOR below),
we start with some combination of logical operations and apply
the distributive law followed by the inverse distributive law.
Most of the time, this results in no change. However, if some of
the operands are the same or inverses of each other, simplifications
will result.
For example, (and (ior A B) (not B)) can occur as the result of
expanding a bit field assignment. When we apply the distributive
law to this, we get (ior (and (A (not B))) (and (B (not B)))),
which then simplifies to (and (A (not B))). */
/* If we have (and (ior A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. */
if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == XOR)
{
x = apply_distributive_law
(gen_binary (GET_CODE (XEXP (x, 0)), mode,
gen_binary (AND, mode,
XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
gen_binary (AND, mode,
XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
if (GET_CODE (x) != AND)
goto restart;
}
if (GET_CODE (XEXP (x, 1)) == IOR || GET_CODE (XEXP (x, 1)) == XOR)
{
x = apply_distributive_law
(gen_binary (GET_CODE (XEXP (x, 1)), mode,
gen_binary (AND, mode,
XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
gen_binary (AND, mode,
XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
if (GET_CODE (x) != AND)
goto restart;
}
/* Similarly, taking advantage of the fact that
(and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == XOR)
{
x = apply_distributive_law
(gen_binary (XOR, mode,
gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 1), 0)),
gen_binary (IOR, mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 1), 1))));
if (GET_CODE (x) != AND)
goto restart;
}
else if (GET_CODE (XEXP (x, 1)) == NOT && GET_CODE (XEXP (x, 0)) == XOR)
{
x = apply_distributive_law
(gen_binary (XOR, mode,
gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
XEXP (XEXP (x, 0), 0)),
gen_binary (IOR, mode, XEXP (XEXP (x, 1), 0),
XEXP (XEXP (x, 0), 1))));
if (GET_CODE (x) != AND)
goto restart;
}
break;
case IOR:
/* Convert (A & B) | A to A. */
if (GET_CODE (XEXP (x, 0)) == AND
&& (rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
|| rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1)))
&& ! side_effects_p (XEXP (XEXP (x, 0), 0))
&& ! side_effects_p (XEXP (XEXP (x, 0), 1)))
return XEXP (x, 1);
/* If we have (ior (and A B) C), apply the distributive law and then
the inverse distributive law to see if things simplify. */
if (GET_CODE (XEXP (x, 0)) == AND)
{
x = apply_distributive_law
(gen_binary (AND, mode,
gen_binary (IOR, mode,
XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
gen_binary (IOR, mode,
XEXP (XEXP (x, 0), 1), XEXP (x, 1))));
if (GET_CODE (x) != IOR)
goto restart;
}
if (GET_CODE (XEXP (x, 1)) == AND)
{
x = apply_distributive_law
(gen_binary (AND, mode,
gen_binary (IOR, mode,
XEXP (XEXP (x, 1), 0), XEXP (x, 0)),
gen_binary (IOR, mode,
XEXP (XEXP (x, 1), 1), XEXP (x, 0))));
if (GET_CODE (x) != IOR)
goto restart;
}
break;
case XOR:
/* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
(NOT y). */
{
int num_negated = 0;
rtx in1 = XEXP (x, 0), in2 = XEXP (x, 1);
if (GET_CODE (in1) == NOT)
num_negated++, in1 = XEXP (in1, 0);
if (GET_CODE (in2) == NOT)
num_negated++, in2 = XEXP (in2, 0);
if (num_negated == 2)
{
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
SUBST (XEXP (x, 1), XEXP (XEXP (x, 1), 0));
}
else if (num_negated == 1)
return gen_rtx_combine (NOT, mode,
gen_rtx_combine (XOR, mode, in1, in2));
}
/* Convert (xor (and A B) B) to (and (not A) B). The latter may
correspond to a machine insn or result in further simplifications
if B is a constant. */
if (GET_CODE (XEXP (x, 0)) == AND
&& rtx_equal_p (XEXP (XEXP (x, 0), 1), XEXP (x, 1))
&& ! side_effects_p (XEXP (x, 1)))
{
x = gen_binary (AND, mode,
gen_unary (NOT, mode, XEXP (XEXP (x, 0), 0)),
XEXP (x, 1));
goto restart;
}
else if (GET_CODE (XEXP (x, 0)) == AND
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1))
&& ! side_effects_p (XEXP (x, 1)))
{
x = gen_binary (AND, mode,
gen_unary (NOT, mode, XEXP (XEXP (x, 0), 1)),
XEXP (x, 1));
goto restart;
}
#if STORE_FLAG_VALUE == 1
/* (xor (comparison foo bar) (const_int 1)) can become the reversed
comparison. */
if (XEXP (x, 1) == const1_rtx
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& reversible_comparison_p (XEXP (x, 0)))
return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1));
#endif
/* (xor (comparison foo bar) (const_int sign-bit))
when STORE_FLAG_VALUE is the sign bit. */
if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
&& STORE_FLAG_VALUE == (1 << (GET_MODE_BITSIZE (mode))) - 1
&& XEXP (x, 1) == const_true_rtx
&& GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
&& reversible_comparison_p (XEXP (x, 0)))
return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x, 0))),
mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1));
break;
case ABS:
/* (abs (neg <foo>)) -> (abs <foo>) */
if (GET_CODE (XEXP (x, 0)) == NEG)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
/* If operand is something known to be positive, ignore the ABS. */
if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
|| (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) <= HOST_BITS_PER_INT
&& ((significant_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
& (1 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
== 0)))
return XEXP (x, 0);
/* If operand is known to be only -1 or 0, convert ABS to NEG. */
if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTRACT
&& XEXP (XEXP (x, 0), 1) == const1_rtx)
|| (GET_CODE (XEXP (x, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
|| ((temp = get_last_value (XEXP (x, 0))) != 0
&& ((GET_CODE (temp) == SIGN_EXTRACT
&& XEXP (temp, 1) == const1_rtx)
|| (GET_CODE (temp) == ASHIFTRT
&& GET_CODE (XEXP (temp, 1)) == CONST_INT
&& (INTVAL (XEXP (temp, 1))
== GET_MODE_BITSIZE (mode) - 1)))))
{
x = gen_rtx_combine (NEG, mode, XEXP (x, 0));
goto restart;
}
break;
case FLOAT:
/* (float (sign_extend <X>)) = (float <X>). */
if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
break;
case LSHIFT:
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
case ROTATE:
case ROTATERT:
#ifdef SHIFT_COUNT_TRUNCATED
/* (*shift <X> (sign_extend <Y>)) = (*shift <X> <Y>) (most machines).
True for all kinds of shifts and also for zero_extend. */
if ((GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
|| GET_CODE (XEXP (x, 1)) == ZERO_EXTEND)
&& FAKE_EXTEND_SAFE_P (mode, XEXP (XEXP (x, 1), 0)))
SUBST (XEXP (x, 1),
/* This is a perverse SUBREG, wider than its base. */
gen_lowpart_for_combine (mode, XEXP (XEXP (x, 1), 0)));
/* tege: Change (bitshifts ... (and ... mask), c)
to (bitshifts ... c) if mask just masks the bits the bitshift
insns do automatically on this machine. */
if (GET_CODE (XEXP (x, 1)) == AND
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& (~ INTVAL (XEXP (XEXP (x, 1), 1)) & GET_MODE_MASK (mode)) == 0)
SUBST (XEXP (x, 1), XEXP (XEXP (x, 1), 0));
#endif
/* If this is a shift by a constant amount, simplify it. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
x = simplify_shift_const (x, code, mode, XEXP (x, 0),
INTVAL (XEXP (x, 1)));
if (GET_CODE (x) != code)
goto restart;
}
break;
}
return x;
}
/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
operations" because they can be replaced with two more basic operations.
ZERO_EXTEND is also considered "compound" because it can be replaced with
an AND operation, which is simpler, though only one operation.
The function expand_compound_operation is called with an rtx expression
and will convert it to the appropriate shifts and AND operations,
simplifying at each stage.
The function make_compound_operation is called to convert an expression
consisting of shifts and ANDs into the equivalent compound expression.
It is the inverse of this function, loosely speaking. */
static rtx
expand_compound_operation (x)
rtx x;
{
int pos = 0, len;
int unsignedp = 0;
int modewidth;
rtx tem;
switch (GET_CODE (x))
{
case ZERO_EXTEND:
unsignedp = 1;
case SIGN_EXTEND:
/* If we somehow managed to end up with (sign/zero_extend (const_int x)),
just return the CONST_INT. We can't know how much masking to do
in that case. */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
return XEXP (x, 0);
if (! FAKE_EXTEND_SAFE_P (GET_MODE (XEXP (x, 0)), XEXP (x, 0)))
return x;
len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
/* If the inner object has VOIDmode (the only way this can happen
is if it is a ASM_OPERANDS), we can't do anything since we don't
know how much masking to do. */
if (len == 0)
return x;
break;
case ZERO_EXTRACT:
unsignedp = 1;
case SIGN_EXTRACT:
/* If the operand is a CLOBBER, just return it. */
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
return XEXP (x, 0);
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| GET_CODE (XEXP (x, 2)) != CONST_INT
|| GET_MODE (XEXP (x, 0)) == VOIDmode)
return x;
len = INTVAL (XEXP (x, 1));
pos = INTVAL (XEXP (x, 2));
/* If this goes outside the object being extracted, replace the object
with a (use (mem ...)) construct that only combine understands
and is used only for this purpose. */
if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
SUBST (XEXP (x, 0), gen_rtx (USE, GET_MODE (x), XEXP (x, 0)));
#if BITS_BIG_ENDIAN
pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
#endif
break;
default:
return x;
}
/* If we reach here, we want to return a pair of shifts. The inner
shift is a left shift of BITSIZE - POS - LEN bits. The outer
shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
logical depending on the value of UNSIGNEDP.
If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
converted into an AND of a shift. */
modewidth = GET_MODE_BITSIZE (GET_MODE (x));
tem = simplify_shift_const (0, unsignedp ? LSHIFTRT : ASHIFTRT,
GET_MODE (x),
simplify_shift_const (0, ASHIFT, GET_MODE (x),
XEXP (x, 0),
modewidth - pos - len),
modewidth - len);
/* If we couldn't do this for some reason, return the original
expression. */
if (GET_CODE (tem) == CLOBBER)
return x;
return tem;
}
/* X is a SET which contains an assignment of one object into
a part of another (such as a bit-field assignment, STRICT_LOW_PART,
or certain SUBREGS). If possible, convert it into a series of
logical operations.
We half-heartedly support variable positions, but do not at all
support variable lengths. */
static rtx
expand_field_assignment (x)
rtx x;
{
rtx inner;
rtx pos; /* Always counts from low bit. */
int len;
rtx mask;
enum machine_mode compute_mode;
/* Loop until we find something we can't simplify. */
while (1)
{
if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
&& GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
{
inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
pos = const0_rtx;
}
else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
&& GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
{
inner = XEXP (SET_DEST (x), 0);
len = INTVAL (XEXP (SET_DEST (x), 1));
pos = XEXP (SET_DEST (x), 2);
/* If the position is constant and spans the width of INNER,
surround INNER with a USE to indicate this. */
if (GET_CODE (pos) == CONST_INT
&& INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
inner = gen_rtx (USE, GET_MODE (SET_DEST (x)), inner);
#if BITS_BIG_ENDIAN
if (GET_CODE (pos) == CONST_INT)
pos = gen_rtx (CONST_INT, VOIDmode,
(GET_MODE_BITSIZE (GET_MODE (inner)) - len
- INTVAL (pos)));
else if (GET_CODE (pos) == MINUS
&& GET_CODE (XEXP (pos, 1)) == CONST_INT
&& (INTVAL (XEXP (pos, 1))
== GET_MODE_BITSIZE (GET_MODE (inner)) - len))
/* If position is ADJUST - X, new position is X. */
pos = XEXP (pos, 0);
else
pos = gen_binary (MINUS, GET_MODE (pos),
gen_rtx (CONST_INT, VOIDmode,
(GET_MODE_BITSIZE (GET_MODE (inner))
- len)), pos);
#endif
}
/* A SUBREG between two modes that occupy the same numbers of words
can be done by moving the SUBREG to the source. */
else if (GET_CODE (SET_DEST (x)) == SUBREG
&& (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
{
x = gen_rtx (SET, VOIDmode, SUBREG_REG (SET_DEST (x)),
gen_lowpart_for_combine (GET_MODE (SUBREG_REG (SET_DEST (x))),
SET_SRC (x)));
continue;
}
else
break;
while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
inner = SUBREG_REG (inner);
compute_mode = GET_MODE (inner);
/* Compute a mask of LEN bits, if we can do this on the host machine. */
if (len < HOST_BITS_PER_INT)
mask = gen_rtx (CONST_INT, VOIDmode, (1 << len) - 1);
else
break;
/* Now compute the equivalent expression. Make a copy of INNER
for the SET_DEST in case it is a MEM into which we will substitute;
we don't want shared RTL in that case. */
x = gen_rtx (SET, VOIDmode, copy_rtx(inner),
gen_binary (IOR, compute_mode,
gen_binary (AND, compute_mode,
gen_unary (NOT, compute_mode,
gen_binary (ASHIFT,
compute_mode,
mask, pos)),
inner),
gen_binary (ASHIFT, compute_mode,
gen_binary (AND, compute_mode,
gen_lowpart_for_combine
(compute_mode,
SET_SRC (x)),
mask),
pos)));
}
return x;
}
/* Return an RTX for a reference to LEN bits of INNER. POS is the starting
bit position (counted from the LSB) if >= 0; otherwise POS_RTX represents
the starting bit position.
INNER may be a USE. This will occur when we started with a bitfield
that went outside the boundary of the object in memory, which is
allowed on most machines. To isolate this case, we produce a USE
whose mode is wide enough and surround the MEM with it. The only
code that understands the USE is this routine. If it is not removed,
or used here, it will cause the resulting insn not to match.
UNSIGNEDP is non-zero for an unsigned reference and zero for a
signed reference.
IN_DEST is non-zero if this is a reference in the destination of a
SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
be used.
IN_COMPARE is non-zero if we are in a COMPARE. This means that a
ZERO_EXTRACT should be built even for bits starting at bit 0.
MODE is the desired mode of the result (if IN_DEST == 0). */
static rtx
make_extraction (mode, inner, pos, pos_rtx, len,
unsignedp, in_dest, in_compare)
enum machine_mode mode;
rtx inner;
int pos;
rtx pos_rtx;
int len;
int unsignedp;
int in_dest, in_compare;
{
enum machine_mode is_mode = GET_MODE (inner);
enum machine_mode inner_mode;
enum machine_mode wanted_mem_mode = VOIDmode;
enum machine_mode pos_mode = VOIDmode;
enum machine_mode extraction_mode = VOIDmode;
enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
int spans_byte = 0;
rtx new = 0;
/* Get some information about INNER and get the innermost object. */
if (GET_CODE (inner) == USE)
/* We don't need to adjust the position because we set up the USE
to pretend that it was an SImode object. */
spans_byte = 1, inner = XEXP (inner, 0);
else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
inner = SUBREG_REG (inner);
inner_mode = GET_MODE (inner);
if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
pos = INTVAL (pos_rtx);
/* See if this can be done without an extraction. If the field is a byte
or halfword at an appropriate boundary and INNER is a MEM, it can be.
We then have two cases:
If INNER is a register, we cannot do anything unless POS == 0. If so, we
can always do it as a ZERO_EXTEND or SIGN_EXTEND if this is not in the
destination; if it is in the destination we may be able to do it with a
STRICT_LOW_PART and SUBREG. */
if (tmode != BLKmode
/* We can't do this if we have a USE and the underlying MEM is not
TMODE since that MEM was being used in a context where bits
outside its mode were being referenced and that is only valid in
bit-field insns. */
&& ! (spans_byte && inner_mode != tmode)
&& ((pos == 0 && GET_CODE (inner) == REG
&& (! in_dest
|| (movstrict_optab->handlers[(int) tmode].insn_code
!= CODE_FOR_nothing)))
|| (GET_CODE (inner) == MEM && pos >= 0
&& (pos % BITS_PER_UNIT) == 0
/* We can't do this if we are widening INNER_MODE (it
may not be aligned, for one thing). */
&& GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
&& (inner_mode == tmode
|| (! mode_dependent_address_p (XEXP (inner, 0))
&& ! MEM_VOLATILE_P (inner))))))
{
int offset = pos / BITS_PER_UNIT;
if (GET_CODE (inner) == MEM)
{
/* If the original and current mode are the same, we need not
adjust the offset. Otherwise, we do if bytes big endian. */
#if BYTES_BIG_ENDIAN
if (inner_mode != tmode)
offset = (GET_MODE_SIZE (inner_mode)
- GET_MODE_SIZE (tmode) - offset);
#endif
new = gen_rtx (MEM, tmode, plus_constant (XEXP (inner, 0), offset));
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner);
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (inner);
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (inner);
}
else
new = gen_lowpart_for_combine (tmode, inner);
if (in_dest)
return gen_rtx_combine (STRICT_LOW_PART, VOIDmode, new);
else
return gen_rtx_combine (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
mode, new);
}
/* Unless this is in a COMPARE or we have a funny memory reference,
don't do anything with zero extracts starting at the low-order
bit since they are simple AND operations. */
if (pos == 0 && ! in_compare && ! spans_byte)
return 0;
/* Get the mode to use should INNER be a MEM, the mode for the position,
and the mode for the result. */
#ifdef HAVE_insv
if (in_dest)
{
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_insv][0];
pos_mode = insn_operand_mode[(int) CODE_FOR_insv][2];
extraction_mode = insn_operand_mode[(int) CODE_FOR_insv][3];
}
#endif
#ifdef HAVE_extzv
if (! in_dest && unsignedp)
{
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extzv][1];
pos_mode = insn_operand_mode[(int) CODE_FOR_extzv][3];
extraction_mode = insn_operand_mode[(int) CODE_FOR_extzv][0];
}
#endif
#ifdef HAVE_extv
if (! in_dest && ! unsignedp)
{
wanted_mem_mode = insn_operand_mode[(int) CODE_FOR_extv][1];
pos_mode = insn_operand_mode[(int) CODE_FOR_extv][3];
extraction_mode = insn_operand_mode[(int) CODE_FOR_extv][0];
}
#endif
/* Set up default modes for the above. We really shouldn't have SImode
below, but it's not clear what mode the ZERO_EXTRACT in a SET_DEST
should have if there is no insv. Never narrow an object, since that
might not be safe. */
if (extraction_mode == VOIDmode
|| GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
extraction_mode = in_dest ? SImode : mode;
if (pos_rtx
&& (pos_mode == VOIDmode
|| GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx))))
pos_mode = GET_MODE (pos_rtx);
/* If this is not from memory or we have to change the mode of memory and
cannot, the desired mode is EXTRACTION_MODE. */
if (GET_CODE (inner) != MEM
|| (inner_mode != wanted_mem_mode
&& (mode_dependent_address_p (XEXP (inner, 0))
|| MEM_VOLATILE_P (inner))))
wanted_mem_mode = extraction_mode;
#if BITS_BIG_ENDIAN
/* If position is constant, compute new position. Otherwise, build
subtraction. */
if (pos >= 0)
pos = (max (GET_MODE_BITSIZE (is_mode), GET_MODE_BITSIZE (wanted_mem_mode))
- len - pos);
else
pos_rtx
= gen_rtx_combine (MINUS, GET_MODE (pos_rtx),
gen_rtx (CONST_INT, VOIDmode,
(max (GET_MODE_BITSIZE (is_mode),
GET_MODE_BITSIZE (wanted_mem_mode))
- len)), pos_rtx);
#endif
/* If INNER has a wider mode, make it smaller. If this is a constant
extract, try to adjust the byte to point to the byte containing
the value. */
if (wanted_mem_mode != VOIDmode
&& GET_MODE_SIZE (wanted_mem_mode) < GET_MODE_SIZE (is_mode)
&& ((GET_CODE (inner) == MEM
&& (inner_mode == wanted_mem_mode
|| (! mode_dependent_address_p (XEXP (inner, 0))
&& ! MEM_VOLATILE_P (inner))))))
{
int offset = 0;
/* The computations below will be correct if the machine is big
endian in both bits and bytes or little endian in bits and bytes.
If it is mixed, we must adjust. */
#if BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
if (! spans_byte && is_mode != wanted_mem_mode)
offset = (GET_MODE_SIZE (is_mode)
- GET_MODE_SIZE (wanted_mem_mode) - offset);
#endif
/* If bytes are big endian and we had a paradoxical SUBREG, we must
adjust OFFSET to compensate. */
#if BYTES_BIG_ENDIAN
if (! spans_byte
&& GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
#endif
/* If this is a constant position, we can move to the desired byte. */
if (pos >= 0)
{
offset += pos / BITS_PER_UNIT;
pos %= GET_MODE_BITSIZE (wanted_mem_mode);
}
if (offset != 0 || inner_mode != wanted_mem_mode)
{
rtx newmem = gen_rtx (MEM, wanted_mem_mode,
plus_constant (XEXP (inner, 0), offset));
RTX_UNCHANGING_P (newmem) = RTX_UNCHANGING_P (inner);
MEM_VOLATILE_P (newmem) = MEM_VOLATILE_P (inner);
MEM_IN_STRUCT_P (newmem) = MEM_IN_STRUCT_P (inner);
inner = newmem;
}
}
/* If INNER is not memory, we can always get it into the proper mode. */
else if (GET_CODE (inner) != MEM)
inner = gen_lowpart_for_combine (extraction_mode, inner);
/* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
have to zero extend. Otherwise, we can just use a SUBREG. */
if (pos < 0
&& GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
pos_rtx = gen_rtx_combine (ZERO_EXTEND, pos_mode, pos_rtx);
else if (pos < 0
&& GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
/* Make POS_RTX unless we already have it and it is correct. */
if (pos_rtx == 0 || (pos >= 0 && INTVAL (pos_rtx) != pos))
pos_rtx = gen_rtx (CONST_INT, VOIDmode, pos);
/* Make the required operation. See if we can use existing rtx. */
new = gen_rtx_combine (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
extraction_mode, inner,
gen_rtx (CONST_INT, VOIDmode, len), pos_rtx);
if (! in_dest)
new = gen_lowpart_for_combine (mode, new);
return new;
}
/* Look at the expression rooted at X. Look for expressions
equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
Form these expressions.
Return the new rtx, usually just X.
Also, for machines like the Vax that don't have logical shift insns,
try to convert logical to arithmetic shift operations in cases where
they are equivalent. This undoes the canonicalizations to logical
shifts done elsewhere.
We try, as much as possible, to re-use rtl expressions to save memory.
IN_CODE says what kind of expression we are processing. Normally, it is
SET. In a memory address (inside a MEM or PLUS, the latter being a
kludge), it is MEM. When processing the arguments of a comparison
or a COMPARE against zero, it is COMPARE. */
static rtx
make_compound_operation (x, in_code)
rtx x;
enum rtx_code in_code;
{
enum rtx_code code = GET_CODE (x);
enum machine_mode mode = GET_MODE (x);
int mode_width = GET_MODE_BITSIZE (mode);
enum rtx_code next_code;
int i;
rtx new = 0;
char *fmt;
/* Select the code to be used in recursive calls. Once we are inside an
address, we stay there. If we have a comparison, set to COMPARE,
but once inside, go back to our default of SET. */
next_code = (code == MEM || code == PLUS ? MEM
: ((code == COMPARE || GET_RTX_CLASS (code) == '<')
&& XEXP (x, 1) == const0_rtx) ? COMPARE
: in_code == COMPARE ? SET : in_code);
/* Process depending on the code of this operation. If NEW is set
non-zero, it will be returned. */
switch (code)
{
case ASHIFT:
case LSHIFT:
/* Convert shifts by constants into multiplications if inside
an address. */
if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_INT
&& INTVAL (XEXP (x, 1)) >= 0)
new = gen_rtx_combine (MULT, mode, XEXP (x, 0),
gen_rtx (CONST_INT, VOIDmode,
1 << INTVAL (XEXP (x, 1))));
break;
case AND:
/* If the second operand is not a constant, we can't do anything
with it. */
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
break;
/* If the constant is a power of two minus one and the first operand
is a logical right shift, make an extraction. */
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
new = make_extraction (mode, XEXP (XEXP (x, 0), 0), -1,
XEXP (XEXP (x, 0), 1), i, 1,
0, in_code == COMPARE);
/* One machines without logical shifts, if the operand of the AND is
a logical shift and our mask turns off all the propagated sign
bits, we can replace the logical shift with an arithmetic shift. */
else if (
#ifdef HAVE_ashrsi3
HAVE_ashrsi3
#else
0
#endif
#ifdef HAVE_lshrsi3
&& ! HAVE_lshrsi3
#else
&& 1
#endif
&& GET_CODE (XEXP (x, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_INT
&& mode_width <= HOST_BITS_PER_INT)
{
unsigned mask = GET_MODE_MASK (mode);
mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
SUBST (XEXP (x, 0),
gen_rtx_combine (ASHIFTRT, mode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (x, 0), 1)));
}
/* If the constant is one less than a power of two, this might be
representable by an extraction even if no shift is present.
If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
we are in a COMPARE. */
else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
new = make_extraction (mode, XEXP (x, 0), 0, 0, i, 1,
0, in_code == COMPARE);
/* If we are in a comparison and this is an AND with a power of two,
convert this into the appropriate bit extract. */
else if (in_code == COMPARE
&& (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
new = make_extraction (mode, XEXP (x, 0), i, 0, 1, 1, 0, 1);
break;
case LSHIFTRT:
/* If the sign bit is known to be zero, replace this with an
arithmetic shift. */
if (
#ifdef HAVE_ashrsi3
HAVE_ashrsi3
#else
0
#endif
#ifdef HAVE_lshrsi3
&& ! HAVE_lshrsi3
#else
&& 1
#endif
&& mode_width <= HOST_BITS_PER_INT
&& (significant_bits (XEXP (x, 0), mode)
& (1 << (mode_width - 1))) == 0)
{
new = gen_rtx_combine (ASHIFTRT, mode, XEXP (x, 0), XEXP (x, 1));
break;
}
case ASHIFTRT:
/* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
this is a SIGN_EXTRACT. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= INTVAL (XEXP (XEXP (x, 0), 1)))
new = make_extraction (mode, XEXP (XEXP (x, 0), 0),
(INTVAL (XEXP (x, 1))
- INTVAL (XEXP (XEXP (x, 0), 1))),
0, mode_width - INTVAL (XEXP (x, 1)),
0, 0, in_code == COMPARE);
break;
}
if (new)
{
x = new;
code = GET_CODE (x);
}
/* Now recursively process each operand of this operation. */
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < GET_RTX_LENGTH (code); i++)
if (fmt[i] == 'e')
{
new = make_compound_operation (XEXP (x, i), next_code);
SUBST (XEXP (x, i), new);
}
return x;
}
/* Given M see if it is a value that would select a field of bits
within an item, but not the entire word. Return -1 if not.
Otherwise, return the starting position of the field, where 0 is the
low-order bit.
*PLEN is set to the length of the field. */
static int
get_pos_from_mask (m, plen)
unsigned int m;
int *plen;
{
/* Get the bit number of the first 1 bit from the right, -1 if none. */
int pos = exact_log2 (m & - m);
if (pos < 0)
return -1;
/* Now shift off the low-order zero bits and see if we have a power of
two minus 1. */
*plen = exact_log2 ((m >> pos) + 1);
if (*plen <= 0)
return -1;
return pos;
}
/* See if X, a SET operation, can be rewritten as a bit-field assignment.
Return that assignment if so.
We only handle the most common cases. */
static rtx
make_field_assignment (x)
rtx x;
{
rtx dest = SET_DEST (x);
rtx src = SET_SRC (x);
rtx assign = 0;
/* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
a clear of a one-bit field. We will have changed it to
(and (rotate (const_int -2) POS) DEST), so check for that. Also check
for a SUBREG. */
if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
&& GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
&& INTVAL (XEXP (XEXP (src, 0), 0)) == -2
&& rtx_equal_p (dest, XEXP (src, 1)))
{
assign = make_extraction (VOIDmode, dest, -1, XEXP (XEXP (src, 0), 1),
1, 1, 1, 0);
src = const0_rtx;
}
else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
&& subreg_lowpart_p (XEXP (src, 0))
&& (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
&& GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
&& INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
&& rtx_equal_p (dest, XEXP (src, 1)))
{
assign = make_extraction (VOIDmode, dest, -1,
XEXP (SUBREG_REG (XEXP (src, 0)), 1),
1, 1, 1, 0);
src = const0_rtx;
}
/* If SRC is (ior (ashift (const_int 1) POS DEST)), this is a set of a
one-bit field. */
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
&& XEXP (XEXP (src, 0), 0) == const1_rtx
&& rtx_equal_p (dest, XEXP (src, 1)))
{
assign = make_extraction (VOIDmode, dest, -1, XEXP (XEXP (src, 0), 1),
1, 1, 1, 0);
src = const1_rtx;
}
/* The common case of a constant assignment into a constant-position
field looks like (ior (and DEST C1) C2). We clear the bits in C1
that are present in C2 and C1 must then be the complement of a mask
that selects a field. */
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 1)) == CONST_INT
&& GET_CODE (XEXP (src, 0)) == AND
&& GET_CODE (XEXP (XEXP (src, 0), 1)) == CONST_INT
&& GET_MODE_BITSIZE (GET_MODE (dest)) <= HOST_BITS_PER_INT
&& rtx_equal_p (XEXP (XEXP (src, 0), 0), dest))
{
unsigned c1 = INTVAL (XEXP (XEXP (src, 0), 1));
unsigned c2 = INTVAL (XEXP (src, 1));
int pos, len;
c1 &= ~ c2;
c1 = (~ c1) & GET_MODE_MASK (GET_MODE (dest));
if ((pos = get_pos_from_mask (c1, &len)) >= 0)
{
assign = make_extraction (VOIDmode, dest, pos, 0, len, 1, 1, 0);
src = gen_rtx (CONST_INT, VOIDmode, c2 >> pos);
}
}
/* Finally, see if this is an assignment of a varying item into a fixed
field. This looks like (ior (and DEST C1) (and (ashift SRC POS) C2)),
but we have to allow for the operands to be in either order. */
else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == AND
&& GET_CODE (XEXP (src, 1)) == AND
&& GET_MODE_BITSIZE (GET_MODE (dest)) <= HOST_BITS_PER_INT)
{
rtx mask, other;
/* Set MASK to the (and DEST C1) and OTHER to the mask of the shift. */
if (GET_CODE (XEXP (XEXP (src, 0), 0)) == ASHIFT)
mask = XEXP (src, 1), other = XEXP (src, 0);
else if (GET_CODE (XEXP (XEXP (src, 1), 0)) == ASHIFT)
mask = XEXP (src, 0), other = XEXP (src, 1);
else
return x;
if (rtx_equal_p (XEXP (mask, 0), dest)
&& GET_CODE (XEXP (mask, 1)) == CONST_INT
&& GET_CODE (XEXP (other, 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (other, 0), 1)) == CONST_INT)
{
unsigned c1 = INTVAL (XEXP (mask, 1));
unsigned c2 = INTVAL (XEXP (other, 1));
int pos, len;
/* The two masks must be complements within the relevant mode,
C2 must select a field, and the shift must move to that
position. */
if (((c1 % ~c2) & GET_MODE_MASK (GET_MODE (dest))) == 0
&& (pos = get_pos_from_mask (c2, &len)) >= 0
&& pos == INTVAL (XEXP (XEXP (other, 0), 1)))
{
assign = make_extraction (VOIDmode, dest, pos, 0, len, 1, 1, 0);
src = XEXP (XEXP (other, 0), 0);
}
}
}
if (assign)
return gen_rtx_combine (SET, VOIDmode, assign, src);
return x;
}
/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
if so. */
static rtx
apply_distributive_law (x)
rtx x;
{
enum rtx_code code = GET_CODE (x);
rtx lhs, rhs, other;
rtx tem;
enum rtx_code inner_code;
/* The outer operation can only be one of the following: */
if (code != IOR && code != AND && code != XOR
&& code != PLUS && code != MINUS)
return x;
lhs = XEXP (x, 0), rhs = XEXP (x, 1);
/* If either operand is a primitive or a complex SUBREG,
we can't do anything. */
if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
|| GET_RTX_CLASS (GET_CODE (rhs)) == 'o'
|| (GET_CODE (lhs) == SUBREG
&& (! subreg_lowpart_p (lhs)
|| (GET_MODE_SIZE (GET_MODE (lhs))
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))))
|| (GET_CODE (rhs) == SUBREG
&& (! subreg_lowpart_p (rhs)
|| (GET_MODE_SIZE (GET_MODE (rhs))
>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (rhs)))))))
return x;
lhs = expand_compound_operation (lhs);
rhs = expand_compound_operation (rhs);
inner_code = GET_CODE (lhs);
if (inner_code != GET_CODE (rhs))
return x;
/* See if the inner and outer operations distribute. */
switch (inner_code)
{
case LSHIFTRT:
case ASHIFTRT:
case AND:
case IOR:
/* These all distribute except over PLUS. */
if (code == PLUS || code == MINUS)
return x;
break;
case MULT:
if (code != PLUS && code != MINUS)
return x;
break;
case ASHIFT:
case LSHIFT:
/* These are also multiplies, so they distribute over everything. */
break;
case SUBREG:
/* This distributes over all operations, provided the inner modes
are the same, but we produce the result slightly differently. */
if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs)))
return x;
tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
SUBREG_REG (lhs), SUBREG_REG (rhs));
return gen_lowpart_for_combine (GET_MODE (x), tem);
default:
return x;
}
/* Set LHS and RHS to the inner operands (A and B in the example
above) and set OTHER to the common operand (C in the example).
These is only one way to do this unless the inner operation is
commutative. */
if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
else if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
else if (GET_RTX_CLASS (inner_code) == 'c'
&& rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
else
return x;
/* Form the new inner operation, seeing if it simplifies first. */
tem = gen_binary (code, GET_MODE (x), lhs, rhs);
/* There is one exception to the general way of distributing:
(a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
if (code == XOR && inner_code == IOR)
{
inner_code = AND;
other = gen_unary (NOT, GET_MODE (x), other);
}
/* We may be able to continuing distributing the result, so call
ourselves recursively on the inner operation before forming the
outer operation, which we return. */
return gen_binary (inner_code, GET_MODE (x),
apply_distributive_law (tem), other);
}
/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
in MODE.
Return an equivalent form, if different from X. Otherwise, return X. If
X is zero, we are to always construct the equivalent form. */
static rtx
simplify_and_const_int (x, mode, varop, constop)
rtx x;
enum machine_mode mode;
rtx varop;
unsigned constop;
{
register enum machine_mode tmode;
register rtx temp;
unsigned significant;
/* There is a large class of optimizations based on the principle that
some operations produce results where certain bits are known to be zero,
and hence are not significant to the AND. For example, if we have just
done a left shift of one bit, the low-order bit is known to be zero and
hence an AND with a mask of ~1 would not do anything.
At the end of the following loop, we set:
VAROP to be the item to be AND'ed with;
CONSTOP to the constant value to AND it with. */
while (1)
{
/* If we ever encounter a mode wider than the host machine's word
size, we can't compute the masks accurately, so give up. */
if (GET_MODE_BITSIZE (GET_MODE (varop)) > HOST_BITS_PER_INT)
break;
/* Unless one of the cases below does a `continue',
a `break' will be executed to exit the loop. */
switch (GET_CODE (varop))
{
case CLOBBER:
/* If VAROP is a (clobber (const_int)), return it since we know
we are generating something that won't match. */
return varop;
#if ! BITS_BIG_ENDIAN
case USE:
/* VAROP is a (use (mem ..)) that was made from a bit-field
extraction that spanned the boundary of the MEM. If we are
now masking so it is within that boundary, we don't need the
USE any more. */
if ((constop & ~ GET_MODE_MASK (GET_MODE (XEXP (varop, 0)))) == 0)
{
varop = XEXP (varop, 0);
continue;
}
break;
#endif
case SUBREG:
if (subreg_lowpart_p (varop)
/* We can ignore the effect this SUBREG if it narrows the mode
or, on machines where byte operations zero extend, if the
constant masks to zero all the bits the mode doesn't have. */
&& ((GET_MODE_SIZE (GET_MODE (varop))
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop))))
#ifdef BYTE_LOADS_ZERO_EXTEND
|| (0 == (constop
& GET_MODE_MASK (GET_MODE (varop))
& ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (varop)))))
#endif
))
{
varop = SUBREG_REG (varop);
continue;
}
break;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
case ZERO_EXTEND:
case SIGN_EXTEND:
/* Try to expand these into a series of shifts and then work
with that result. If we can't, for example, if the extract
isn't at a fixed position, give up. */
temp = expand_compound_operation (varop);
if (temp != varop)
{
varop = temp;
continue;
}
break;
case AND:
if (GET_CODE (XEXP (varop, 1)) == CONST_INT)
{
constop &= INTVAL (XEXP (varop, 1));
varop = XEXP (varop, 0);
continue;
}
break;
case IOR:
case XOR:
/* If VAROP is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
LSHIFT so we end up with an (and (lshiftrt (ior ...) ...) ...)
operation which may be a bitfield extraction. */
if (GET_CODE (XEXP (varop, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (varop, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (varop, 0), 1)) < HOST_BITS_PER_INT
&& GET_CODE (XEXP (varop, 1)) == CONST_INT
&& (INTVAL (XEXP (varop, 1))
& ~ significant_bits (XEXP (varop, 0),
GET_MODE (varop)) == 0))
{
temp = gen_rtx (CONST_INT, VOIDmode,
((INTVAL (XEXP (varop, 1)) & constop)
<< INTVAL (XEXP (XEXP (varop, 0), 1))));
temp = gen_binary (GET_CODE (varop), GET_MODE (varop),
XEXP (XEXP (varop, 0), 0), temp);
varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
temp, XEXP (varop, 1));
continue;
}
/* Apply the AND to both branches of the IOR or XOR, then try to
apply the distributive law. This may eliminate operations
if either branch can be simplified because of the AND.
It may also make some cases more complex, but those cases
probably won't match a pattern either with or without this. */
return
gen_lowpart_for_combine
(mode, apply_distributive_law
(gen_rtx_combine
(GET_CODE (varop), GET_MODE (varop),
simplify_and_const_int (0, GET_MODE (varop),
XEXP (varop, 0), constop),
simplify_and_const_int (0, GET_MODE (varop),
XEXP (varop, 1), constop))));
case NOT:
/* (and (not FOO)) is (and (xor FOO CONST_OP)) so if FOO is an
LSHIFTRT we can do the same as above. */
if (GET_CODE (XEXP (varop, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (varop, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (varop, 0), 1)) < HOST_BITS_PER_INT)
{
temp = gen_rtx (CONST_INT, VOIDmode,
constop << INTVAL (XEXP (XEXP (varop, 0), 1)));
temp = gen_binary (XOR, GET_MODE (varop),
XEXP (XEXP (varop, 0), 0), temp);
varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
temp, XEXP (XEXP (varop, 0), 1));
continue;
}
break;
case ASHIFTRT:
/* If we are just looking for the sign bit, we don't need this
shift at all, even if it has a variable count. */
if (constop == 1 << (GET_MODE_BITSIZE (GET_MODE (varop)) - 1))
{
varop = XEXP (varop, 0);
continue;
}
/* If this is a shift by a constant, get a mask that contains
those bits that are not copies of the sign bit. We then have
two cases: If CONSTOP only includes those bits, this can be
a logical shift, which may allow simplifications. If CONSTOP
is a single-bit field not within those bits, we are requesting
a copy of the sign bit and hence can shift the sign bit to
the appropriate location. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& INTVAL (XEXP (varop, 1)) >= 0
&& INTVAL (XEXP (varop, 1)) < HOST_BITS_PER_INT)
{
int i = -1;
significant = GET_MODE_MASK (GET_MODE (varop));
significant >>= INTVAL (XEXP (varop, 1));
if ((constop & ~significant) == 0
|| (i = exact_log2 (constop)) >= 0)
{
varop = simplify_shift_const
(varop, LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
i < 0 ? INTVAL (XEXP (varop, 1))
: GET_MODE_BITSIZE (GET_MODE (varop)) - 1 - i);
if (GET_CODE (varop) != ASHIFTRT)
continue;
}
}
/* If our mask is 1, convert this to a LSHIFTRT. This can be done
even if the shift count isn't a constant. */
if (constop == 1)
varop = gen_rtx_combine (LSHIFTRT, GET_MODE (varop),
XEXP (varop, 0), XEXP (varop, 1));
break;
case NE:
/* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is
included in STORE_FLAG_VALUE and FOO has no significant bits
not in CONST. */
if ((constop & ~ STORE_FLAG_VALUE) == 0
&& XEXP (varop, 0) == const0_rtx
&& (significant_bits (XEXP (varop, 0), mode) & ~ constop) == 0)
{
varop = XEXP (varop, 0);
continue;
}
break;
case PLUS:
/* In (and (plus FOO C1) M), if M is a mask that just turns off
low-order bits (as in an alignment operation) and FOO is already
aligned to that boundary, we can convert remove this AND
and possibly the PLUS if it is now adding zero. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& exact_log2 (-constop) >= 0
&& (significant_bits (XEXP (varop, 0), mode) & ~ constop) == 0)
{
varop = plus_constant (XEXP (varop, 0),
INTVAL (XEXP (varop, 1)) & constop);
constop = ~0;
break;
}
/* ... fall through ... */
case MINUS:
/* In (and (plus (and FOO M1) BAR) M2), if M1 and M2 are one
less than powers of two and M2 is narrower than M1, we can
eliminate the inner AND. This occurs when incrementing
bit fields. */
if (GET_CODE (XEXP (varop, 0)) == ZERO_EXTRACT
|| GET_CODE (XEXP (varop, 0)) == ZERO_EXTEND)
SUBST (XEXP (varop, 0),
expand_compound_operation (XEXP (varop, 0)));
if (GET_CODE (XEXP (varop, 0)) == AND
&& GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
&& exact_log2 (constop + 1) >= 0
&& exact_log2 (INTVAL (XEXP (XEXP (varop, 0), 1)) + 1) >= 0
&& (~ INTVAL (XEXP (XEXP (varop, 0), 1)) & constop) == 0)
SUBST (XEXP (varop, 0), XEXP (XEXP (varop, 0), 0));
break;
}
break;
}
/* If we have reached a constant, this whole thing is constant. */
if (GET_CODE (varop) == CONST_INT)
return gen_rtx (CONST_INT, VOIDmode, constop & INTVAL (varop));
/* See what bits are significant in VAROP. */
significant = significant_bits (varop, mode);
/* Turn off all bits in the constant that are known to already be zero.
Thus, if the AND isn't needed at all, we will have CONSTOP == SIGNIFICANT
which is tested below. */
constop &= significant;
/* If we don't have any bits left, return zero. */
if (constop == 0)
return const0_rtx;
/* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
if we already had one (just check for the simplest cases). */
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (XEXP (x, 0)) == mode
&& SUBREG_REG (XEXP (x, 0)) == varop)
varop = XEXP (x, 0);
else
varop = gen_lowpart_for_combine (mode, varop);
/* If we can't make the SUBREG, try to return what we were given. */
if (GET_CODE (varop) == CLOBBER)
return x ? x : varop;
/* If we are only masking insignificant bits, return VAROP. */
if (constop == significant)
x = varop;
/* Otherwise, return an AND. See how much, if any, of X we can use. */
else if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
x = gen_rtx_combine (AND, mode, varop,
gen_rtx (CONST_INT, VOIDmode, constop));
else
{
if (GET_CODE (XEXP (x, 1)) != CONST_INT
|| INTVAL (XEXP (x, 1)) != constop)
SUBST (XEXP (x, 1), gen_rtx (CONST_INT, VOIDmode, constop));
SUBST (XEXP (x, 0), varop);
}
return x;
}
/* Given an expression, X, compute which bits in X can be non-zero.
We don't care about bits outside of those defined in MODE.
For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
a shift, AND, or zero_extract, we can do better. */
static unsigned
significant_bits (x, mode)
rtx x;
enum machine_mode mode;
{
unsigned significant = GET_MODE_MASK (mode);
unsigned inner_sig;
enum rtx_code code;
int mode_width = GET_MODE_BITSIZE (mode);
rtx tem;
/* If X is wider than MODE, use its mode instead. */
if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
{
mode = GET_MODE (x);
significant = GET_MODE_MASK (mode);
mode_width = GET_MODE_BITSIZE (mode);
}
if (mode_width > HOST_BITS_PER_INT)
/* Our only callers in this case look for single bit values. So
just return the mode mask. Those tests will then be false. */
return significant;
code = GET_CODE (x);
switch (code)
{
case REG:
#ifdef STACK_BOUNDARY
/* If this is the stack pointer, we may know something about its
alignment. If PUSH_ROUNDING is defined, it is possible for the
stack to be momentarily aligned only to that amount, so we pick
the least alignment. */
if (x == stack_pointer_rtx)
{
int sp_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
#ifdef PUSH_ROUNDING
sp_alignment = min (PUSH_ROUNDING (1), sp_alignment);
#endif
return significant & ~ (sp_alignment - 1);
}
#endif
/* If X is a register whose value we can find, use that value.
Otherwise, use the previously-computed significant bits for this
register. */
tem = get_last_value (x);
if (tem)
return significant_bits (tem, mode);
else if (significant_valid && reg_significant[REGNO (x)])
return reg_significant[REGNO (x)] & significant;
else
return significant;
case CONST_INT:
return INTVAL (x);
#ifdef BYTE_LOADS_ZERO_EXTEND
case MEM:
/* In many, if not most, RISC machines, reading a byte from memory
zeros the rest of the register. Noticing that fact saves a lot
of extra zero-extends. */
significant &= GET_MODE_MASK (GET_MODE (x));
break;
#endif
#if STORE_FLAG_VALUE == 1
case EQ: case NE:
case GT: case GTU:
case LT: case LTU:
case GE: case GEU:
case LE: case LEU:
significant = 1;
/* A comparison operation only sets the bits given by its mode. The
rest are set undefined. */
if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
significant |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
break;
#endif
#if STORE_FLAG_VALUE == -1
case NEG:
if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
|| ((tem = get_last_value (XEXP (x, 0))) != 0
&& GET_RTX_CLASS (GET_CODE (tem)) == '<'))
significant = 1;
if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
significant |= (GET_MODE_MASK (mode) & ~ GET_MODE_MASK (GET_MODE (x)));
break;
#endif
case TRUNCATE:
significant &= (significant_bits (XEXP (x, 0), mode)
& GET_MODE_MASK (mode));
break;
case ZERO_EXTEND:
significant &= significant_bits (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
significant &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
break;
case SIGN_EXTEND:
/* If the sign bit is known clear, this is the same as ZERO_EXTEND.
Otherwise, show all the bits in the outer mode but not the inner
may be non-zero. */
inner_sig = significant_bits (XEXP (x, 0), mode);
if (GET_MODE (XEXP (x, 0)) != VOIDmode)
{
inner_sig &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
if (inner_sig &
(1 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
inner_sig |= (GET_MODE_MASK (mode)
& ~ GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
}
significant &= inner_sig;
break;
case AND:
significant &= (significant_bits (XEXP (x, 0), mode)
& significant_bits (XEXP (x, 1), mode));
break;
case XOR:
case IOR:
significant &= (significant_bits (XEXP (x, 0), mode)
| significant_bits (XEXP (x, 1), mode));
break;
case PLUS: case MINUS:
case MULT:
case DIV: case UDIV:
case MOD: case UMOD:
/* We can apply the rules of arithmetic to compute the number of
high- and low-order zero bits of these operations. We start by
computing the width (position of the highest-order non-zero bit)
and the number of low-order zero bits for each value. */
{
unsigned sig0 = significant_bits (XEXP (x, 0), mode);
unsigned sig1 = significant_bits (XEXP (x, 1), mode);
int width0 = floor_log2 (sig0) + 1;
int width1 = floor_log2 (sig1) + 1;
int low0 = floor_log2 (sig0 & -sig0);
int low1 = floor_log2 (sig1 & -sig1);
int op0_maybe_minusp = (sig0 & (1 << (mode_width - 1)));
int op1_maybe_minusp = (sig1 & (1 << (mode_width - 1)));
int result_width = mode_width;
int result_low = 0;
switch (code)
{
case PLUS:
result_width = max (width0, width1) + 1;
result_low = min (low0, low1);
break;
case MINUS:
result_low = min (low0, low1);
break;
case MULT:
result_width = width0 + width1;
result_low = low0 + low1;
break;
case DIV:
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = width0;
break;
case UDIV:
result_width = width0;
break;
case MOD:
if (! op0_maybe_minusp && ! op1_maybe_minusp)
result_width = min (width0, width1);
result_low = min (low0, low1);
break;
case UMOD:
result_width = min (width0, width1);
result_low = min (low0, low1);
break;
}
if (result_width < mode_width)
significant &= (1 << result_width) - 1;
if (result_low > 0)
significant &= ~ ((1 << result_low) - 1);
}
break;
case ZERO_EXTRACT:
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_INT)
significant &= (1 << INTVAL (XEXP (x, 1))) - 1;
break;
case SUBREG:
/* If the inner mode is a single word for both the host and target
machines, we can compute this from which bits of the inner
object are known significant. */
if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
&& GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= HOST_BITS_PER_INT)
{
significant &= significant_bits (SUBREG_REG (x), mode);
#ifndef BYTE_LOADS_ZERO_EXTEND
/* On many CISC machines, accessing an object in a wider mode
causes the high-order bits to become undefined. So they are
not known to be zero. */
if (GET_MODE_SIZE (GET_MODE (x))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
significant |= (GET_MODE_MASK (GET_MODE (x))
& ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
#endif
}
break;
case ASHIFTRT:
case LSHIFTRT:
case ASHIFT:
case LSHIFT:
case ROTATE:
/* The significant bits are in two classes: any bits within MODE
that aren't in GET_MODE (x) are always significant. The rest of the
significant bits are those that are significant in the operand of
the shift when shifted the appropriate number of bits. This
shows that high-order bits are cleared by the right shift and
low-order bits by left shifts. */
if (GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) >= 0
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_INT)
{
enum machine_mode inner_mode = GET_MODE (x);
int width = GET_MODE_BITSIZE (inner_mode);
int count = INTVAL (XEXP (x, 1));
unsigned mode_mask = GET_MODE_MASK (inner_mode);
unsigned op_significant = significant_bits (XEXP (x, 0), mode);
unsigned inner = op_significant & mode_mask;
unsigned outer = 0;
if (mode_width > width)
outer = (op_significant & significant & ~ mode_mask);
if (code == LSHIFTRT)
inner >>= count;
else if (code == ASHIFTRT)
{
inner >>= count;
/* If the sign bit was significant at before the shift, we
need to mark all the places it could have been copied to
by the shift significant. */
if (inner & (1 << (width - 1 - count)))
inner |= ((1 << count) - 1) << (width - count);
}
else if (code == LSHIFT || code == ASHIFT)
inner <<= count;
else
inner = ((inner << (count % width)
| (inner >> (width - (count % width)))) & mode_mask);
significant &= (outer | inner);
}
break;
case FFS:
/* This is at most the number of bits in the mode. */
significant = (1 << (floor_log2 (mode_width) + 1)) - 1;
break;
}
return significant;
}
/* This function is called from `simplify_shift_const' to merge two
outer operations. Specifically, we have already found that we need
to perform operation *POP0 with constant *PCONST0 at the outermost
position. We would now like to also perform OP1 with constant CONST1
(with *POP0 being done last).
Return 1 if we can do the operation and update *POP0 and *PCONST0 with
the resulting operation. *PCOMP_P is set to 1 if we would need to
complement the innermost operand, otherwise it is unchanged.
MODE is the mode in which the operation will be done. No bits outside
the width of this mode matter. It is assumed that the width of this mode
is smaller than or equal to HOST_BITS_PER_INT.
If *POP0 or OP1 are NIL, it means no operation is required. Only PLUS,
IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
result is simply *PCONST0.
If the resulting operation cannot be expressed as one operation, we
return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
static int
merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
enum rtx_code *pop0;
int *pconst0;
enum rtx_code op1;
int const1;
enum machine_mode mode;
int *pcomp_p;
{
enum rtx_code op0 = *pop0;
int const0 = *pconst0;
const0 &= GET_MODE_MASK (mode);
const1 &= GET_MODE_MASK (mode);
/* If OP0 is an AND, clear unimportant bits in CONST1. */
if (op0 == AND)
const1 &= const0;
/* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
if OP0 is SET. */
if (op1 == NIL || op0 == SET)
return 1;
else if (op0 == NIL)
op0 = op1, const0 = const1;
else if (op0 == op1)
{
switch (op0)
{
case AND:
const0 &= const1;
break;
case IOR:
const0 |= const1;
break;
case XOR:
const0 ^= const1;
break;
case PLUS:
const0 += const1;
break;
}
}
/* Otherwise, if either is a PLUS, we can't do anything. */
else if (op0 == PLUS || op1 == PLUS)
return 0;
/* If the two constants aren't the same, we can't do anything. The
remaining six cases can all be done. */
else if (const0 != const1)
return 0;
else
switch (op0)
{
case IOR:
if (op1 == AND)
/* (a & b) | b == b */
op0 = SET;
else /* op1 == XOR */
/* (a ^ b) | b == a | b */
;
break;
case XOR:
if (op1 == AND)
/* (a & b) ^ b == (~a) & b */
op0 = AND, *pcomp_p = 1;
else /* op1 == IOR */
/* (a | b) ^ b == a & ~b */
op0 = AND, *pconst0 = ~ const0;
break;
case AND:
if (op1 == IOR)
/* (a | b) & b == b */
op0 = SET;
else /* op1 == XOR */
/* (a ^ b) & b) == (~a) & b */
*pcomp_p = 1;
break;
}
/* Check for NO-OP cases. */
const0 &= GET_MODE_MASK (mode);
if (const0 == 0
&& (op0 == IOR || op0 == XOR || op0 == PLUS))
op0 = NIL;
else if (const0 == 0 && op0 == AND)
op0 = SET;
else if (const0 == GET_MODE_MASK (mode) && op0 == AND)
op0 = NIL;
*pop0 = op0;
*pconst0 = const0;
return 1;
}
/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
The result of the shift is RESULT_MODE. X, if non-zero, is an expression
that we started with.
The shift is normally computed in the widest mode we find in VAROP, as
long as it isn't a different number of words than RESULT_MODE. Exceptions
are ASHIFTRT and ROTATE, which are always done in their original mode, */
static rtx
simplify_shift_const (x, code, result_mode, varop, count)
rtx x;
enum rtx_code code;
enum machine_mode result_mode;
rtx varop;
int count;
{
enum rtx_code orig_code = code;
int orig_count = count;
enum machine_mode mode = result_mode;
enum machine_mode shift_mode, tmode;
int mode_words
= (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
/* We form (outer_op (code varop count) (outer_const)). */
enum rtx_code outer_op = NIL;
int outer_const;
rtx const_rtx;
int complement_p = 0;
rtx new;
/* Unless one of the branches of the `if' in this loop does a `continue',
we will `break' the loop after the `if'. */
while (1)
{
/* If we have an operand of (clobber (const_int 0)), just return that
value. */
if (GET_CODE (varop) == CLOBBER)
return varop;
/* If we discovered we had to complement VAROP, leave. Making a NOT
here would cause an infinite loop. */
if (complement_p)
break;
/* If this shift has an erroneous or zero count, don't get confused.
Just give up. */
if (count <= 0 || count >= HOST_BITS_PER_INT)
break;
/* Convert ROTATETRT to ROTATE. */
if (code == ROTATERT)
code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
/* Canonicalize LSHIFT to ASHIFT. */
if (code == LSHIFT)
code = ASHIFT;
/* If we have an ASHIFTRT and the count is greater than the size of
the mode minus 1, use the size minus one as the count. This can
occur when simplifying (lshiftrt (ashiftrt ..)). */
if (code == ASHIFTRT && count > GET_MODE_BITSIZE (result_mode) - 1)
count = GET_MODE_BITSIZE (result_mode) - 1;
/* We simplify the tests below and elsewhere by converting
ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
`make_compound_operation' will convert it to a ASHIFTRT for
those machines (such as Vax) that don't have a LSHIFTRT. */
if (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_INT
&& code == ASHIFTRT
&& (significant_bits (varop, result_mode)
& (1 << (GET_MODE_BITSIZE (result_mode) - 1))) == 0)
code = LSHIFTRT;
switch (GET_CODE (varop))
{
case SIGN_EXTEND:
case ZERO_EXTEND:
case SIGN_EXTRACT:
case ZERO_EXTRACT:
new = expand_compound_operation (varop);
if (new != varop)
{
varop = new;
continue;
}
break;
case MEM:
/* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
minus the width of a smaller mode, we can do this with a
SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& ! mode_dependent_address_p (XEXP (varop, 0))
&& ! MEM_VOLATILE_P (varop)
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
MODE_INT, 1)) != BLKmode)
{
#if BYTES_BIG_ENDIAN
new = gen_rtx (MEM, tmode, XEXP (varop, 0));
#else
new = gen_rtx (MEM, tmode,
plus_constant (XEXP (varop, 0),
count / BITS_PER_UNIT));
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop);
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (varop);
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (varop);
#endif
varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
: ZERO_EXTEND, mode, new);
count = 0;
continue;
}
break;
case USE:
/* Similar to the case above, except that we can only do this if
the resulting mode is the same as that of the underlying
MEM and adjust the address depending on the *bits* endianness
because of the way that bit-field extract insns are defined. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
MODE_INT, 1)) != BLKmode
&& tmode == GET_MODE (XEXP (varop, 0)))
{
#if BITS_BIG_ENDIAN
new = XEXP (varop, 0);
#else
new = copy_rtx (XEXP (varop, 0));
SUBST (XEXP (new, 0),
plus_constant (XEXP (new, 0),
count / BITS_PER_UNIT));
#endif
varop = gen_rtx_combine (code == ASHIFTRT ? SIGN_EXTEND
: ZERO_EXTEND, mode, new);
count = 0;
continue;
}
break;
case SUBREG:
/* If VAROP is a SUBREG, strip it as long as the inner operand has
the same number of words as what we've seen so far. Then store
the widest mode in MODE. */
if (SUBREG_WORD (varop) == 0
&& (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
== mode_words))
{
varop = SUBREG_REG (varop);
if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
mode = GET_MODE (varop);
continue;
}
break;
case MULT:
/* Some machines use MULT instead of ASHIFT because MULT
is cheaper. But it is still better on those machines to
merge two shifts into one. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
{
varop = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
gen_rtx (CONST_INT, VOIDmode,
exact_log2 (INTVAL (XEXP (varop, 1)))));
continue;
}
break;
case UDIV:
/* Similar, for when divides are cheaper. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
{
varop = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
gen_rtx (CONST_INT, VOIDmode,
exact_log2 (INTVAL (XEXP (varop, 1)))));
continue;
}
break;
case ASHIFTRT:
/* If we are extracting just the sign bit of an arithmetic right
shift, that shift is not needed. */
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1)
{
varop = XEXP (varop, 0);
continue;
}
/* ... fall through ... */
case LSHIFTRT:
case ASHIFT:
case LSHIFT:
case ROTATE:
/* Here we have two nested shifts. The result is usually the
AND of a new shift with a mask. We compute the result below. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& INTVAL (XEXP (varop, 1)) >= 0
&& INTVAL (XEXP (varop, 1)) < HOST_BITS_PER_INT
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_INT
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT)
{
enum rtx_code first_code = GET_CODE (varop);
int first_count = INTVAL (XEXP (varop, 1));
unsigned int mask;
rtx mask_rtx;
rtx inner;
if (first_code == LSHIFT)
first_code = ASHIFT;
/* We have one common special case. We can't do any merging if
the inner code is an ASHIFTRT of a smaller mode. However, if
we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
we can convert it to
(ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
This simplifies certain SIGN_EXTEND operations. */
if (code == ASHIFT && first_code == ASHIFTRT
&& (GET_MODE_BITSIZE (result_mode)
- GET_MODE_BITSIZE (GET_MODE (varop))) == count)
{
/* C3 has the low-order C1 bits zero. */
mask = GET_MODE_MASK (mode) & ~ ((1 << first_count) - 1);
varop = simplify_and_const_int (0, result_mode,
XEXP (varop, 0), mask);
varop = simplify_shift_const (0, ASHIFT, result_mode,
varop, count);
count = first_count;
code = ASHIFTRT;
continue;
}
/* If this was (ashiftrt (ashift foo C1) C2) and we know
something about FOO's previous value, we may be able to
optimize this even though the code below can't handle this
case.
If FOO has J high-order bits equal to the sign bit with
J > C1, then we can convert this to either an ASHIFT or
a ASHIFTRT depending on the two counts. */
if (code == ASHIFTRT && first_code == ASHIFT
&& (inner = get_last_value (XEXP (varop, 0))) != 0)
{
if (GET_CODE (inner) == SUBREG
&& subreg_lowpart_p (inner))
inner = SUBREG_REG (inner);
if ((GET_CODE (inner) == CONST_INT
&& (INTVAL (inner) >> (HOST_BITS_PER_INT - (first_count + 1)) == 0
|| (INTVAL (inner) >> (HOST_BITS_PER_INT - (first_count + 1)) == -1)))
|| (GET_CODE (inner) == SIGN_EXTEND
&& ((GET_MODE_BITSIZE (GET_MODE (inner))
- GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner))))
>= first_count))
|| (GET_CODE (inner) == ASHIFTRT
&& GET_CODE (XEXP (inner, 1)) == CONST_INT
&& INTVAL (XEXP (inner, 1)) >= first_count))
{
count -= first_count;
if (count < 0)
count = - count, code = ASHIFT;
varop = XEXP (varop, 0);
continue;
}
}
/* There are some cases we can't do. If CODE is ASHIFTRT,
we can only do this if FIRST_CODE is also ASHIFTRT.
We can't do the case when CODE is ROTATE and FIRST_CODE is
ASHIFTRT.
If the mode of this shift is not the mode of the outer shift,
we can't do this if either shift is ASHIFTRT or ROTATE.
Finally, we can't do any of these if the mode is too wide
unless the codes are the same.
Handle the case where the shift codes are the same
first. */
if (code == first_code)
{
if (GET_MODE (varop) != result_mode
&& (code == ASHIFTRT || code == ROTATE))
break;
count += first_count;
varop = XEXP (varop, 0);
continue;
}
if (code == ASHIFTRT
|| (code == ROTATE && first_code == ASHIFTRT)
|| GET_MODE_BITSIZE (mode) > HOST_BITS_PER_INT
|| (GET_MODE (varop) != result_mode
&& (first_code == ASHIFTRT || first_code == ROTATE
|| code == ROTATE)))
break;
/* To compute the mask to apply after the shift, shift the
significant bits of the inner shift the same way the
outer shift will. */
mask_rtx = gen_rtx (CONST_INT, VOIDmode,
significant_bits (varop, GET_MODE (varop)));
mask_rtx
= simplify_binary_operation (code, result_mode, mask_rtx,
gen_rtx (CONST_INT, VOIDmode,
count));
/* Give up if we can't compute an outer operation to use. */
if (mask_rtx == 0
|| GET_CODE (mask_rtx) != CONST_INT
|| ! merge_outer_ops (&outer_op, &outer_const, AND,
INTVAL (mask_rtx),
result_mode, &complement_p))
break;
/* If the shifts are in the same direction, we add the
counts. Otherwise, we subtract them. */
if ((code == ASHIFTRT || code == LSHIFTRT)
== (first_code == ASHIFTRT || first_code == LSHIFTRT))
count += first_count;
else
count -= first_count;
/* If COUNT is positive, the new shift is usually CODE,
except for the two exceptions below, in which case it is
FIRST_CODE. If the count is negative, FIRST_CODE should
always be used */
if (count > 0
&& ((first_code == ROTATE && code == ASHIFT)
|| (first_code == ASHIFTRT && code == LSHIFTRT)))
code = first_code;
else if (count < 0)
code = first_code, count = - count;
varop = XEXP (varop, 0);
continue;
}
break;
case NOT:
/* Make this fit the case below. */
varop = gen_rtx_combine (XOR, mode, XEXP (varop, 0),
gen_rtx (CONST_INT, VOIDmode,
GET_MODE_MASK (mode)));
continue;
case IOR:
case AND:
case XOR:
/* If we have (shift (logical)), move the logical to the outside
to allow it to possibly combine with another logical and the
shift to combine with another shift. This also canonicalizes to
what a ZERO_EXTRACT looks like. Also, some machines have
(and (shift)) insns. */
if (GET_CODE (XEXP (varop, 1)) == CONST_INT
&& (new = simplify_binary_operation (code, result_mode,
XEXP (varop, 1),
gen_rtx (CONST_INT,
VOIDmode,
count))) != 0
&& merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
INTVAL (new), result_mode, &complement_p))
{
varop = XEXP (varop, 0);
continue;
}
/* If we can't do that, try to simplify the shift in each arm of the
logical expression, make a new logical expression, and apply
the inverse distributive law. */
{
rtx lhs = simplify_shift_const (0, code, result_mode,
XEXP (varop, 0), count);
rtx rhs = simplify_shift_const (0, code, result_mode,
XEXP (varop, 1), count);
lhs = gen_lowpart_for_combine (GET_MODE (varop), lhs);
rhs = gen_lowpart_for_combine (GET_MODE (varop), rhs);
varop = gen_binary (GET_CODE (varop), GET_MODE (varop), lhs, rhs);
varop = apply_distributive_law (varop);
count = 0;
}
break;
case EQ:
/* convert (lshift (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
says that the sign bit can be tested, FOO has mode MODE, C is
GET_MODE_BITSIZE (MODE) - 1, and FOO has only the low-order bit
significant. */
if (code == LSHIFT
&& XEXP (varop, 1) == const0_rtx
&& GET_MODE (XEXP (varop, 0)) == result_mode
&& count == GET_MODE_BITSIZE (result_mode) - 1
&& GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_INT
&& ((STORE_FLAG_VALUE
& (1 << (GET_MODE_BITSIZE (result_mode) - 1))))
&& significant_bits (XEXP (varop, 0), result_mode) == 1
&& merge_outer_ops (&outer_op, &outer_const, XOR, 1,
result_mode, &complement_p))
{
varop = XEXP (varop, 0);
count = 0;
continue;
}
break;
case NEG:
/* If we are doing an arithmetic right shift of something known
to be -1 or 0, we don't need the shift. */
if (code == ASHIFTRT
&& significant_bits (XEXP (varop, 0), result_mode) == 1)
{
count = 0;
continue;
}
break;
case PLUS:
/* Similar to case above. If X is 0 or 1 then X - 1 is -1 or 0. */
if (XEXP (varop, 1) == constm1_rtx && code == ASHIFTRT
&& significant_bits (XEXP (varop, 0), result_mode) == 1)
{
count = 0;
continue;
}
/* If we have the same operands as above but we are shifting the
sign bit into the low-order bit, we are exclusive-or'ing
the operand of the PLUS with a one. */
if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
&& XEXP (varop, 1) == constm1_rtx
&& significant_bits (XEXP (varop, 0), result_mode) == 1
&& merge_outer_ops (&outer_op, &outer_const, XOR, 1,
result_mode, &complement_p))
{
count = 0;
varop = XEXP (varop, 0);
continue;
}
/* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
if (code == ASHIFT
&& GET_CODE (XEXP (varop, 1)) == CONST_INT
&& (new = simplify_binary_operation (ASHIFT, result_mode,
XEXP (varop, 1),
gen_rtx (CONST_INT,
VOIDmode,
count))) != 0
&& merge_outer_ops (&outer_op, &outer_const, PLUS,
INTVAL (new), result_mode, &complement_p))
{
varop = XEXP (varop, 0);
continue;
}
break;
}
break;
}
/* We need to determine what mode to do the shift in. If the shift is
a ASHIFTRT or ROTATE, we must always do it in the mode it was originally
done in. Otherwise, we can do it in MODE, the widest mode encountered. */
shift_mode = (code == ASHIFTRT || code == ROTATE ? result_mode : mode);
/* We have now finished analyzing the shift. The result should be
a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
OUTER_OP is non-NIL, it is an operation that needs to be applied
to the result of the shift. OUTER_CONST is the relevant constant,
but we must turn off all bits turned off in the shift.
If we were passed a value for X, see if we can use any pieces of
it. If not, make new rtx. */
if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& INTVAL (XEXP (x, 1)) == count)
const_rtx = XEXP (x, 1);
else
const_rtx = gen_rtx (CONST_INT, VOIDmode, count);
if (x && GET_CODE (XEXP (x, 0)) == SUBREG
&& GET_MODE (XEXP (x, 0)) == shift_mode
&& SUBREG_REG (XEXP (x, 0)) == varop)
varop = XEXP (x, 0);
else if (GET_MODE (varop) != shift_mode)
varop = gen_lowpart_for_combine (shift_mode, varop);
/* If we can't make the SUBREG, try to return what we were given. */
if (GET_CODE (varop) == CLOBBER)
return x ? x : varop;
new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
if (new != 0)
x = new;
else
{
if (x == 0 || GET_CODE (x) != code || GET_MODE (x) != shift_mode)
x = gen_rtx_combine (code, shift_mode, varop, const_rtx);
SUBST (XEXP (x, 0), varop);
SUBST (XEXP (x, 1), const_rtx);
}
/* If we were doing a LSHIFTRT in a wider mode than it was originally,
turn off all the bits that the shift would have turned off. */
if (orig_code == LSHIFTRT && result_mode != shift_mode)
x = simplify_and_const_int (0, shift_mode, x,
GET_MODE_MASK (result_mode) >> orig_count);
/* Do the remainder of the processing in RESULT_MODE. */
x = gen_lowpart_for_combine (result_mode, x);
/* If COMPLEMENT_P is set, we have to complement X before doing the outer
operation. */
if (complement_p)
x = gen_unary (NOT, result_mode, x);
if (outer_op != NIL)
{
if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_INT)
outer_const &= GET_MODE_MASK (result_mode);
if (outer_op == AND)
x = simplify_and_const_int (0, result_mode, x, outer_const);
else if (outer_op == SET)
/* This means that we have determined that the result is
equivalent to a constant. This should be rare. */
x = gen_rtx (CONST_INT, VOIDmode, outer_const);
else
x = gen_binary (outer_op, result_mode, x,
gen_rtx (CONST_INT, VOIDmode, outer_const));
}
return x;
}
/* Like recog, but we receive the address of a pointer to a new pattern.
We try to match the rtx that the pointer points to.
If that fails, we may try to modify or replace the pattern,
storing the replacement into the same pointer object.
Modifications include deletion or addition of CLOBBERs.
PNOTES is a pointer to a location where any REG_UNUSED notes added for
the CLOBBERs are placed.
The value is the final insn code from the pattern ultimately matched,
or -1. */
static int
recog_for_combine (pnewpat, insn, pnotes)
rtx *pnewpat;
rtx insn;
rtx *pnotes;
{
register rtx pat = *pnewpat;
int insn_code_number;
int num_clobbers_to_add = 0;
int i;
rtx notes = 0;
/* Is the result of combination a valid instruction? */
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
/* If it isn't, there is the possibility that we previously had an insn
that clobbered some register as a side effect, but the combined
insn doesn't need to do that. So try once more without the clobbers
unless this represents an ASM insn. */
if (insn_code_number < 0 && ! check_asm_operands (pat)
&& GET_CODE (pat) == PARALLEL)
{
int pos;
for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
{
if (i != pos)
SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
pos++;
}
SUBST_INT (XVECLEN (pat, 0), pos);
if (pos == 1)
pat = XVECEXP (pat, 0, 0);
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
}
/* If we had any clobbers to add, make a new pattern than contains
them. Then check to make sure that all of them are dead. */
if (num_clobbers_to_add)
{
rtx newpat = gen_rtx (PARALLEL, VOIDmode,
gen_rtvec (GET_CODE (pat) == PARALLEL
? XVECLEN (pat, 0) + num_clobbers_to_add
: num_clobbers_to_add + 1));
if (GET_CODE (pat) == PARALLEL)
for (i = 0; i < XVECLEN (pat, 0); i++)
XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
else
XVECEXP (newpat, 0, 0) = pat;
add_clobbers (newpat, insn_code_number);
for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
i < XVECLEN (newpat, 0); i++)
{
if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
&& ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
return -1;
notes = gen_rtx (EXPR_LIST, REG_UNUSED,
XEXP (XVECEXP (newpat, 0, i), 0), notes);
}
pat = newpat;
}
*pnewpat = pat;
*pnotes = notes;
return insn_code_number;
}
/* Like gen_lowpart but for use by combine. In combine it is not possible
to create any new pseudoregs. However, it is safe to create
invalid memory addresses, because combine will try to recognize
them and all they will do is make the combine attempt fail.
If for some reason this cannot do its job, an rtx
(clobber (const_int 0)) is returned.
An insn containing that will not be recognized. */
#undef gen_lowpart
static rtx
gen_lowpart_for_combine (mode, x)
enum machine_mode mode;
register rtx x;
{
rtx result;
if (GET_MODE (x) == mode)
return x;
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
/* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
won't know what to do. So we will strip off the SUBREG here and
process normally. */
if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
{
x = SUBREG_REG (x);
if (GET_MODE (x) == mode)
return x;
}
result = gen_lowpart_common (mode, x);
if (result)
return result;
if (GET_CODE (x) == MEM)
{
register int offset = 0;
rtx new;
/* Refuse to work on a volatile memory ref or one with a mode-dependent
address. */
if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
return gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
/* If we want to refer to something bigger than the original memref,
generate a perverse subreg instead. That will force a reload
of the original memref X. */
if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
return gen_rtx (SUBREG, mode, x, 0);
#if WORDS_BIG_ENDIAN
offset = (max (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
- max (GET_MODE_SIZE (mode), UNITS_PER_WORD));
#endif
#if BYTES_BIG_ENDIAN
/* Adjust the address so that the address-after-the-data
is unchanged. */
offset -= (min (UNITS_PER_WORD, GET_MODE_SIZE (mode))
- min (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
#endif
new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
return new;
}
/* If X is a comparison operator, rewrite it in a new mode. This
probably won't match, but may allow further simplifications. */
else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
return gen_rtx_combine (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
/* If we couldn't simplify X any other way, just enclose it in a
SUBREG. Normally, this SUBREG won't match, but some patterns may
include and explicit SUBREG or we may simplify it further in combine. */
else
return gen_rtx (SUBREG, mode, x, 0);
}
/* Make an rtx expression. This is a subset of gen_rtx and only supports
expressions of 1, 2, or 3 operands, each of which are rtx expressions.
If the identical expression was previously in the insn (in the undobuf),
it will be returned. Only if it is not found will a new expression
be made. */
/*VARARGS2*/
static rtx
gen_rtx_combine (va_alist)
va_dcl
{
va_list p;
enum rtx_code code;
enum machine_mode mode;
int n_args;
rtx args[3];
int i, j;
char *fmt;
rtx rt;
va_start (p);
code = va_arg (p, enum rtx_code);
mode = va_arg (p, enum machine_mode);
n_args = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
if (n_args == 0 || n_args > 3)
abort ();
/* Get each arg and verify that it is supposed to be an expression. */
for (j = 0; j < n_args; j++)
{
if (*fmt++ != 'e')
abort ();
args[j] = va_arg (p, rtx);
}
/* See if this is in undobuf. Be sure we don't use objects that came
from another insn; this could produce circular rtl structures. */
for (i = previous_num_undos; i < undobuf.num_undo; i++)
if (!undobuf.undo[i].is_int
&& GET_CODE (undobuf.undo[i].old_contents) == code
&& GET_MODE (undobuf.undo[i].old_contents) == mode)
{
for (j = 0; j < n_args; j++)
if (XEXP (undobuf.undo[i].old_contents, j) != args[j])
break;
if (j == n_args)
return undobuf.undo[i].old_contents;
}
/* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
rt = rtx_alloc (code);
PUT_MODE (rt, mode);
XEXP (rt, 0) = args[0];
if (n_args > 1)
{
XEXP (rt, 1) = args[1];
if (n_args > 2)
XEXP (rt, 2) = args[2];
}
return rt;
}
/* These routines make binary and unary operations by first seeing if they
fold; if not, a new expression is allocated. */
static rtx
gen_binary (code, mode, op0, op1)
enum rtx_code code;
enum machine_mode mode;
rtx op0, op1;
{
rtx result = simplify_binary_operation (code, mode, op0, op1);
if (result)
return result;
/* Put complex operands first and constants second. */
if (GET_RTX_CLASS (code) == 'c'
&& ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
|| (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
&& GET_RTX_CLASS (GET_CODE (op1)) != 'o')
|| (GET_CODE (op0) == SUBREG
&& GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
&& GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
return gen_rtx_combine (code, mode, op1, op0);
return gen_rtx_combine (code, mode, op0, op1);
}
static rtx
gen_unary (code, mode, op0)
enum rtx_code code;
enum machine_mode mode;
rtx op0;
{
rtx result = simplify_unary_operation (code, mode, op0, mode);
if (result)
return result;
return gen_rtx_combine (code, mode, op0);
}
/* Simplify a comparison between *POP0 and *POP1 where CODE is the
comparison code that will be tested.
The result is a possibly different comparison code to use. *POP0 and
*POP1 may be updated.
It is possible that we might detect that a comparison is either always
true or always false. However, we do not perform general constant
folding in combine, so this knowlege isn't useful. Such tautologies
should have been detected earlier. Hence we ignore all such cases. */
static enum rtx_code
simplify_comparison (code, pop0, pop1)
enum rtx_code code;
rtx *pop0;
rtx *pop1;
{
rtx op0 = *pop0;
rtx op1 = *pop1;
rtx tem, tem1;
int i;
enum machine_mode mode, tmode;
/* Try a few ways of applying the same transformation to both operands. */
while (1)
{
/* If both operands are the same constant shift, see if we can ignore the
shift. We can if the shift is a rotate or if the bits shifted out of
this shift are not significant for either input and if the type of
comparison is compatible with the shift. */
if (GET_CODE (op0) == GET_CODE (op1)
&& GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
&& ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
|| ((GET_CODE (op0) == LSHIFTRT
|| GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
&& (code != GT && code != LT && code != GE && code != LE))
|| (GET_CODE (op0) == ASHIFTRT
&& (code != GTU && code != LTU
&& code != GEU && code != GEU)))
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_INT
&& XEXP (op0, 1) == XEXP (op1, 1))
{
enum machine_mode mode = GET_MODE (op0);
unsigned mask = GET_MODE_MASK (mode);
int shift_count = INTVAL (XEXP (op0, 1));
if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
mask &= (mask >> shift_count) << shift_count;
else if (GET_CODE (op0) == ASHIFT || GET_CODE (op0) == LSHIFT)
mask = (mask & (mask << shift_count)) >> shift_count;
if ((significant_bits (XEXP (op0, 0), mode) & ~ mask) == 0
&& (significant_bits (XEXP (op1, 0), mode) & ~ mask) == 0)
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
else
break;
}
/* If both operands are AND's of a paradoxical SUBREG by constant, the
SUBREGs are of the same mode, and, in both cases, the AND would
be redundant if the comparison was done in the narrower mode,
do the comparison in the narrower mode (e.g., we are AND'ing with 1
and the operand's significant bits are 0xffffff01; in that case if
we only care about QImode, we don't need the AND). This case occurs
if the output mode of an scc insn is not SImode and
STORE_FLAG_VALUE == 1 (e.g., the 386). */
else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op1, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == SUBREG
&& GET_CODE (XEXP (op1, 0)) == SUBREG
&& (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
&& (GET_MODE (SUBREG_REG (XEXP (op0, 0)))
== GET_MODE (SUBREG_REG (XEXP (op1, 0))))
&& (significant_bits (SUBREG_REG (XEXP (op0, 0)),
GET_MODE (SUBREG_REG (XEXP (op0, 0))))
& ~ INTVAL (XEXP (op0, 1))) == 0
&& (significant_bits (SUBREG_REG (XEXP (op1, 0)),
GET_MODE (SUBREG_REG (XEXP (op1, 0))))
& ~ INTVAL (XEXP (op1, 1))) == 0)
{
op0 = SUBREG_REG (XEXP (op0, 0));
op1 = SUBREG_REG (XEXP (op1, 0));
}
else
break;
}
/* If the first operand is a constant, swap the operands and adjust the
comparison code appropriately. */
if (CONSTANT_P (op0))
{
tem = op0, op0 = op1, op1 = tem;
code = swap_condition (code);
}
/* We now enter a loop during which we will try to simplify the comparison.
For the most part, we only are concerned with comparisons with zero,
but some things may really be comparisons with zero but not start
out looking that way. */
while (GET_CODE (op1) == CONST_INT)
{
enum machine_mode mode = GET_MODE (op0);
int mode_width = GET_MODE_BITSIZE (mode);
unsigned mask = GET_MODE_MASK (mode);
int equality_comparison_p;
int sign_bit_comparison_p;
int unsigned_comparison_p;
int const_op;
/* We only want to handle integral modes. This catches VOIDmode,
CCmode, and the floating-point modes. */
if (GET_MODE_CLASS (mode) != MODE_INT)
break;
/* Get the constant we are comparing against and turn off all bits
not on in our mode. */
const_op = INTVAL (op1);
if (mode_width <= HOST_BITS_PER_INT)
const_op &= GET_MODE_MASK (mode);
/* If we are comparing against a constant power of two and the value
being compared has only that single significant bit (e.g., it was
`and'ed with that bit), we can replace this with a comparison
with zero. */
if (const_op
&& (code == EQ || code == NE || code == GE || code == GEU
|| code == LT || code == LTU)
&& mode_width <= HOST_BITS_PER_INT
&& exact_log2 (const_op) >= 0
&& significant_bits (op0, mode) == const_op)
{
code = (code == EQ || code == GE || code == GEU ? NE : EQ);
op1 = const0_rtx, const_op = 0;
}
/* Do some canonicalizations based on the comparison code. We prefer
comparisons against zero and then prefer equality comparisons. */
switch (code)
{
case LT:
/* < 1 is equivalent to <= 0 */
if (const_op == 1)
{
op1 = const0_rtx;
const_op = 0;
code = LE;
/* ... fall through to LE case below. */
}
else
break;
case LE:
/* <= -1 is equivalent to < 0 */
if (op1 == constm1_rtx)
op1 = const0_rtx, const_op = 0, code = LT;
/* If we are doing a <= 0 comparison on a value known to have
a zero sign bit, we can replace this with == 0. */
else if (const_op == 0
&& mode_width <= HOST_BITS_PER_INT
&& (significant_bits (op0, mode)
& (1 << (mode_width - 1))) == 0)
code = EQ;
break;
case GE:
/* >= 1 is equivalent to > 0. */
if (const_op == 1)
{
op1 = const0_rtx;
const_op = 0;
code = GT;
/* ... fall through to GT below. */
}
else
break;
case GT:
/* > -1 is equivalent to >= 0. */
if (op1 == constm1_rtx)
op1 = const0_rtx, const_op = 0, code = GE;
/* If we are doing a > 0 comparison on a value known to have
a zero sign bit, we can replace this with != 0. */
else if (const_op == 0
&& mode_width <= HOST_BITS_PER_INT
&& (significant_bits (op0, mode)
& (1 << (mode_width - 1))) == 0)
code = NE;
break;
case GEU:
/* unsigned >= 1 is equivalent to != 0 */
if (const_op == 1)
op1 = const0_rtx, const_op = 0, code = NE;
break;
case LTU:
/* unsigned < 1 is equivalent to == 0 */
if (const_op == 1)
op1 = const0_rtx, const_op = 0, code = EQ;
break;
case LEU:
/* unsigned <= 0 is equivalent to == 0 */
if (const_op == 0)
code = EQ;
break;
case GTU:
/* unsigned > 0 is equivalent to != 0 */
if (const_op == 0)
code = NE;
break;
}
/* Compute some predicates to simplify code below. */
equality_comparison_p = (code == EQ || code == NE);
sign_bit_comparison_p = (code == LT || code == GE);
unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
|| code == LEU);
/* Now try cases based on the opcode of OP0. If none of the cases
does a "continue", we exit this loop immediately after the
switch. */
switch (GET_CODE (op0))
{
case ZERO_EXTRACT:
/* If we are extracting a single bit from a variable position in
a constant that has only a single bit set and are comparing it
with zero, we can convert this into an equality comparison
between the position and the location of the single bit. We can't
do this if bit endian and we don't have an extzv since we then
can't know what mode to use for the endianness adjustment. */
#if ! BITS_BIG_ENDIAN || defined (HAVE_extzv)
if (GET_CODE (XEXP (op0, 0)) == CONST_INT
&& XEXP (op0, 1) == const1_rtx
&& equality_comparison_p && const_op == 0
&& (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
{
#if BITS_BIG_ENDIAN
i = (GET_MODE_BITSIZE
(insn_operand_mode[(int) CODE_FOR_extzv][1]) - 1 - i);
#endif
op0 = XEXP (op0, 2);
op1 = gen_rtx (CONST_INT, VOIDmode, i);
const_op = i;
/* Result is nonzero iff shift count is equal to I. */
code = reverse_condition (code);
continue;
}
#endif
/* ... fall through ... */
case SIGN_EXTRACT:
tem = expand_compound_operation (op0);
if (tem != op0)
{
op0 = tem;
continue;
}
break;
case NOT:
/* If testing for equality, we can take the NOT of the constant. */
if (equality_comparison_p
&& (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
break;
case NEG:
/* If testing for equality, we can take the NEG of the constant. */
if (equality_comparison_p
&& (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* When X is ABS or is known positive,
(neg X) is < 0 if and only if X != 0. */
if (const_op == 0 && sign_bit_comparison_p
&& (GET_CODE (XEXP (op0, 0)) == ABS
|| (mode_width <= HOST_BITS_PER_INT
&& (significant_bits (XEXP (op0, 0), mode)
& (1 << (mode_width - 1))) == 0)))
{
op0 = XEXP (op0, 0);
code = (code == LT ? NE : EQ);
continue;
}
/* If we have NEG of something that is the result of a
SIGN_EXTEND, SIGN_EXTRACT, or ASHIFTRT, we know that the
two high-order bits must be the same and hence that
"(-a) < 0" is equivalent to "a > 0". Otherwise, we can't
do this. */
if (GET_CODE (XEXP (op0, 0)) == SIGN_EXTEND
|| (GET_CODE (XEXP (op0, 0)) == SIGN_EXTRACT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& (INTVAL (XEXP (XEXP (op0, 0), 1))
< GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (op0, 0), 0)))))
|| (GET_CODE (XEXP (op0, 0)) == ASHIFTRT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& XEXP (XEXP (op0, 0), 1) != const0_rtx)
|| ((tem = get_last_value (XEXP (op0, 0))) != 0
&& (GET_CODE (tem) == SIGN_EXTEND
|| (GET_CODE (tem) == SIGN_EXTRACT
&& GET_CODE (XEXP (tem, 1)) == CONST_INT
&& (INTVAL (XEXP (tem, 1))
< GET_MODE_BITSIZE (GET_MODE (XEXP (tem, 0)))))
|| (GET_CODE (tem) == ASHIFTRT
&& GET_CODE (XEXP (tem, 1)) == CONST_INT
&& XEXP (tem, 1) != const0_rtx))))
{
op0 = XEXP (op0, 0);
code = swap_condition (code);
continue;
}
break;
case ROTATE:
/* If we are testing equality and our count is a constant, we
can perform the inverse operation on our RHS. */
if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (tem = simplify_binary_operation (ROTATERT, mode,
op1, XEXP (op0, 1))) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
/* If we are doing a < 0 or >= 0 comparison, it means we are testing
a particular bit. Convert it to an AND of a constant of that
bit. This will be converted into a ZERO_EXTRACT. */
if (const_op == 0 && sign_bit_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_INT)
{
op0 = simplify_and_const_int (0, mode, XEXP (op0, 0),
1 << (mode_width - 1
- INTVAL (XEXP (op0, 1))));
code = (code == LT ? NE : EQ);
continue;
}
/* ... fall through ... */
case ABS:
/* ABS is ignorable inside an equality comparison with zero. */
if (const_op == 0 && equality_comparison_p)
{
op0 = XEXP (op0, 0);
continue;
}
break;
case SIGN_EXTEND:
/* Can simplify (compare (zero/sign_extend FOO) CONST)
to (compare FOO CONST) if CONST fits in FOO's mode and we
are either testing inequality or have an unsigned comparison
with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
if (! unsigned_comparison_p
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
<= HOST_BITS_PER_INT)
&& ((unsigned) const_op
< (1 << GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))) - 1))
{
op0 = XEXP (op0, 0);
continue;
}
break;
case SUBREG:
/* If the inner mode is smaller and we are extracting the low
part, we can treat the SUBREG as if it were a ZERO_EXTEND. */
if (! subreg_lowpart_p (op0)
|| GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) >= mode_width)
break;
/* ... fall through ... */
case ZERO_EXTEND:
if ((unsigned_comparison_p || equality_comparison_p)
&& (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
<= HOST_BITS_PER_INT)
&& ((unsigned) const_op
< (1 << GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))))
{
op0 = XEXP (op0, 0);
continue;
}
break;
case PLUS:
/* (eq (plus X C1) C2) -> (eq X (minus C2 C1)) */
if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (tem = simplify_binary_operation (MINUS, mode, op1,
XEXP (op0, 1))) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
break;
case MINUS:
/* (minus (abs X) (const_int 1)) is < 0 if and only if X == 0. */
if (const_op == 0 && XEXP (op0, 1) == const1_rtx
&& GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
{
op0 = XEXP (XEXP (op0, 0), 0);
code = (code == LT ? EQ : NE);
continue;
}
/* Don't convert (compare (minus A B) (const_int 0)) to (compare A B)
because doing so would mess up some patterns on some machines and
also complicate the test above. */
break;
case XOR:
/* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
if C is zero or B is a constant. */
if (equality_comparison_p
&& (tem = simplify_binary_operation (XOR, mode, op1,
XEXP (op0, 1))) != 0)
{
op0 = XEXP (op0, 0);
op1 = tem;
continue;
}
break;
case EQ: case NE:
case LT: case LTU: case LE: case LEU:
case GT: case GTU: case GE: case GEU:
/* We can't do anything if OP0 is a condition code value, rather
than an actual data value. */
if (const_op != 0
#ifdef HAVE_cc0
|| XEXP (op0, 0) == cc0_rtx
#endif
|| GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
break;
/* Get the two operands being compared. */
if (GET_CODE (XEXP (op0, 0)) == COMPARE)
tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
else
tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
/* Check for the cases where we simply want the result of the
earlier test or the opposite of that result. */
if (code == NE
|| (code == EQ && reversible_comparison_p (op0))
|| (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
&& (STORE_FLAG_VALUE
& (1 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1)))
&& (code == LT
|| (code == GE && reversible_comparison_p (op0)))))
{
code = (code == LT || code == NE
? GET_CODE (op0) : reverse_condition (GET_CODE (op0)));
op0 = tem, op1 = tem1;
continue;
}
break;
case AND:
/* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
will be converted to a ZERO_EXTRACT later. */
if (const_op == 0 && equality_comparison_p
&& (GET_CODE (XEXP (op0, 0)) == ASHIFT
|| GET_CODE (XEXP (op0, 0)) == LSHIFT)
&& XEXP (XEXP (op0, 0), 0) == const1_rtx)
{
op0 = simplify_and_const_int
(op0, mode, gen_rtx_combine (LSHIFTRT, mode,
XEXP (op0, 1),
XEXP (XEXP (op0, 0), 1)),
1);
continue;
}
/* If we are comparing (and (lshiftrt X C1) C2) for equality with
zero and X is a comparison and C1 and C2 describe only bits set
in STORE_FLAG_VALUE, we can compare with X. */
if (const_op == 0 && equality_comparison_p
&& mode_width <= HOST_BITS_PER_INT
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == LSHIFTRT
&& GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
&& INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
&& INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_INT)
{
mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
<< INTVAL (XEXP (XEXP (op0, 0), 1)));
if ((~ STORE_FLAG_VALUE & mask) == 0
&& (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
|| ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
&& GET_RTX_CLASS (GET_CODE (tem)) == '<')))
{
op0 = XEXP (XEXP (op0, 0), 0);
continue;
}
}
/* If we are doing an equality comparison of an AND of a bit equal
to the sign bit, replace this with a LT or GE comparison of
the underlying value. */
if (equality_comparison_p
&& const_op == 0
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_INT
&& ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
== 1 << (mode_width - 1)))
{
op0 = XEXP (op0, 0);
code = (code == EQ ? GE : LT);
continue;
}
/* If this AND operation is really a ZERO_EXTEND from a narrower
mode, the constant fits within that mode, and this is either an
equality or unsigned comparison, try to do this comparison in
the narrower mode. */
if ((equality_comparison_p || unsigned_comparison_p)
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& (i = exact_log2 ((INTVAL (XEXP (op0, 1))
& GET_MODE_MASK (mode))
+ 1)) >= 0
&& const_op >> i == 0
&& (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
{
op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
continue;
}
break;
case ASHIFT:
case LSHIFT:
/* If we have (compare (xshift FOO N) (const_int C)) and
the high order N bits of FOO (N+1 if an inequality comparison)
are not significant, we can do this by comparing FOO with C
shifted right N bits so long as the low-order N bits of C are
zero. */
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_INT
&& (const_op & ~ ((1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
&& mode_width <= HOST_BITS_PER_INT
&& (significant_bits (XEXP (op0, 0), mode)
& ~ (mask >> (INTVAL (XEXP (op0, 1))
+ ! equality_comparison_p))) == 0)
{
const_op >>= INTVAL (XEXP (op0, 1));
op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
op0 = XEXP (op0, 0);
continue;
}
/* If we are doing an LT or GE comparison, it means we are testing
a particular bit. Convert it to the appropriate AND. */
if (const_op == 0 && sign_bit_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& mode_width <= HOST_BITS_PER_INT)
{
op0 = simplify_and_const_int (0, mode, XEXP (op0, 0),
1 << ( mode_width - 1
- INTVAL (XEXP (op0, 1))));
code = (code == LT ? NE : EQ);
continue;
}
break;
case ASHIFTRT:
/* If OP0 is a sign extension and CODE is not an unsigned comparison,
do the comparison in a narrower mode. */
if (! unsigned_comparison_p
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
&& XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
&& (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
MODE_INT, 1)) != VOIDmode
&& ((unsigned) const_op <= GET_MODE_MASK (tmode)
|| (unsigned) - const_op <= GET_MODE_MASK (tmode)))
{
op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
continue;
}
/* ... fall through ... */
case LSHIFTRT:
/* If we have (compare (xshiftrt FOO N) (const_int C)) and
the low order N bits of FOO are not significant, we can do this
by comparing FOO with C shifted left N bits so long as no
overflow occurs. */
if (GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) >= 0
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_INT
&& mode_width <= HOST_BITS_PER_INT
&& (significant_bits (XEXP (op0, 0), mode)
& ((1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
&& (const_op == 0
|| (floor_log2 (const_op) + INTVAL (XEXP (op0, 1))
< mode_width)))
{
const_op <<= INTVAL (XEXP (op0, 1));
op1 = gen_rtx (CONST_INT, VOIDmode, const_op);
op0 = XEXP (op0, 0);
continue;
}
/* If we are using this shift to extract just the sign bit, we
can replace this with an LT or GE comparison. */
if (const_op == 0
&& (equality_comparison_p || sign_bit_comparison_p)
&& GET_CODE (XEXP (op0, 1)) == CONST_INT
&& INTVAL (XEXP (op0, 1)) == mode_width - 1)
{
op0 = XEXP (op0, 0);
code = (code == NE || code == GT ? LT : GE);
continue;
}
break;
}
break;
}
/* Now make any compound operations involved in this comparison. Then,
check for an outmost SUBREG on OP0 that isn't doing anything or is
paradoxical. The latter case can only occur when it is known that the
"extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
We can never remove a SUBREG for a non-equality comparison because the
sign bit is in a different place in the underlying object. */
op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
op1 = make_compound_operation (op1, SET);
if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& (code == NE || code == EQ)
&& ((GET_MODE_SIZE (GET_MODE (op0))
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
|| (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_INT
&& (significant_bits (SUBREG_REG (op0),
GET_MODE (SUBREG_REG (op0)))
& ~ GET_MODE_MASK (GET_MODE (op0))) == 0)))
{
op0 = SUBREG_REG (op0);
op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
}
/* We now do the opposite procedure: Some machines don't have compare
insns in all modes. If OP0's mode is an integer mode smaller than a
word and we can't do a compare in that mode, see if there is a larger
mode for which we can do the compare and where the only significant
bits in OP0 and OP1 are those in the narrower mode. We can do
this if this is an equality comparison, in which case we can
merely widen the operation, or if we are testing the sign bit, in
which case we can explicitly put in the test. */
mode = GET_MODE (op0);
if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
&& cmp_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
for (tmode = GET_MODE_WIDER_MODE (mode);
tmode != VOIDmode && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_INT;
tmode = GET_MODE_WIDER_MODE (tmode))
if (cmp_optab->handlers[(int) tmode].insn_code != CODE_FOR_nothing
&& (significant_bits (op0, tmode) & ~ GET_MODE_MASK (mode)) == 0
&& (significant_bits (op1, tmode) & ~ GET_MODE_MASK (mode)) == 0
&& (code == EQ || code == NE
|| (op1 == const0_rtx && (code == LT || code == GE)
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT)))
{
op0 = gen_lowpart_for_combine (tmode, op0);
op1 = gen_lowpart_for_combine (tmode, op1);
if (code == LT || code == GE)
{
op0 = gen_binary (AND, tmode, op0,
gen_rtx (CONST_INT, VOIDmode,
1 << (GET_MODE_BITSIZE (mode) - 1)));
code = (code == LT) ? NE : EQ;
}
break;
}
*pop0 = op0;
*pop1 = op1;
return code;
}
/* Return 1 if we know that X, a comparison operation, is not operating
on a floating-point value or is EQ or NE, meaning that we can safely
reverse it. */
static int
reversible_comparison_p (x)
rtx x;
{
if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
|| GET_CODE (x) == NE || GET_CODE (x) == EQ)
return 1;
switch (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))))
{
case MODE_INT:
return 1;
case MODE_CC:
x = get_last_value (XEXP (x, 0));
return (x && GET_CODE (x) == COMPARE
&& GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) == MODE_INT);
}
return 0;
}
/* Utility function for following routine. Called when X is part of a value
being stored into reg_last_set_value. Sets reg_last_set_table_tick
for each register mentioned. Similar to mention_regs in cse.c */
static void
update_table_tick (x)
rtx x;
{
register enum rtx_code code = GET_CODE (x);
register char *fmt = GET_RTX_FORMAT (code);
register int i;
if (code == REG)
{
int regno = REGNO (x);
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
for (i = regno; i < endregno; i++)
reg_last_set_table_tick[i] = label_tick;
return;
}
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
/* Note that we can't have an "E" in values stored; see
get_last_value_validate. */
if (fmt[i] == 'e')
update_table_tick (XEXP (x, i));
}
/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
are saying that the register is clobbered and we no longer know its
value. If INSN is zero, don't update reg_last_set; this call is normally
done with VALUE also zero to invalidate the register. */
static void
record_value_for_reg (reg, insn, value)
rtx reg;
rtx insn;
rtx value;
{
int regno = REGNO (reg);
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
int i;
/* If VALUE contains REG and we have a previous value for REG, substitute
the previous value. */
if (value && insn && reg_mentioned_p (reg, value))
{
rtx tem;
/* Set things up so get_last_value is allowed to see anything set up to
our insn. */
subst_low_cuid = INSN_CUID (insn);
tem = get_last_value (reg);
if (tem)
value = replace_rtx (copy_rtx (value), reg, tem);
}
/* For each register modified, show we don't know its value, that
its value has been updated, and that we don't know the location of
the death of the register. */
for (i = regno; i < endregno; i ++)
{
if (insn)
reg_last_set[i] = insn;
reg_last_set_value[i] = 0;
reg_last_death[i] = 0;
}
/* Mark registers that are being referenced in this value. */
if (value)
update_table_tick (value);
/* Now update the status of each register being set.
If someone is using this register in this block, set this register
to invalid since we will get confused between the two lives in this
basic block. This makes using this register always invalid. In cse, we
scan the table to invalidate all entries using this register, but this
is too much work for us. */
for (i = regno; i < endregno; i++)
{
reg_last_set_label[i] = label_tick;
if (value && reg_last_set_table_tick[i] == label_tick)
reg_last_set_invalid[i] = 1;
else
reg_last_set_invalid[i] = 0;
}
/* The value being assigned might refer to X (like in "x++;"). In that
case, we must replace it with (clobber (const_int 0)) to prevent
infinite loops. */
if (value && ! get_last_value_validate (&value,
reg_last_set_label[regno], 0))
{
value = copy_rtx (value);
if (! get_last_value_validate (&value, reg_last_set_label[regno], 1))
value = 0;
}
/* For the main register being modified, update the value. */
reg_last_set_value[regno] = value;
}
/* Used for communication between the following two routines. */
static rtx record_dead_insn;
/* Called via note_stores from record_dead_and_set_regs to handle one
SET or CLOBBER in an insn. */
static void
record_dead_and_set_regs_1 (dest, setter)
rtx dest, setter;
{
if (GET_CODE (dest) == REG)
{
/* If we are setting the whole register, we know its value. Otherwise
show that we don't know the value. We can handle SUBREG in
some cases. */
if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
else if (GET_CODE (setter) == SET
&& GET_CODE (SET_DEST (setter)) == SUBREG
&& SUBREG_REG (SET_DEST (setter)) == dest
&& subreg_lowpart_p (SET_DEST (setter)))
record_value_for_reg
(dest, record_dead_insn,
gen_lowpart_for_combine (GET_MODE (SET_DEST (setter)),
SET_SRC (setter)));
else
record_value_for_reg (dest, record_dead_insn, 0);
}
else if (GET_CODE (dest) == MEM
/* Ignore pushes, they clobber nothing. */
&& ! push_operand (dest, GET_MODE (dest)))
mem_last_set = INSN_CUID (record_dead_insn);
}
/* Update the records of when each REG was most recently set or killed
for the things done by INSN. This is the last thing done in processing
INSN in the combiner loop.
We update reg_last_set, reg_last_set_value, reg_last_death, and also the
similar information mem_last_set (which insn most recently modified memory)
and last_call_cuid (which insn was the most recent subroutine call). */
static void
record_dead_and_set_regs (insn)
rtx insn;
{
register rtx link;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
{
if (REG_NOTE_KIND (link) == REG_DEAD)
reg_last_death[REGNO (XEXP (link, 0))] = insn;
else if (REG_NOTE_KIND (link) == REG_INC)
record_value_for_reg (XEXP (link, 0), insn, 0);
}
if (GET_CODE (insn) == CALL_INSN)
last_call_cuid = mem_last_set = INSN_CUID (insn);
record_dead_insn = insn;
note_stores (PATTERN (insn), record_dead_and_set_regs_1);
}
/* Utility routine for the following function. Verify that all the registers
mentioned in *LOC are valid when *LOC was part of a value set when
label_tick == TICK. Return 0 if some are not.
If REPLACE is non-zero, replace the invalid reference with
(clobber (const_int 0)) and return 1. This replacement is useful because
we often can get useful information about the form of a value (e.g., if
it was produced by a shift that always produces -1 or 0) even though
we don't know exactly what registers it was produced from. */
static int
get_last_value_validate (loc, tick, replace)
rtx *loc;
int tick;
int replace;
{
rtx x = *loc;
char *fmt = GET_RTX_FORMAT (GET_CODE (x));
int len = GET_RTX_LENGTH (GET_CODE (x));
int i;
if (GET_CODE (x) == REG)
{
int regno = REGNO (x);
int endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
int j;
for (j = regno; j < endregno; j++)
if (reg_last_set_invalid[j]
/* If this is a pseudo-register that was only set once, it is
always valid. */
|| (! (regno >= FIRST_PSEUDO_REGISTER && reg_n_sets[regno] == 1)
&& reg_last_set_label[j] > tick))
{
if (replace)
*loc = gen_rtx (CLOBBER, GET_MODE (x), const0_rtx);
return replace;
}
return 1;
}
for (i = 0; i < len; i++)
if ((fmt[i] == 'e'
&& get_last_value_validate (&XEXP (x, i), tick, replace) == 0)
/* Don't bother with these. They shouldn't occur anyway. */
|| fmt[i] == 'E')
return 0;
/* If we haven't found a reason for it to be invalid, it is valid. */
return 1;
}
/* Get the last value assigned to X, if known. Some registers
in the value may be replaced with (clobber (const_int 0)) if their value
is known longer known reliably. */
static rtx
get_last_value (x)
rtx x;
{
int regno;
rtx value;
/* If this is a a SUBREG, get the value of its operand and then convert it
to the desired mode. */
if (GET_CODE (x) == SUBREG
&& subreg_lowpart_p (x)
&& (value = get_last_value (SUBREG_REG (x))) != 0)
return gen_lowpart_for_combine (GET_MODE (x), value);
if (GET_CODE (x) != REG)
return 0;
regno = REGNO (x);
value = reg_last_set_value[regno];
/* If we don't have a value, it isn't for this basic block, or if it was
set in a later insn that the ones we are processing, return 0. */
if (value == 0
|| (reg_n_sets[regno] != 1
&& (reg_last_set_label[regno] != label_tick
|| INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)))
return 0;
/* If the value has all its register valid, return it. */
if (get_last_value_validate (&value, reg_last_set_label[regno], 0))
return value;
/* Otherwise, make a copy and replace any invalid register with
(clobber (const_int 0)). If that fails for some reason, return 0. */
value = copy_rtx (value);
if (get_last_value_validate (&value, reg_last_set_label[regno], 1))
return value;
return 0;
}
/* Return nonzero if expression X refers to a REG or to memory
that is set in an instruction more recent than FROM_CUID. */
static int
use_crosses_set_p (x, from_cuid)
register rtx x;
int from_cuid;
{
register char *fmt;
register int i;
register enum rtx_code code = GET_CODE (x);
if (code == REG)
{
register int regno = REGNO (x);
#ifdef PUSH_ROUNDING
/* Don't allow uses of the stack pointer to be moved,
because we don't know whether the move crosses a push insn. */
if (regno == STACK_POINTER_REGNUM)
return 1;
#endif
return (reg_last_set[regno]
&& INSN_CUID (reg_last_set[regno]) > from_cuid);
}
if (code == MEM && mem_last_set > from_cuid)
return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
return 1;
}
else if (fmt[i] == 'e'
&& use_crosses_set_p (XEXP (x, i), from_cuid))
return 1;
}
return 0;
}
/* Define three variables used for communication between the following
routines. */
static int reg_dead_regno, reg_dead_endregno;
static int reg_dead_flag;
/* Function called via note_stores from reg_dead_at_p.
If DEST is within [reg_dead_rengno, reg_dead_endregno), set
reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
static void
reg_dead_at_p_1 (dest, x)
rtx dest;
rtx x;
{
int regno, endregno;
if (GET_CODE (dest) != REG)
return;
regno = REGNO (dest);
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
if (reg_dead_endregno > regno && reg_dead_regno < endregno)
reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
}
/* Return non-zero if REG is known to be dead at INSN.
We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
referencing REG, it is dead. If we hit a SET referencing REG, it is
live. Otherwise, see if it is live or dead at the start of the basic
block we are in. */
static int
reg_dead_at_p (reg, insn)
rtx reg;
rtx insn;
{
int block, i;
/* Set variables for reg_dead_at_p_1. */
reg_dead_regno = REGNO (reg);
reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
? HARD_REGNO_NREGS (reg_dead_regno,
GET_MODE (reg))
: 1);
reg_dead_flag = 0;
/* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
beginning of function. */
for (; insn && GET_CODE (insn) != CODE_LABEL;
insn = prev_nonnote_insn (insn))
{
note_stores (PATTERN (insn), reg_dead_at_p_1);
if (reg_dead_flag)
return reg_dead_flag == 1 ? 1 : 0;
if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
return 1;
}
/* Get the basic block number that we were in. */
if (insn == 0)
block = 0;
else
{
for (block = 0; block < n_basic_blocks; block++)
if (insn == basic_block_head[block])
break;
if (block == n_basic_blocks)
return 0;
}
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
if (basic_block_live_at_start[block][i / HOST_BITS_PER_INT]
& (1 << (i % HOST_BITS_PER_INT)))
return 0;
return 1;
}
/* Remove register number REGNO from the dead registers list of INSN.
Return the note used to record the death, if there was one. */
rtx
remove_death (regno, insn)
int regno;
rtx insn;
{
register rtx note = find_regno_note (insn, REG_DEAD, regno);
if (note)
remove_note (insn, note);
return note;
}
/* For each register (hardware or pseudo) used within expression X,
if its death is in an instruction with cuid
between FROM_CUID (inclusive) and TO_INSN (exclusive),
mark it as dead in TO_INSN instead.
This is done when X is being merged by combination into TO_INSN. */
static void
move_deaths (x, from_cuid, to_insn)
rtx x;
int from_cuid;
rtx to_insn;
{
register char *fmt;
register int len, i;
register enum rtx_code code = GET_CODE (x);
if (code == REG)
{
register int regno = REGNO (x);
register rtx where_dead = reg_last_death[regno];
if (where_dead && INSN_CUID (where_dead) >= from_cuid
&& INSN_CUID (where_dead) < INSN_CUID (to_insn))
{
rtx note = remove_death (regno, reg_last_death[regno]);
if (! dead_or_set_p (to_insn, x))
{
/* It is possible for the call above to return 0. This can occur
when reg_last_death points to I2 or I1 that we combined with.
In that case make a new note. */
if (note)
{
XEXP (note, 1) = REG_NOTES (to_insn);
REG_NOTES (to_insn) = note;
}
else
REG_NOTES (to_insn) = gen_rtx (EXPR_LIST, REG_DEAD, x,
REG_NOTES (to_insn));
}
reg_last_death[regno] = to_insn;
}
return;
}
else if (GET_CODE (x) == SET)
{
rtx dest = SET_DEST (x);
move_deaths (SET_SRC (x), from_cuid, to_insn);
if (GET_CODE (dest) == ZERO_EXTRACT)
{
move_deaths (XEXP (dest, 1), from_cuid, to_insn);
move_deaths (XEXP (dest, 2), from_cuid, to_insn);
}
while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (GET_CODE (dest) == MEM)
move_deaths (XEXP (dest, 0), from_cuid, to_insn);
return;
}
else if (GET_CODE (x) == CLOBBER)
return;
len = GET_RTX_LENGTH (code);
fmt = GET_RTX_FORMAT (code);
for (i = 0; i < len; i++)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
move_deaths (XVECEXP (x, i, j), from_cuid, to_insn);
}
else if (fmt[i] == 'e')
move_deaths (XEXP (x, i), from_cuid, to_insn);
}
}
/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
as appropriate. I3 and I2 are the insns resulting from the combination
insns including FROM (I2 may be zero).
ELIM_I2 and ELIM_I1 are either zero or registers that we know will
not need REG_DEAD notes because they are being substituted for. This
saves searching in the most common cases.
Each note in the list is either ignored or placed on some insns, depending
on the type of note. */
static void
distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
rtx notes;
rtx from_insn;
rtx i3, i2;
rtx elim_i2, elim_i1;
{
rtx note, next_note;
rtx tem;
for (note = notes; note; note = next_note)
{
rtx place = 0, place2 = 0;
/* If this NOTE references a pseudo register, ensure it references
the latest copy of that register. */
if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
&& REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
next_note = XEXP (note, 1);
switch (REG_NOTE_KIND (note))
{
case REG_UNUSED:
/* If this register is set or clobbered in I3, put the note there
unless there is one already. */
if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
{
if (! (GET_CODE (XEXP (note, 0)) == REG
? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
: find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
place = i3;
}
/* Otherwise, if this register is used by I3, then this register
now dies here, so we must put a REG_DEAD note here unless there
is one already. */
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
&& ! (GET_CODE (XEXP (note, 0)) == REG
? find_regno_note (i3, REG_DEAD, REGNO (XEXP (note, 0)))
: find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
{
PUT_REG_NOTE_KIND (note, REG_DEAD);
place = i3;
}
break;
case REG_EQUAL:
case REG_EQUIV:
case REG_NONNEG:
/* These notes say something about results of an insn. We can
only support them if they used to be on I3 in which case they
remain on I3. Otherwise they are ignored. */
if (from_insn == i3)
place = i3;
break;
case REG_INC:
case REG_NO_CONFLICT:
case REG_LABEL:
/* These notes say something about how a register is used. They must
be present on any use of the register in I2 or I3. */
if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
place = i3;
if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
{
if (place)
place2 = i2;
else
place = i2;
}
break;
case REG_WAS_0:
/* It is too much trouble to try to see if this note is still
correct in all situations. It is better to simply delete it. */
break;
case REG_RETVAL:
/* If the insn previously containing this note still exists,
put it back where it was. Otherwise move it to the previous
insn. Adjust the corresponding REG_LIBCALL note. */
if (GET_CODE (from_insn) != NOTE)
place = from_insn;
else
{
tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, 0);
place = prev_real_insn (from_insn);
if (tem && place)
XEXP (tem, 0) = place;
}
break;
case REG_LIBCALL:
/* This is handled similarly to REG_RETVAL. */
if (GET_CODE (from_insn) != NOTE)
place = from_insn;
else
{
tem = find_reg_note (XEXP (note, 0), REG_RETVAL, 0);
place = next_real_insn (from_insn);
if (tem && place)
XEXP (tem, 0) = place;
}
break;
case REG_DEAD:
/* If the register is used as an input in I3, it dies there.
Similarly for I2, if it is non-zero.
If the register is not used as an input in either I3 or I2
and it is not one of the registers we were supposed to eliminate,
it means that we have somehow eliminated an additional register
from a computation. For example, we might have had A & B where
we discover that B will always be zero. In this case we will
eliminate the reference to A. If A died in that operation, we
must search to see if we can find a previous use of A. */
if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
place = i3;
else if (i2 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
place = i2;
if (XEXP (note, 0) == elim_i2 || XEXP (note, 0) == elim_i1)
break;
if (place == 0)
for (tem = prev_nonnote_insn (i3);
tem && (GET_CODE (tem) == INSN
|| GET_CODE (tem) == CALL_INSN);
tem = prev_nonnote_insn (tem))
if (reg_mentioned_p (XEXP (note, 0), PATTERN (tem)))
{
place = tem;
/* If the register is being set here, convert this to
a REG_UNUSED note instead. */
if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
{
PUT_REG_NOTE_KIND (note, REG_UNUSED);
/* If there is already a REG_UNUSED note here, then
clear PLACE, so that we don't add a duplicate
REG_UNUSED note. */
if (find_regno_note (place, REG_UNUSED,
REGNO (XEXP (note, 0))))
place = 0;
}
break;
}
/* If the register is set or already dead at PLACE, we needn't do
anything with this note if it is still a REG_DEAD note. Note
that we cannot use `dead_or_set_p' here since we don't want
to place a REG_DEAD note if the register even partially changed,
while `dead_or_set_p' looks for the case where it is completely
replaced. */
if (place
&& REG_NOTE_KIND (note) == REG_DEAD
&& (find_regno_note (place, REG_DEAD, REGNO (XEXP (note, 0)))
|| reg_set_p (XEXP (note, 0), PATTERN (place))))
{
int regno = REGNO (XEXP (note, 0));
/* Unless the register previously died in PLACE, clear
reg_last_death. */
if (reg_last_death[regno] != place)
reg_last_death[regno] = 0;
place = 0;
}
break;
default:
/* Any other notes should not be present at this point in the
compilation. */
abort ();
}
if (place)
{
XEXP (note, 1) = REG_NOTES (place);
REG_NOTES (place) = note;
}
if (place2)
REG_NOTES (place2) = gen_rtx (GET_CODE (note), REG_NOTE_KIND (note),
XEXP (note, 0), REG_NOTES (place2));
}
}
/* Similarly to above, distribute LOG_LINKS.
I3 and I2 are the insns resulting from the combination
insns including FROM (I2 may be zero).
ALL_ADJACENT is non-zero if the combiner is dealing with a consecutive
group of insns. This means that we can't have an earlier use of a
register than in the insns we are manipulating. */
static void
distribute_links (links, i3, i2, all_adjacent)
rtx links;
rtx i3, i2;
int all_adjacent;
{
rtx link, next_link;
for (link = links; link; link = next_link)
{
rtx place = 0;
rtx set;
next_link = XEXP (link, 1);
/* If the insn that this link point to is a NOTE or isn't a single
set, ignore it. In the latter case, it isn't clear what we
can do other than ignore the link, since we can't tell which
register it was for. Such links wouldn't be used by combine
anyway. */
if (GET_CODE (XEXP (link, 0)) == NOTE
|| (set = single_set (XEXP (link, 0))) == 0)
continue;
/* If all the insns were adjacent, unless this was a link to I2,
the link goes to whichever of I2 and I3 uses the register first. */
if (all_adjacent)
{
if (i2 && XEXP (link, 0) != i2
&& reg_mentioned_p (SET_DEST (set), PATTERN (i2)))
place = i2;
else if (reg_mentioned_p (SET_DEST (set), PATTERN (i3)))
place = i3;
}
else
{
rtx insn;
/* We have to search for the first insn to use the destination
of SET. LINK should be placed on that insn. */
for (insn = next_nonnote_insn (XEXP (link, 0));
insn && INSN_CUID (insn) <= INSN_CUID (i3);
insn = next_nonnote_insn (insn))
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
&& reg_mentioned_p (SET_DEST (set), PATTERN (insn)))
{
place = insn;
break;
}
}
/* If we found a place to put the link, place it there unless there
is already a link to the same insn as LINK at that point. */
if (place)
{
rtx link2;
for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
if (XEXP (link2, 0) == XEXP (link, 0))
break;
if (link2 == 0)
{
XEXP (link, 1) = LOG_LINKS (place);
LOG_LINKS (place) = link;
}
}
}
}
void
dump_combine_stats (file)
FILE *file;
{
fprintf
(file,
";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
combine_attempts, combine_merges, combine_extras, combine_successes);
}
void
dump_combine_total_stats (file)
FILE *file;
{
fprintf
(file,
"\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
total_attempts, total_merges, total_extras, total_successes);
}