home *** CD-ROM | disk | FTP | other *** search
/ Monster Media 1994 #1 / monster.zip / monster / MATH / VISSIM.ZIP / FIL_RESP.VSM < prev    next >
Text File  |  1994-02-25  |  3KB  |  146 lines

  1. ; VisSim Block Diagram Format (VBDF)
  2. ; Copyright (C) 1989-1994 Visual Solutions
  3. PV=1.500
  4. PS=0
  5. PE=50
  6. PP=0.005
  7. PI=173
  8. PX=0.005
  9. PN=1e-006
  10. PL=5
  11. PT=1e-005
  12. Pn=-10,6,16,"Times New Roman"
  13. Pc=28
  14. Po=0.01,50,664
  15. PD=800x600
  16. Pf=0x0
  17. Pr="b0=2,1,0,7,544;b1=19,-1,2,0,784;b2=18,-1,0,0,800"
  18. Ps=1559,0,0,1064,0,0
  19. Pd=17
  20. PM=1,1,1,1
  21. N.1="plot"*48x12*72x25
  22. pt="Filter Time Response"
  23. px="Time (sec)"
  24. pax=3
  25. pf=H
  26. pf=F
  27. pb=2,-2
  28. pbx=50,0
  29. pbY=1,-1
  30. pbX=0.9,0
  31. pc=2500
  32. pm=10
  33. pb.0=1,-1
  34. pL.0="Filter Input Signal"
  35. pb.1=0,0
  36. pb.2=0.4,-0.4
  37. pL.2="Filter Output Signal"
  38. pb.3=0.9,0
  39. pL.3="Freq * .01 (R/s)"
  40. N.2="comment"*35x0*101x30<M>
  41. C="Bandpass Filter built from a 2d order Butterworth Filter with wc = 1r/s
  42.  
  43. Frequency Transformation:
  44. s = (s^2 + w1*w2) / s  
  45. where: w1 = 48 r/s (start of passband)
  46.     w2 = 72 r/s (stop of passband)
  47.  
  48. Original 2d order Butterworth LPF;
  49. T(s) = 1 / (s^2 + 1.414s + 1)
  50. Poles: -.7 +/- j.7
  51.  
  52. Transformation:
  53. T(s) = s^2 /(s^4 + 1.414s^3 + 6913s^2
  54.        + 4886s + 11943936)"
  55. N.3="integrator"(0,2)*30x42<M>
  56. N.4="summingJunction"*8x42<M>
  57. N.5="integrator"(0,3)*49x42<M>
  58. N.6="integrator"(0,0)*76x49<M>
  59. N.7="integrator"(0,1)*93x66<MR>
  60. N.8="gain"(1.414)*30x54<MR>
  61. N.9="summingJunction"*2x56#4,1<MR>
  62. N.10="gain"(6913)*30x58<MR>
  63. N.11="gain"(4886)*30x61<MR>
  64. N.12="gain"(11943936)*30x66<MR>
  65. N.13="Compound"*14x24#1,1<CR>
  66. n="bpass_2"
  67. Ms=1559,0,0,1064,0,0
  68. N.14="comment"*75x0*54x8
  69. C="This block diagram simulates a frequency sweep of a bandpass filter, where:
  70.  
  71. Passband = 48 to 72 r/s
  72.  
  73. This block diagram was designed using a second order Butterworth low pass f ilter transformed into a bandpass. "
  74. N.15="sin"*30x14
  75. N.16="ramp"(0,1)*9x15
  76. N.17="quantize"(1)*25x6
  77. N.18="*"*21x13
  78. N.19="ramp"(0,1)*2x8
  79. N.20="summingJunction"*14x5
  80. N.21="const"(40)*2x4
  81. N.22="variable"*36x6
  82. n="freq, r/s"
  83. N.23="variable"*10x32
  84. n="freq, r/s"
  85. N.24="gain"(0.01)*33x32
  86. N.25="variable"*2x13
  87. n="freq, r/s"
  88. N.26="plot"*48x40*73x23
  89. pt="Filter Magnitude Response"
  90. px="Time (sec)"
  91. py="Log10 (Mag)"
  92. pax=3
  93. pf=H
  94. pf=x
  95. pf=F
  96. pb=1,0.001
  97. pbx=100,10
  98. pbY=2,-2
  99. pbX=100,0
  100. pc=2500
  101. pm=10
  102. pf=X
  103. pf=Y
  104. pb.0=1,-1
  105. pL.0="Magnitude"
  106. pb.1=0,0
  107. pb.2=0.4,-0.4
  108. pL.2="Filter Output Signal"
  109. pb.3=100,0
  110. pL.3="Freq (R/s)"
  111. N.27="variable"*32x59
  112. n="freq, r/s"
  113. N.28="wirePositioner"*7x41
  114. I.1.i1=15.o1
  115. I.1.i3=13.o1
  116. I.1.i4=24.o1
  117. I.3.i1=4.o1
  118. I.4.i1=13.i1
  119. f4.2.i=-
  120. I.4.i2=9.o1
  121. I.5.i1=3.o1
  122. I.6.i1=5.o1
  123. I.7.i1=6.o1
  124. I.8.i1=3.o1
  125. I.9.i1=8.o1
  126. I.9.i2=10.o1
  127. I.9.i3=11.o1
  128. I.9.i4=12.o1
  129. I.10.i1=5.o1
  130. I.11.i1=6.o1
  131. I.12.i1=7.o1
  132. G.13=2,3,4,5,6,7,8,9,10,11,12,
  133. I.13.o1=5.o1
  134. I.13.i1=15.o1
  135. I.15.i1=18.o1
  136. I.17.i1=20.o1
  137. I.18.i1=25.o1
  138. I.18.i2=16.o1
  139. I.20.i1=21.o1
  140. I.20.i2=19.o1
  141. I.22.i1=17.o1
  142. I.24.i1=23.o1
  143. I.26.i1=28.o1
  144. I.26.i4=27.o1
  145. I.28.i1=13.o1
  146.