home *** CD-ROM | disk | FTP | other *** search
/ Monster Media 1994 #1 / monster.zip / monster / MATH / VISSIM.ZIP / BIOREACT.VSM < prev    next >
Text File  |  1994-02-28  |  3KB  |  121 lines

  1. ; VisSim Block Diagram Format (VBDF)
  2. ; Copyright (C) 1989-1994 Visual Solutions
  3. PV=1.500
  4. PS=0
  5. PE=50
  6. PP=0.01
  7. PI=170
  8. PX=0.01
  9. PN=1e-006
  10. PL=5
  11. PT=1e-005
  12. Pn=-8,4,14,"Times New Roman"
  13. Pc=29
  14. Po=0.01,50,664
  15. PD=800x600
  16. Pf=0x0
  17. Pr="stub"
  18. Ps=1569,0,0,1089,0,0
  19. Pd=17
  20. PM=1,1,1,1
  21. N.1="integrator"(0.2107,1)*124x20<M>
  22. N.2="summingJunction"*108x19<M>
  23. N.3="*"*91x18<M>
  24. N.4="/"*96x45<M>
  25. N.5="summingJunction"*101x34<M>
  26. N.6="*"*131x31#3,1<M>
  27. N.7="exp"*112x46<M>
  28. N.8="const"(1.02)*99x59<MR>
  29. N.9="const"(0.48)*79x47<M>
  30. N.10="integrator"(0.7226,0)*134x55<M>
  31. N.11="const"(1)*84x34<M>
  32. N.12="summingJunction"*111x54<M>
  33. N.13="Compound"*101x33#2,1<MCR>
  34. n="cell growth function"
  35. Ms=621,0,0,406,0,0
  36. N.14="plot"*57x1*107x71
  37. pt="Bioreactor Problem"
  38. px="Time (sec)"
  39. py="Cell concentration (grams/liter)"
  40. pax=1
  41. pf=H
  42. pf=F
  43. pb=1,0
  44. pbx=50,0
  45. pbY=1,0.7
  46. pbX=0.3,0.1
  47. pc=512
  48. pm=10
  49. pb.0=0,0
  50. pb.1=0.3,0.1
  51. pL.1="Nutrient mass"
  52. pb.2=0,0
  53. pb.3=1,0.7
  54. pL.3="Cell mass"
  55. N.15="wireLabel"*0x15<M>
  56. n="cell mass"
  57. N.16="wireLabel"*0x58<M>
  58. n="nutrient mass"
  59. N.17="*"*126x45<MR>
  60. N.18="*"*79x55<M>
  61. N.19="/"*68x59<MR>
  62. N.20="summingJunction"*83x61<MR>
  63. N.21="Compound"*28x60#1,2<C>
  64. n="Bioreactor"
  65. Ms=1094,0,0,544,0,0
  66. N.22="wireLabel"*2x31<M>
  67. n="water flow rate"
  68. N.23="comment"*0x0*77x18<M>
  69. n="nutrient mass"
  70. C="Bioreactor Problem 
  71. A vat contains a solution of cells and nutrients. Cell growth is a dynamic function of both cell concentration and nutrient concentration.  This represents an unstable system with the current initial conditions and is thus a challange to control properly."
  72. N.24="gain"(-1.25)*13x50<M>
  73. N.25="wireLabel"*148x17<M>
  74. n="cell mass"
  75. N.26="wireLabel"*149x47<M>
  76. n="nutrient mass"
  77. N.27="slider"(0.643,1.5,0.5)*5x60
  78. N.28="comment"*2x1*48x32
  79. C="This block diagram simulates the classic preditor prey relationship between a yeast culture and nutrient broth. Using the slider block, you can control the flow rate and  try to keep the populations at the initial conditions. Since the initial conditions were purposely set at unstable operating regions of the system, this should prove quite a challenge.
  80.  
  81. NOTE: It is a little easier to see what is happening if the plot is switched to XY mode."
  82. N.29="wirePositioner"*112x15<MR>
  83. I.1.i1=2.o1
  84. I.2.i1=3.o1
  85. I.2.i2=13.o1
  86. I.3.i1=29.o1
  87. I.3.i2=24.o1
  88. I.4.i1=13.i2
  89. I.4.i2=9.o1
  90. I.5.i1=11.o1
  91. f5.2.i=-
  92. I.5.i2=13.i2
  93. I.6.i1=13.i1
  94. I.6.i2=5.o1
  95. I.6.i3=7.o1
  96. I.7.i1=4.o1
  97. I.10.i1=12.o1
  98. I.12.i1=17.o1
  99. I.12.i2=18.o1
  100. G.13=4,9,7,6,5,11,15,16,
  101. I.13.o1=6.o1
  102. I.13.i1=1.o1
  103. I.13.i2=10.o1
  104. I.14.i2=21.o1
  105. I.14.i4=21.o2
  106. I.17.i1=24.o1
  107. I.17.i2=10.o1
  108. I.18.i1=13.o1
  109. I.18.i2=19.o1
  110. I.19.i1=8.o1
  111. I.19.i2=20.o1
  112. I.20.i1=8.o1
  113. f20.2.i=-
  114. I.20.i2=10.o1
  115. G.21=1,3,13,2,10,12,17,18,19,20,8,22,23,24,25,26,29,
  116. I.21.o1=1.o1
  117. I.21.o2=10.o1
  118. I.21.i1=27.o1
  119. I.24.i1=21.i1
  120. I.29.i1=1.o1
  121.