home *** CD-ROM | disk | FTP | other *** search
/ Monster Media 1994 #1 / monster.zip / monster / MATH / VISSIM.ZIP / SM_1PH.VSM < prev    next >
Text File  |  1994-02-28  |  6KB  |  265 lines

  1. ; VisSim Block Diagram Format (VBDF)
  2. ; Copyright (C) 1989-1994 Visual Solutions
  3. PV=1.500
  4. PS=0
  5. PE=0.5
  6. PP=0.001
  7. PI=173
  8. PX=0.001
  9. PN=1e-006
  10. PL=5
  11. PT=1e-005
  12. Pn=-9,6,16,"Times New Roman"
  13. Pc=81
  14. Po=0.01,50,664
  15. PD=800x600
  16. Pf=0x0
  17. Pr="b0=2,1,0,7,544;b1=19,-1,2,0,784;b2=18,-1,0,0,800"
  18. Ps=800,0,0,552,0,0
  19. Pd=17
  20. PM=1,1,1,1
  21. N.1="summingJunction"*21x28
  22. N.2="*"*37x38<M>
  23. N.3="Compound"*34x28#1,1<C>
  24. n="1 / (Ra + LaS)"
  25. Ms=1600,0,0,1105,0,0
  26. N.4="summingJunction"*39x31<M>
  27. N.5="integrator"(0,1)*68x35<M>
  28. N.6="/"*57x34<M>
  29. N.7="variable"*44x36<M>
  30. n="La"
  31. N.8="*"*47x45<MR>
  32. N.9="variable"*56x47<MR>
  33. n="Ra"
  34. N.10="Compound"*55x28#1,1<C>
  35. n="Kt"
  36. Ms=1600,0,0,1105,0,0
  37. N.11="variable"*51x39<M>
  38. n="Kt"
  39. N.12="comment"*0x0*129x24
  40. C="This block diagram illustrates a stepper motor model, which is suitable for both Variable Reluctance (VR) and Permanent Magnet (PM) types. The model neglects the effect of mutual inductance in the phase windings and only includes the self inductance and resistance (La and Ra). This is a valid assumption since the voltage due to mutual inductance is normally much smaller than that due to the self inductance. Self inductance varies with rotor position and is approximated in this model using the fundamental terms in the Fourier Series as:
  41.  
  42.    La = La_nom + delta_La*cos (# rotor teeth*theta)
  43.  
  44. where:  delta_La is typically 10 to 20 percent of the nominal inductance value, La_nom
  45.  
  46. The voltage due to the self  inductance is called a back e.m.f. and is present in both VR and PM motor types.  The back e.m.f. is proportional to the rotor speed (thetadot) and also varies periodically with respect to the rotor angle.  The back e.m.f. is approximated using a Fourier Series as;
  47.  
  48.                Vbemf = -kb*thetadot*sin(nr*theta)
  49.  
  50. where;               nr=number of rotor teeth                and               theta = rotor angle.
  51.  
  52. The motor input voltage is 5 volts DC and applied to the summing junction through a step input shown far to the left in the block diagram.  "
  53. N.13="const"(2)*5x49
  54. N.14="variable"*15x49
  55. n="Ra"
  56. N.15="variable"*15x51
  57. n="La_nom"
  58. N.16="const"(0.01)*5x51
  59. N.17="step"(0,5)*40x30<M>
  60. N.18="Compound"*18x35#1,1<CR>
  61. n="Kbemf"
  62. Ms=1600,0,0,1105,0,0
  63. N.19="variable"*15x54
  64. n="Kb"
  65. N.20="const"(0.05)*5x54
  66. N.21="variable"*84x35<M>
  67. n="Kb"
  68. N.22="variable"*15x56
  69. n="Kt"
  70. N.23="const"(1)*5x56
  71. N.24="Compound"*67x28#1,1<C>
  72. n="1 / (Bload+ Jload*S)"
  73. Ms=1600,0,0,1105,0,0
  74. N.25="summingJunction"*30x31<M>
  75. N.26="integrator"(0,2)*66x33<M>
  76. N.27="/"*56x32<M>
  77. N.28="variable"*41x35<M>
  78. n="Jload"
  79. N.29="*"*55x39<MR>
  80. N.30="variable"*64x41<MR>
  81. n="Bload"
  82. N.31="variable"*60x43
  83. n="Jload"
  84. N.32="variable"*60x46
  85. n="Bload"
  86. N.33="const"(0.004)*50x43
  87. N.34="const"(0.5)*50x46
  88. N.35="plot"*91x27*38x27
  89. pt="Theta dot"
  90. px="Time (sec)"
  91. pax=0
  92. pf=H
  93. pc=512
  94. pm=10
  95. N.36="variable"*15x46
  96. n="#Phases"
  97. N.37="const"(8)*5x46
  98. N.38="variable"*15x43
  99. n="deg/step"
  100. N.39="const"(1.8)*5x43
  101. N.40="variable"*39x20<M>
  102. n="#Phases"
  103. N.41="variable"*39x16<M>
  104. n="deg/step"
  105. N.42="*"*59x17<M>
  106. N.43="const"(360)*58x11<M>
  107. N.44="/"*76x14<M>
  108. N.45="variable"*93x13<M>
  109. n=":#rotor teeth"
  110. N.46="variable"*18x42<M>
  111. n=":#rotor teeth"
  112. N.47="sin"*53x39<M>
  113. N.48="integrator"(0,0)*18x38<M>
  114. N.49="wireLabel"*2x28<M>
  115. n="thetadot"
  116. N.50="*"*72x33<M>
  117. N.51="*"*95x34<M>
  118. N.52="wireLabel"*5x40
  119. n="Motor Parameters"
  120. N.53="wireLabel"*50x40
  121. n="Load Parameters"
  122. N.54="wireLabel"*31x54
  123. n="Back emf constant, volts/(rad/sec)"
  124. N.55="wireLabel"*31x56
  125. n="Torque Constant, NM/amp"
  126. N.56="wireLabel"*31x49
  127. n="Ohms"
  128. N.57="wireLabel"*55x31
  129. n="Motor"
  130. N.58="wireLabel"*74x31
  131. n="Load"
  132. N.59="wireLabel"*116x30<M>
  133. n="torque"
  134. N.60="wireLabel"*4x30<M>
  135. n="Ia"
  136. N.61="variable"*78x10<M>
  137. n="La"
  138. N.62="variable"*17x9<M>
  139. n="La_nom"
  140. N.63="summingJunction"*66x9<M>
  141. N.64="gain"(0.2)*30x15<M>
  142. N.65="variable"*53x45<M>
  143. n="#rotor teeth*theta"
  144. N.66="variable"*9x18<M>
  145. n="#rotor teeth*theta"
  146. N.67="cos"*30x18<M>
  147. N.68="*"*43x15<M>
  148. N.69="*"*75x33<M>
  149. N.70="wireLabel"*31x51
  150. n="Henries"
  151. N.71="display"(25)*93x16<M>
  152. N.72="plot"*89x0*38x18<M>
  153. px="Time (sec)"
  154. pax=0
  155. pf=H
  156. pc=512
  157. pm=10
  158. N.73="plot"*88x41*38x18<M>
  159. px="Time (sec)"
  160. pax=0
  161. pf=H
  162. pc=512
  163. pm=10
  164. N.74="plot"*89x42*38x18<M>
  165. px="Time (sec)"
  166. pax=0
  167. pf=H
  168. pc=512
  169. pm=10
  170. N.75="plot"*13x47*38x18<M>
  171. px="Time (sec)"
  172. pax=0
  173. pf=H
  174. pc=512
  175. pm=10
  176. N.76="plot"*88x5*38x18<M>
  177. px="Time (sec)"
  178. pax=0
  179. pf=H
  180. pc=512
  181. pm=10
  182. N.77="wireLabel"*73x43
  183. n="kg*m^2"
  184. N.78="wireLabel"*73x46
  185. n="NM/(rad/sec)"
  186. N.79="summingJunction"*59x32<M>
  187. N.80="step"(0.4,5)*40x35<M>
  188. N.81="Compound"*2x28#0,1<C>
  189. n="input pulse"
  190. Ms=354,0,0,280,0,0
  191. I.1.i1=81.o1
  192. f1.2.i=-
  193. I.1.i2=18.o1
  194. I.2.i1=48.o1
  195. I.2.i2=46.o1
  196. G.3=4,5,6,7,8,9,61,62,63,64,66,67,68,72,73,
  197. I.3.o1=5.o1
  198. I.3.i1=1.o1
  199. I.4.i1=3.i1
  200. f4.2.i=-
  201. I.4.i2=8.o1
  202. I.5.i1=6.o1
  203. I.6.i1=4.o1
  204. I.6.i2=7.o1
  205. I.8.i1=5.o1
  206. I.8.i2=9.o1
  207. G.10=11,59,60,69,74,
  208. I.10.o1=69.o1
  209. I.10.i1=3.o1
  210. I.14.i1=13.o1
  211. I.15.i1=16.o1
  212. G.18=2,21,40,41,42,43,44,45,46,47,48,49,50,51,65,71,
  213. I.18.o1=51.o1
  214. I.18.i1=24.o1
  215. I.19.i1=20.o1
  216. I.22.i1=23.o1
  217. G.24=25,26,27,28,29,30,75,76,
  218. I.24.o1=26.o1
  219. I.24.i1=10.o1
  220. I.25.i1=24.i1
  221. f25.2.i=-
  222. I.25.i2=29.o1
  223. I.26.i1=27.o1
  224. I.27.i1=25.o1
  225. I.27.i2=28.o1
  226. I.29.i1=26.o1
  227. I.29.i2=30.o1
  228. I.31.i1=33.o1
  229. I.32.i1=34.o1
  230. I.35.i1=24.o1
  231. I.36.i1=37.o1
  232. I.38.i1=39.o1
  233. I.42.i1=41.o1
  234. I.42.i2=40.o1
  235. I.44.i1=43.o1
  236. I.44.i2=42.o1
  237. I.45.i1=44.o1
  238. I.47.i1=2.o1
  239. I.48.i1=18.i1
  240. I.50.i1=18.i1
  241. I.50.i2=47.o1
  242. I.51.i1=50.o1
  243. I.51.i2=21.o1
  244. I.61.i1=63.o1
  245. I.63.i1=62.o1
  246. I.63.i2=68.o1
  247. I.64.i1=62.o1
  248. I.65.i1=2.o1
  249. I.67.i1=66.o1
  250. I.68.i1=64.o1
  251. I.68.i2=67.o1
  252. I.69.i1=10.i1
  253. I.69.i2=11.o1
  254. I.71.i1=44.o1
  255. I.72.i3=61.o1
  256. I.73.i1=5.o1
  257. I.74.i1=69.o1
  258. I.75.i1=24.i1
  259. I.76.i1=26.o1
  260. I.79.i1=17.o1
  261. f79.2.i=-
  262. I.79.i2=80.o1
  263. G.81=17,79,80,
  264. I.81.o1=79.o1
  265.