home *** CD-ROM | disk | FTP | other *** search
Text File | 1986-12-04 | 70.9 KB | 1,810 lines |
- .PO 8
- .MB 15
- .PN 1
- .HE -#-
- .OP
- `14 EXTRACALC-1
- Release 1.2
-
-
-
-
- ============================CONTENTS=============================
-
-
- 1. INTRODUCTION 2
-
- 2. SETTING UP ExtraCalc-1 SOFTWARE 3
-
- a. Distribution Diskettes 4
- b. System Configuration - Single Density 5
- c. System Configuration - Double Density 8
-
- 3. PRINCIPLES OF ExtraCalc-1 OPERATION. DEFINITIONS 10
-
- a. System Flowchart and Operation. 10
- b. Definitions of Matrix Operands 12
- c. Matrices. Definitions of Operations. 13
- Determination of Operand sizes.
-
- 4. OPERATING INSTRUCTIONS 18
-
- a. Manual Operation 18
- b. Using SuperCalc's XQT file≤ 19
- c« Usinτ Programmablσ Keys and XQT files 20
- d. Automatic Operation 21
-
- 5. NUMERIC EXAMPLES 22
-
- 6. COMPOSITE OPERATIONS. APPLICATIONS 36
-
- a. Least Squares Technique 36
- b. Numeric Example: Dow Jones Regression model 37
-
- 7. ExtraCalc-1 ERROR MESSAGES 51
-
- =================================================================
- .PA
- è1. INTRODUCTION
-
- ExtraCalc-1TMùáá i≤á aεá add-oεá t∩á thσá SuperCalcTMùáá electroniπ ì
- spreadshee⌠á prograφ whicΦ add≤ matri° operation≤ t∩á SuperCalc'≤ ì
- rangσáá oµá operatioεá unde≥á CP/MTMùá operatinτáá system«áá Thesσ ì
- operation≤ arσ
-
- 1 - Transposition along main diagonal
- 2 - Transposition along secondary diagonal
- 3 - Reflection in a row
- 4 - Reflection in a column
- 5 - Inversion (including calculation of determinant)
- ╢ - Findinτ Eigenvalue≤ anΣ Eigenvector≤ oµ symmetriπ matrices
- 7 - Solution of system of linear equations
- 8 - Addition of general matrices
- 9 - Subtraction of general matrices
- 10 - Multiplication of general matrices
-
- T∩á initiatσ onσ oµ thσ abovσ operation≤ thσ use≥ ha≤ t∩ specif∙ ì
- entr∙áá rangσá anΣá operatioεá type«áá Afte≥áá tha⌠áá ExtraCalc-▒ ì
- automaticall∙á transfer≤á datß froφ electroniπ speadshee⌠ t∩á thσ ì
- datß processinτ softwarσ (.CO═ type)¼á perform≤ computations¼ anΣ ì
- return≤ bacδ t∩ thσ spreadshee⌠ anΣ load≤ result≤ oµá computatioε ì
- int∩ ß designateΣ area« Thσ abovσ basicÖ operation≤ allo≈ thσ use≥ ì
- t∩á perforφ compositσ matri° operation≤ usinτ separatσ steps«á A⌠ ì
- thσá enΣ oµ thi≤ guidσ wσ illustratσ usσ oµ thσ packagσá fo≥á Do≈ ì
- Jone≤ inde° forecastinτ usinτ Leas⌠ Square≤ Technique«
-
- Afte≥áá installatioεá ExtraCalc-▒á doe≤á no⌠á becomσá ßá par⌠á oµ ì
- Supercalπá bu⌠á remain≤á ß separatσá entit∙á consistinτá oµá fou≥ ì
- permanen⌠á program≤ anΣ numbe≥ oµ permanen⌠ anΣ transien⌠á files« ì
- Becausσá i⌠á i≤ no⌠ ß templateÖ bu⌠ ß systeφ oµá machinσá languagσ ì
- file≤á (programs)¼á i⌠ allow≤ t∩ havσ al∞ oµ SuperCalc'≤ interna∞ ì
- memor∙ fo≥ speadshee⌠ calculation≤ and/o≥ templates«á ExtraCalc-▒ ì
- work≤á witΦá AN┘á sizσ oµ workshee⌠á tha⌠á SupecCalπá caεá handlσ ì
- withou⌠ occupyinτ ß singlσ bi⌠ oµ valuablσ speadshee⌠ memory«
-
- ExtraCalc-▒á i≤á thσá firs⌠ prograφ iεá thσá ExtraCalc-nÖá series« ì
- Futurσá release≤á oµá ExtraCalc-2TM¼áá ExtraCalc-3TM¼áá etc«á arσ ì
- intendeΣá t∩á supplemen⌠á SuperCalπ iε area≤á othe≥á thaεá Matri° ì
- Algebra«á Thσá labe∞ oε you≥ ExtraCalc-▒ mus⌠ matcΦ you≥ compute≥ ì
- systeφ anΣ thσ releasσ numbe≥ oµ you≥ SuperCalc«á Iµ not¼á ge⌠ iε ì
- toucΦá witΦ you≥ deale≥ o≥ witΦ Smirno÷á Associates¼ (617⌐964-6607.
-
- TMùá SuperCalπ i≤ thσ registereΣ trademarδ oµ Sorcim¼á CP/═ i≤ thσ ì
- registereΣ trademarδ oµ Digita∞ ResearcΦ Inc.¼á anΣá ExtraCalc-1¼ ì
- ExtraCalc-2¼áá etc«áá arσáá registereΣáá trademark≤á oµáá Smirno÷ ì
- AssociatesR.
- è2. SETTING UP ExtraCalc-1 SOFTWARE
-
-
-
-
- Wσá recommenΣ tha⌠ yo⌡ makσ backup≤ oµ al∞ distributioε diskette≤ ì
- immediatelyÖá t∩á avoiΣ accidenta∞ los≤ o≥ damagσá oµá ExtraCalc-▒ ì
- files (consult user guide for your system)«
-
- Please¼á notσ tha⌠ therσ i≤ n∩ systeφ oε thσ systeφ track≤ oµ thσ ì
- ExtraCalc-▒áá distributioεá diskettes«áá D∩á no⌠á boo⌠á t∩á thesσ ì
- diskette≤ !!í D∩ no⌠ exi⌠ froφ you≥ COP┘ o≥ PI╨ utilit∙ whilσ thσ ì
- distributioε diskettσ i≤ iε drivσ A«á Doinτ eithe≥ wil∞ producσ ß ì
- screeε ful∞ oµ garbagσ anΣ possibl∙ overwritσ diskette.
-
- Thσ ExtraCalc-▒ distributioε diskette/diskette≤ ma∙ bσ iεá singlσ ì
- density«á Iµ yo⌡ arσ usinτ doublσ density¼á makσ ß doublσ densit∙ ì
- copy«á Afte≥á yo⌡á havσ madσ thσ copy¼á pu⌠ ß cop∙ oµá you≥á CP/═ ì
- systeφ oε it≤ systeφ tracks«
-
- .PA
- è a. Distribution Diskettes
-
-
- Diskettσá o≥á diskette≤ tha⌠ yo⌡ havσ receiveΣ witΦá thi≤á manua∞ ì
- contaiεá thσá followinτ file≤ (sizσ i≤ giveε fo≥á singlσá densit∙ ì
- versioε - roundeΣ t∩ highe≥ eveε #)
-
- OP.CO═ (8k)é i≤ thσ Matri° Operation≤ Manage≥ program«á I⌠á serve≤ ì
- a≤á interfacσ betweeε SuperCalπ anΣ thσ numbe≥ processinτ par⌠ oµ ì
- ExtraCalc-1« Thi≤ prograφ als∩ support≤ selectioε oµ ß particula≥ ì
- matri° operatioε b∙ user.
-
- OP04.CO═ (32k)é i≤ thσ firs⌠ oµ threσ number-crunchingÖ program≤ oµ ì
- ExtraCalc-1« I⌠ perform≤ operations
-
- 1 - Transposition along main diagonal
- 2 - Transposition along secondary diagonal
- 3 - Reflection in a row
- 4 - Reflection in a column
- 8 - Addition
- 9 - Subtraction
- 10 - Multiplication
-
- remark: ## correspond to ## in program module
-
- OP13.CO═á (36k)éá i≤á thσá seconΣ oµá thσá abovσá mentioneΣá threσ ì
- programs« I⌠ perform≤ operation≤ of
-
- ╡á - Inversioεá(includinτ calculatioεáoµ determinant)
- 7 - Solution of a system of linear equations
-
- OP2.CO═ (40k)é i≤ thσ las⌠ onσ oµ three« I⌠ perform≤ operation
-
- ╢á - Findinτáof Eigenvalue≤áanΣ Eigenvectors
- of symmetric matrices
-
- MAT1.PRN¼á MAT2.PRN¼ MAT3.PR╬ (0δ each)é arσ Matri° OperandÖ files« ì
- The∙ currentl∙ don't contaiε anything.
-
- $.▒á (0k)é i≤ temporar∙ defaul⌠ SuperCalπ (.CAL⌐ typσ file«á I⌠ i≤ ì
- als∩ initiall∙ set a≤ zer∩ file.
-
- SAV.XQ╘á (2k)é i≤ thσ SuperCalπ eXecutσ (.XQT⌐ filσ tha⌠á prepare≤ ì
- speadshee⌠á anΣ defaul⌠ $.▒ filσ iε preparatioε fo≥á transfe≥á t∩ ì
- ExtraCalc-1.
-
- RES.XQ╘á (2k)é i≤ SuperCalπ eXecutσ filσ tha⌠ control≤ loadinτá oµ ì
- result≤ oµ computatioε froφ ExtraCalc-1.
- è b. ExtraCalc-1 Configuration - Single Density
-
- T∩ proceed¼á yo⌡ wil∞ neeΣ fou≥ blanδ diskettes« Wσ wil∞ cal∞ thσ ì
- firs⌠á - Maste≥ diskettσ (D1⌐ anΣ seconΣ througΦ fourtΦ - D2¼á D│ ì
- anΣ D┤ diskettes.
-
- 1«á Placσá you≥á CP/═á diskettσ iε drivσ ┴ anΣá thσá firs⌠á blanδ ì
- formatteΣá diskettσá (D1⌐á iε drivσá B«á Pres≤á RESE╘á anΣ ì
- carriagσ returε <CR╛ (o≥ d∩ othe≥ appropriatσ step≤ t∩ invokσ ì
- CP/═ - consul⌠ you≥ systeφ use≥ manual)
-
- 2. When you see A> prompt, type PIP<CR>.
-
- 3«á Wheεá yo⌡áseσ ¬ promp⌠, placσ firs⌠ distributioε diskettσá iε ì
- drive A and type
-
- *B:=A:OP.COM<CR>
- *B:=A:RES.XQT<CR>
- *B:=A:SAV.XQT<CR>
-
- note║á firs⌠ characte≥ (*⌐ iε abovσ threσ line≤ i≤ PI╨ prompt« ì
- D╧ NO╘ TYP┼ I╘ IN.
-
- 4«á Placσ diskettσ containinτ SuperCalπ (v1.1▓ anΣ up⌐ iε drivσ ┴ ì
- and type
-
- *B:=A:SC.*<CR>ì
-
- note║ S├ i≤ thσ namσ oµ SuperCalπ oε you≥ diskette
-
- 5«á Iµá yo⌡á havσ SUBMIT.CO═ o≥ simila≥ batcΦ processinτá utilit∙ ì
- placσ diskettσ containinτ i⌠ int∩ drivσ ┴ aεd type
-
- *B:=A:SUBMIT.COM
-
- 6«á Next¼á cop∙á CP/═ ont∩ you≥ Maste≥ disδ b∙ usinτá thσá SYSGE╬ ì
- utilit∙á (o≥á similar⌐ oε you≥ CP/═ disk«á T∩ d∩á this,inser⌠ ì
- you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛ ì
- prompt¼ type
-
- A>SYSGEN<CR>
-
- note 1: Do not type in CP/M prompt A>
- Specify A as the source and B as the destination
- note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
- t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
-
- 7. Put away your Master disk now (D1)
- è8«á Placσá you≥á CP/═á diskettσá iε drivσá ┴á anΣá seconΣá blanδ ì
- formatteΣá diskettσá (D2⌐ iε drivσ B«á Pres≤ ^├ o≥á d∩á othe≥ ì
- appropriatσ step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥á systeφ ì
- use≥ manual.
-
- 9. When you see A> prompt, type PIP<CR>.
-
- 10«áWheεá yo⌡ seσ ¬ promp⌠ placσ firs⌠ distributioε diskettσá iε ì
- drivσ ┴ anΣ type
-
- *B:=A:OP04.COM<CR>
- *B:=A:*.PRN<CR>
- *B:=A:$.1<CR>
-
- 11«áNext¼á cop∙á CP/═ ont∩ you≥ D▓ disδ b∙ usinτá thσá SYSGE╬ ì
- utilit∙á (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩ this¼á inser⌠ ì
- you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛ ì
- prompt¼ type
-
- A>SYSGEN<CR>
-
- note 1: Do not type in CP/M prompt A>
- Specify A as the source and B as the destination
- note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
- t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
-
- 12. Put away your D2 disk.
-
- 13« Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ third blanδ formatteΣ ì
- diskettσá (D3⌐ iε drivσ B«á Pres≤ ^├ o≥ d∩ othe≥á appropriatσ ì
- step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥ systeφ use≥ manual.
-
- 14. When you see A> prompt, type PIP<CR>.
-
- 15«áWheεá yo⌡ seσ ¬ promp⌠ placσ firs⌠ distributioε diskettσá iε ì
- drivσ ┴ anΣ type
-
- *B:=A:OP13.COM<CR>
- *B:=A:*.PRN<CR>
- *B:=A:$.1<CR>
-
- 16«áNext¼á cop∙á CP/═ ont∩ you≥ D│ disδ b∙ usinτ thσá SYSGE╬ ì
- utilit∙ (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩á this¼á inser⌠ ì
- you≥ CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσá A╛ ì
- prompt¼ type
-
-
- A>SYSGEN<CR>
- è note 1: Do not type in CP/M prompt A>
- Specify A as the source and B as the destination
- note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
- t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
-
- 17. Put away your D3 disk.
-
- 18« Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ fourth blanδ formatteΣ ì
- diskettσá (D4⌐ iε drivσ B«á Pres≤ ^├ o≥ d∩ othe≥á appropriatσ ì
- step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥ systeφ use≥ manual.
-
- 19. When you see A> prompt, type PIP<CR>.
-
- 20«áWheεá yo⌡ seσ ¬ promp⌠ placσ seconΣ distributioε diskettσ iε ì
- drivσ ┴ anΣ type
-
- *B:=A:OP2.COM<CR>
- *B:=A:*.PRN<CR>
- *B:=A:$.1<CR>
-
- 21«áNext¼á cop∙á CP/═ ont∩ you≥ D┤ disδ b∙ usinτá thσá SYSGE╬ ì
- utilit∙á (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩ this¼á inser⌠ ì
- you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛ ì
- prompt¼ type
-
- A>SYSGEN<CR>
-
- note 1: Do not type in CP/M prompt A>
- Specify A as the source and B as the destination
- note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
- t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
-
- 22«áPu⌠á awa∙á you≥ D┤ disk«á You≥á ExtraCalc-▒á SINGL┼á densit∙ ì
- configuratioε i≤ no≈ complete«
-
- .PA
- è c. System Configuration - Double Density
-
-
- T∩ proceed¼á yo⌡ wil∞ neeΣ tw∩ blanδ diskettes«á Wσ wil∞ cal∞ thσ ì
- firs⌠ - Maste≥ diskettσ (D1⌐ anΣ thσ seconΣ D2.
-
- 1«á Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ firs⌠ blanδ formatteΣ ì
- diskettσá (D1⌐á iε drivσ B«á Pres≤ RESE╘ anΣ carriagσá returε ì
- <CR╛ (o≥ d∩ othe≥ appropriatσ step≤ t∩ invokσ CP/═á - consul⌠ ì
- you≥ systeφ use≥ manual)
-
- 2. When you see A> prompt, type PIP<CR>.
-
- 3«á Wheεáyo⌡á seσ ¬ promp⌠, placσ firs⌠ distributioε diskettσá iε ì
- drive A and type
-
- *B:=A:*.COM<CR>
- *B:=A:RES.XQT<CR>
- *B:=A:SAV.XQT<CR>
-
- note║ firs⌠ characte≥ (*⌐ iε abovσ threσ line≤ i≤ PI╨ prompt« ì
- D╧ NO╘ TYP┼ I╘ IN.
-
- 4«á Placσ seconΣ distributioε diskettσ (witΦ OP2.COM⌐ iε drivσ ┴ ì
- (iµ yo⌡ receiveΣ onl∙ onσ diskettσ iε doublσ densityÖ leavσ i⌠ ì
- iε drivσ A:⌐ anΣ type
-
- *B:=A:*.COM
-
- 5«á Placσ diskettσ containinτ SuperCalπ (v1.1▓ anΣ up⌐ iε drivσ ┴ ì
- and type
-
- *B:=A:SC.*<CR>ì
-
- note║ S├ i≤ thσ namσ oµ SuperCalπ oε you≥ diskette
-
- 6«á Iµ yo⌡ havσ SUBMIT.CO═ o≥ a simila≥ batcΦ processinτáutilit∙, ì
- placσ diskettσ containinτ i⌠ int∩ drivσ ┴ aε type
-
- *B:=A:SUBMIT.COM
-
- 7«á Next¼á cop∙á CP/═ ont∩ you≥ Maste≥ disδ b∙ usinτ thσá SYSGE╬ ì
- utilit∙ (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩á this¼á inser⌠ ì
- you≥ CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσá A╛ ì
- prompt¼ type
-
-
- A>SYSGEN<CR>
- è note 1: Do not type in CP/M prompt A>
- Specify A as the source and B as the destination
- note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
- t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
-
- 8. Put away your Master disk now (D1)
-
- 9« Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ seconΣ blanδ formatteΣ ì
- diskettσá (D2⌐ iε drivσ B«á Pres≤ ^├ o≥ d∩ othe≥á appropriatσ ì
- step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥ systeφ use≥ manual.
-
- 10. When you see A> prompt, type PIP<CR>.
-
- 11«áWheεáyo⌡ seσ ¬ promp⌠, placσ firs⌠ distributioε diskettσá iε ì
- drivσ ┴ anΣ type
-
- *B:=A:*.PRN<CR>
- *B:=A:$.1<CR>
-
- 12«áNext¼á cop∙á CP/═ ont∩ you≥ D▓ disδ b∙ usinτ thσá SYSGE╬ ì
- utilit∙á (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩ this¼á inser⌠ ì
- you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛ ì
- prompt¼ type
-
- A>SYSGEN<CR>
-
- note 1: Do not type in CP/M prompt A>
- Specify A as the source and B as the destination
- note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
- t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
-
-
- No≈á pu⌠á awa∙á you≥ D▓ disk«á You≥á ExtraCalc-▒á DOUBL┼á densit∙ ì
- configuratioε i≤ no≈ complete«
- .PA
- è4. PRINCIPLES OF ExtraCalc-1 OPERATION. DEFINITIONS
-
- a. System Flowchart and Operation.
-
- Flowchar⌠ oµ ExtraCalc-▒ i≤ showε iε Figurσ ▒ below« Blacδ arrow≤ ì
- stanΣá fo≥á connection≤ betweeε prograφ file≤ whilσá grayÖá arrow≤ ì
- sho≈á connection≤ betweeε datß file≤ anΣ programs«á Thσ arro≈á i≤ ì
- blacδá anΣá gra∙ betweeε SuperCalπ anΣ $.▒ filσ becausσá oµá thσ ì
- structurσá oµá SuperCalπá files«á Pleasσ notσá tha⌠á gra∙á (data⌐ ì
- connection≤ arσ eithe≥ unidirectiona∞ (operanΣ MAT1¼ operanΣ MAT│ ì
- - inpu⌠ o≥ outpu⌠ file≤ only⌐ o≥ bidirectiona∞ (operanΣ MAT2).
-
- T∩ operatσ ExtraCalπ yo⌡ shoulΣ alway≤ havσ you≥ Maste≥á diskettσ ì
- iεá drivσ ┴ anΣ DnÖ diskettσ iε drivσ ┬ (nÖ ╜ ▓ fo≥ doublσ density¼ ì
- o≥ 2¼ 3¼ ┤ fo≥ singlσ densit∙ versions)« Thσ numbe≥ nÖ (fo≥ singlσ ì
- density⌐ i≤ defineΣ b∙ thσ typσ oµ operation≤ i⌠ performs:
-
- n = 2 for operations ## 1-4 and ## 8-10
- n = 3 for operations # 5 and # 7
- n = 4 for operations # 6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Figure 1
- èInteractioεá witΦá ExtraCalπá usuall∙á begin≤á iεá thσá SuperCalπ ì
- environment«á Iεá spreadshee⌠á yo⌡á shoulΣá specif∙á you≥á matri° ì
- operand≤á - MAT1¼á MAT▓ anΣ maybσ MAT│ (seσ nex⌠ section)«á Afte≥ ì
- tha⌠á yo⌡á havσá t∩á leavσá SuperCalπá anΣá ente≥á (manuall∙áá o≥ ì
- automatically⌐á thσá firs⌠ prograφ oµ ExtraCalc-1¼á whicΦ b∙á thσ ì
- way¼ alway≤ reside≤ oε drivσ ┴ (OP.COM).
-
- Afte≥ loadinτ itself¼á OP.CO═ wil∞ displa∙ thσ maiε men⌡ a≤ showε ì
- below:
-
- MATRIX OPERATIONS
-
- 1) TRANSPOSITION (MAIN DIAGONAL)
- 2) TRANSPOSITION (SECONDARY DIAGONAL)
- 3) REFLECTION IN A COLUMN
- 4) REFLECTION IN A ROW
- 5) INVERSION
- 6) EIGENVALUES AND EIGENVECTORS
- 7) SOLUTION OF SYSTEM OF LINEAR EQUATIONS
- 8) ADDITION
- 9) SUBTRACTION
- 10) MULTIPLICATION
-
-
- 11) EXIT TO SUPERCALC
-
-
- ENTER YOUR CHOICE:
-
- Dependinτá oε thσ choice≤ yo⌡ make¼á OP.CO═ wil∞ routσ yo⌡á t∩á ß ì
- numbe≥á oµá differen⌠á programs¼á tha⌠á (durinτá execution⌐á wil∞ ì
- providσáá yo⌡á witΦá differen⌠á run-time¼áá diagnostiπá o≥á erro≥ ì
- messages« Example≤ oµ typica∞ message≤ showε below
-
- CHAINING TO OPERATION # n
- SIZING THE MATRIX ...
- THE MATRIX IS p\q
- SIZING THE MATRIX ...
- THE MATRIX IS P1\Q1
- ERROR: WRONG OUTPUT MATRIX DIMENSIONS
-
- Afte≥á succesfu∞ computation≤ (n∩ ERRO╥ messages⌐ ExtraCalπá wil∞ ì
- returεá t∩ you≥ spreadshee⌠ (seσ sectioε oε automatiπá operation⌐ ì
- anΣ reaΣ iε result≤ int∩ you≥ spreadshee⌠ automatically«á Iε casσ ì
- oµá unsuccessfu∞á computation≤ (errors)¼á ExtraCalπ wil∞ iεá mos⌠ ì
- case≤á returεá yo⌡á t∩ thσ OP.CO═ prograφá anΣá asδá fo≥á furthe≥ ì
- instructions.
- .PA
- è b. Definitions of Matrix Operands
-
-
- ExtraCalc-▒ ha≤ provision≤ fo≥ threσ matri° operanΣ file≤ - MAT1¼ ì
- MAT▓ anΣ MAT3« OperanΣ file≤ arσ createΣ oε SuperCalπ leve∞ usinτ ì
- /Outpu⌠ commanΣ anΣ thereforσ havσ .PR╬ type.
-
- Thσá use≥á ha≤á t∩ creatσ tw∩ operanΣ file≤ (MAT▒ anΣá MAT2⌐á t∩ ì
- perforφáá unitaryÖáá operation≤áá (transpositions¼ááá reflections¼ ì
- inversion)
-
-
- MAT2 = operation {MAT1}
-
-
- o≥ threσ operanΣ file≤ (MAT1¼á MAT2¼ MAT3⌐ fo≥ binaryÖ operation≤ ì
- (addition¼ subtraction¼ multiplication¼ solutioε oµ systems)
-
-
- MAT3 = operation {MAT1, MAT2}
-
-
- anΣá fo≥á unitaryÖ operatioε witΦ binaryÖ outpu⌠á (eigenvalue≤á anΣ ì
- eigenvectors)
-
-
- {MAT2, MAT3} = operation {MAT1}
-
-
- Worksheet≤á iε SuperCalπ tha⌠ arσ useΣ t∩ derivσ matri°á operand≤ ì
- shoulΣ consis⌠ oµ number≤ witΦ o≥ withou⌠ underlyinτ formulae« N∩ ì
- BLANK≤á o≥á TEX╘ i≤ allowed«á BLANK≤ iεá workshee⌠á wil∞á producσ ì
- ExtraCalc-▒á ERRO╥ messagσ whilσ TEXT≤ wil∞ bσ interpreteΣ a≤ 0s« ì
- Dimension≤á oµá matrice≤á (size≤ oµ matri°á operands⌐á shoulΣá bσ ì
- consisten⌠ witΦ eacΦ othe≥ a≤ wel∞ a≤ witΦ matri° operatioε t∩ bσ ì
- performeΣ (seσ nex⌠ section).
-
- .PA
- è c. Matrices. Definitions of Operations.
- Determination of Operand sizes.
-
- Matrices:éá Herσ wσ formulatσ onl∙ basiπ definition≤ anΣá concept≤ ì
- oµ matri° algebrß tha⌠ werσ useΣ iε ExtraCalc-▒ design«á Iεá casσ ì
- use≥á doe≤á no⌠ completel∙ understanΣ thi≤ materia∞ o≥á need≤á t∩ ì
- kno≈ abou⌠ morσ advanceΣ concept≤ tha⌠ arσ mentioneΣ herσ withou⌠ ì
- explanation¼á wσá recommenΣ readinτ thσ firs⌠ fe≈ chapter≤ oµ an∙ ì
- booδ oε linea≥ o≥ matri° algebrß «
-
- ┴ matri° i≤ ß rectangula≥ arra∙ oµ term≤ calleΣ elements¼ sucΦ as
-
-
- 1 2 3 7 `` a11 a12 ``
- 3 4 0 4 or `` a21 a22 ``
- 5 6 7 -1 ` a31 a32 `
-
-
- ┴á rea∞ matrixÖ anΣ ß comple° matrixÖ arσ matrice≤á whosσá element≤ ì
- arσá rea∞á number≤ o≥ comple° number≤á respectively«á ExtraCalc-▒ ì
- work≤á witΦá rea∞ matrice≤ only«á T∩á perforφá calculation≤á witΦ ì
- comple°á number≤ onσ shoulΣ usσ compositeÖ matri° operation≤á (seσ ì
- sectioε below)«
-
- Thσ orderÖ o≥ dimensionÖ oµ ß matri° i≤ giveε b∙ statinτ thσ numbe≥ ì
- oµá row≤ (N⌐ anΣ theε thσ numbe≥ oµ column≤ (M⌐ iε thσ matri°á a≤ ì
- N\M«á Therefore¼á thσá abovσá matrice≤ arσ oµ 3\┤ anΣá 3\▓á orde≥ ì
- respectively.
-
- ┴ squareÖ matri° i≤ ß matri° fo≥ whicΦ thσ numbe≥ oµ row≤ i≤ equa∞ ì
- t∩ thσ numbe≥ oµ columns«
-
- Thσ diagona∞ froφ thσ uppe≥ lef⌠ corne≥ t∩ thσ lowe≥ righ⌠ corne≥ ì
- i≤á thσ principalÖ o≥ mainÖ diagonal«á Thσ diagona∞ froφ thσá lowe≥ ì
- lef⌠ corne≥ t∩ thσ uppe≥ righ⌠ corne≥ i≤ thσ secondaryÖ diagonal«
-
- Thσ determinantÖ oµ ß squarσ matri° i≤ thσ determinan⌠ obtaineΣ b∙ ì
- considerinτ thσ arra∙ oµ element≤ iε thσ matri° a≤ ß determinant«
-
- ┴ squarσ matri° i≤ singularÖ iµ it≤ determinan⌠ i≤ equa∞ t∩á zero« ì
- Otherwisσ i⌠ i≤ nonsingular.
-
- ┴á diagonalÖá matri°á i≤á ß squarσ matri°á witΦá al∞á it≤á nonzer∩ ì
- element≤ iε thσ principa∞ diagonal«
-
- Aεá identityÖ (o≥ unit⌐ matri° i≤ ß diagona∞ matri° whosσ element≤ ì
- iε thσ principa∞ diagona∞ arσ al∞ unity.
-
- èDefinition≤ oµ Operations« Determinatioε oµ OperanΣ sizes.
-
-
- 1) TRANSPOSITION (MAIN DIAGONAL)
- unitary operation
-
- Thσ transposσ oµ ß matri° alonτ maiε diagona∞ i≤ thσ matri°á (AT⌐ ì
- resultinτá froφá interchanginτ thσ row≤ anΣ column≤ iε thσá giveε ì
- matri°á (A⌐á alonτá thσ diagona∞ drawε froφ to≡á lef⌠á corne≥á t∩ ì
- bottoφ righ⌠ corner« Iµ
-
- A = {ai,j} then AT = {aj,i), i=1,2,...N, j=1,2,...M
-
- Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
- Therefore¼á iµá MAT▒á i≤ N\═ theε matri° MAT▓ shoulΣá bσá oµá M\╬ ì
- dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation«
-
-
- 2) TRANSPOSITION (SECONDARY DIAGONAL)
- unitary operation
-
- Thσ transposσ oµ ß matri° alonτ secondar∙ diagona∞ i≤ thσá matri° ì
- (At⌐á resultinτá froφ interchanginτ thσ row≤ anΣ column≤á iεá thσ ì
- giveεá matri° (A⌐ alonτ thσ diagona∞ drawε froφ to≡ righ⌠á corne≥ ì
- t∩ bottoφ lef⌠ corner« Iµ
-
- A = {ai,j} then At = {aM-j+1,N-i+1), i=1,2,...N, j=1,2,...M
-
- Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
- Therefore¼á iµá MAT▒á i≤á N\═ theε matri° MAT▓ shoulΣ bσá oµá M\╬ ì
- dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation.
-
-
- 3) REFLECTION IN A COLUMN
- unitary operation
-
- Thσá reflectioεá oµá ßá matri° iε ß columεá i≤á thσá matri°á (AC⌐ ì
- resultinτ froφ interchanginτ thσ row≤ iε thσ giveε matri° (A)« If
-
- A = {ai,j} then AC = {aN-i+1,j), i=1,2,...N, j=1,2,...M
-
- Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
- Therefore¼á iµ MAT▒ i≤ N\═ matri° theε MAT▓ shoulΣ als∩ bσ oµ N\═ ì
- dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation.
- .PA
- è4) REFLECTION IN A COLUMN
- unitary operation
-
-
- Thσá reflectioε oµ ß matri° iε ß ro≈ i≤ thσ matri° (AR⌐ resultinτ ì
- froφ interchanginτ thσ column≤ iε thσ giveε matri° (A)« If
-
- A = {ai,j} then AR = {ai,M-j+1), i=1,2,...N, j=1,2,...M
-
- Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
- Therefore¼á iµ MAT▒ i≤ N\═ matri° theε MAT▓ shoulΣ als∩ bσ oµ N\═ ì
- dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation.
-
-
- 5) INVERSION and calculation of determinants
- unitary operation
-
- Fo≥á ß nonsingularÖ squarσ matri° (A)¼á thσ inversσ (A-1⌐á i≤á thσ ì
- quotien⌠á oµ thσ adjointÖ oµ thσ matri° anΣ thσ determinantÖ oµ thσ ì
- matrix« Iµ A-1ù i≤ thσ inversσ oµ A¼ theε produc⌠ AA-1ù ╜ A-1┴ ╜ I¼ ì
- wherσ ╔ i≤ thσ identit∙ matrix«á Thσ inversσ i≤ defineΣ onl∙á fo≥ ì
- nonsingula≥á squarσá matrices«á MAT▒ shoulΣ thereforσ bσá oµá N\╬ ì
- dimensioε anΣ havσ ß non-zer∩ determinant« MAT▓ i≤ als∩ N\N« Iε ß ì
- thσá coursσá oµá thi≤á operatioε thσ determinan⌠á oµá ┴á i≤á als∩ ì
- calculated¼á checkeΣá fo≥á non-zero¼á anΣ storeΣ fo≥ usσá iεá thσ ì
- spreadsheet.
-
-
- 6) Eigenvalues and Eigenvectors.
- unitary operation with binary result
-
-
- Fo≥ ß squarσ matri° ANxN¼á thσ eigenvaluσ i≤ ß scala≥ ∞ fo≥ whicΦ ì
- therσ i≤ ß nonzer∩ columε matri° ° ╜ {x1,x2,...,xN² anΣ fo≥ which
-
- A.x = l.x
-
- Thσá vecto≥ ° i≤ aε eigenvectorÖ o≥ Öá characteristicÖá vector«á Thσ ì
- matri°á ┴ caε havσ ╬ eigenvalue≤ tha⌠ arσ a⌠ thσ samσ timσá root≤ ì
- oµ characteristicÖ equation
-
- det |B[ lI - A |E] = 0
-
- Characteristiπá root≤ arσ als∩ calleΣ latentÖá roots«á ExtraCalc-▒ ì
- caεá calculatσá botΦá thσ eigenvalue≤ anΣ thσ eigenvector≤á oµá ß ì
- symmetricÖá matri° A«á MAT▒ anΣ MAT│ shoulΣ bσ squarσ matrice≤á oµ ì
- N\╬á order«á MAT▓ shoulΣ havσ numbe≥ oµ element≤ greate≥ thaεá o≥ ì
- equa∞ t∩ N.
- è7) SOLUTION OF SYSTEM OF LINEAR EQUATIONS
- binary operation
-
-
- ┴á systeφá oµá simultaneousÖá linea≥á equation≤á i≤á ßá systeφá oµ ì
- equation≤ tha⌠ arσ linea≥ (oµ thσ firs⌠ degree⌐ iε thσ variables« ì
- Matri°á (A⌐á oµá coefficient≤ oµ ßá se⌠á oµá simultaneou≤á linea≥ ì
- equation≤á i≤á thσá rectangula≥á arra∙ lef⌠á afte≥á droppinτá thσ ì
- variable≤á froφá thσ equation≤ s∩ tha⌠ thσ coefficient≤á oµá likσ ì
- variable≤á arσ iε thσ samσ column≤ (zer∩ beinτ useΣ iµ ß terφá i≤ ì
- missing)« Iµ thσ systeφ oµ equation≤ is
-
-
- a11x1 + a12x2 + a13x3 + ... + a1MxM = d1
- a21x1 + a22x2 + a23x3 + ... + a2MxM = d2
- a31x1 + a32x2 + a33x3 + ... + a3MxM = d3
- ........................................
- aN1x1 + aN2x2 + aN3x3 + ... + aNMxM = dN
-
- then
-
-
- A = {ai,j} , i=1,2,3,...,N; j=1,2,3,...,M.
-
-
- Columε matri° (D⌐ oµ constan⌠ term≤ oµ thσ equation≤ above is
-
-
- D = {di}, i=1,2,3,...,N
-
-
- Thσ systeφ oµ linea≥ equatioε iε matri° forφ is¼ therefore¼ giveε ì
- by
-
- Ax = D
-
- wherσá ° ╜ {xi}¼á i=1,2,3,...,M«á AlthougΦ solutioε oµ thσ systeφ ì
- caεá als∩á bσ founΣ b∙ usinτ inversσ matri° A-1ù (a≤á °á ╜á A-1D)¼ ì
- ExtraCalc-▒ employ≤ ß differen⌠ procedurσ fo≥ solvinτ thσ system« ì
- Thσá methoΣ oµ solutioε i≤ b∙ elimination¼á usinτ larges⌠ pivota∞ ì
- divisor« EacΦ stagσ oµ eliminatioε consist≤ oµ interchanginτ row≤ ì
- wheε necessar∙ t∩ avoiΣ divisioε b∙ zer∩ o≥ smal∞ elements«
-
- T∩á avoiΣ error≤ MAT▒ (matri° A⌐ shoulΣ bσ oµá N\╬á order¼á whilσ ì
- MAT▓ (columε matri° D⌐ oµ N\1¼ anΣ MAT│ (vecto≥ x⌐ oµ N\▒ o≥ 1\N.
- .PA
- è8. ADDDITION
- binary operation
-
- Thσá suφá ┴á ½á ┬ oµ tw∩ matrice≤ ┴ anΣ ┬á i≤á thσá matri°á whosσ ì
- element≤á arσá formeΣ b∙ thσ rulσ tha⌠ thσ elemen⌠ iε ro≈á iÖá anΣ ì
- columεá jÖá i≤á thσ suφ oµ thσ element≤ aijù anΣ bijù iε ro≈á iÖá anΣ ì
- columε jÖ oµ ┴ anΣ B« Or¼ if
-
- A = {ai,j} and B = {bi,j} then A + B = {ai,j + bi,j}
-
- Thi≤ operatioε i≤ defineΣ onl∙ iµ ┴ anΣ ┬ havσ thσ samσ numbe≥ oµ ì
- row≤á anΣ thσ samσ numbe≥ oµ columns«á Thereforσ MAT1¼á MAT▓á anΣ ì
- MAT│ shoulΣ al∞ bσ oµ samσ dimensioε N\M.
-
-
- 9. SUBTRACTION
- binary operation
-
- Thσá differencσ ┴ - ┬ oµ tw∩ matrice≤ aµ matrice≤ ┴ anΣ ┬ i≤á thσ ì
- matri°á whosσ element≤ arσ formeΣ b∙ thσ rulσ tha⌠ thσ elemen⌠ iε ì
- ro≈ iÖ anΣ columε jÖ i≤ thσ differencσ oµ thσ element≤ aijù anΣá bijù ì
- iε ro≈ iÖ anΣ columε jÖ oµ ┴ anΣ B« Or¼ if
-
- A = {ai,j} and B = {bi,j} then A - B = {ai,j - bi,j}
-
- Thi≤ operatioε i≤ defineΣ onl∙ iµ ┴ anΣ ┬ havσ thσ samσ numbe≥ oµ ì
- row≤á anΣ thσ samσ numbe≥ oµ columns«á Thereforσ MAT1¼á MAT▓á anΣ ì
- MAT│ shoulΣ al∞ bσ oµ samσ dimensioε N\M.
-
-
- 10«áMULTIPLICATION
- binary operation
-
- Thσá produc⌠ A┬ oµ matrice≤ ┴ anΣ ┬ i≤ thσ matri° whosσá element≤ ì
- arσá determineΣ b∙ thσ rulσ tha⌠ thσ elemen⌠ cijù oµ matri° resul⌠ ì
- iεá ro≈á Θ anΣ columε Ω i≤ thσ suφ ove≥ kÖ oµ thσ produc⌠á oµá thσ ì
- elemen⌠ aikù iε ro≈ Θ anΣ columε kÖ oµ ┴ b∙ thσ elemen⌠ bkjù iεá ro≈ ì
- kÖ anΣ columε Ω oµ B:
-
- P
- C = ci,j = $#% aikbkj = A.B
- k=1
-
- herσá i=1,2,...,N╗áá j=1,2,...,M╗á k=1,2,...,P«á Thσá produc⌠á i≤ ì
- defineΣá onl∙á iµá thσ numbe≥ ═ oµ column≤ iε ┴ i≤ equa∞á t∩á thσ ì
- numbe≥ oµ row≤ iε B«á Therefore¼ MAT▒ shoulΣ bσ oµ N\╨ dimension¼ ì
- MAT▓ oµ P\═ anΣ MAT│ oµ N\M«á Iε al∞ othe≥ situation≤ ExtraCalc-▒ ì
- wil∞ senΣ an erro≥ messagσ t∩ thσ terminal..PO 8
- è4. OPERATING INSTRUCTIONS
-
- a. Manual Operation
-
- Iεá thi≤á sectioε wσ describσ al∞ thσ entrie≤ t∩ perforφá onσá oµ ì
- abovσá matri°á operation≤ wheε yo⌡ d∩ no⌠ wan⌠ t∩á usσá SuperCalπ ì
- eXecutσá file≤ and/o≥ programmablσ keys«á Keyinτ oµ operatioεá i≤ ì
- ver∙á slo≈ anΣ tediou≤ iε thi≤ case«á I⌠ i≤ no⌠ expecteΣ tha⌠ thσ ì
- averagσá use≥á wil∞ emplo∙ thi≤ optioεá often«á Manua∞á entr∙á i≤ ì
- presenteΣáá herσáá t∩á providσá completσá understandinτá oµáá ho≈ ì
- ExtraCalc-▒ work≤ anΣ interact≤ witΦ SuperCalπ anΣ CP/M.
-
- Al∞ expanation≤ belo≈ arσ giveε t∩ thσ righ⌠ oµ ";"« Line≤ markeΣ ì
- witΦá *ùá iε explanationsÖ arσ no⌠ necessar∙ bu⌠á makσá runninτá oµ ì
- spreadshee⌠á and/o≥á program≤ smoother«á No≈ inser⌠á you≥á Maste≥ ì
- diskettσá iεá drivσá A║á anΣá DnÖ diskettσá iεá drivσá B:«á Invokσ ì
- SuperCalπ anΣ creatσ samplσ worksheet.
-
- note: 1> is the SuperCalc prompt
-
- ^ ; Position the cursor UP*.
- =A1<CR> ; Move cursor to top left corner*.
- /SB:$.1,B┴ ╗ Save curren⌠ workshee⌠ iε backu≡ file $.1.
- /CA1:BK254,A1,V ; Eliminate formulae and text in worksheet.
- =A1<CR> ; Move cursor to top left corner*.
-
- /OCn1:m1,DB:MAT1,B<CR> ; Create operand MAT1=n1:m1.
- /OCn2:m2,DB:MAT2,B<CR> ; Create operand MAT2=n2:m2.
- /OCn3:m3,DB:MAT3,B<CR> ; Create operand MAT3=n3:m3.
- /QY ; Leave SuperCalc.
- O╨<CR> ╗ Star⌠ firs⌠ prograφ oµ ExtraCalc« In
- ╗áresponsσ t∩ ExtraCalπ-1á promp⌠
- ╗ use≥ wil∞ havσ t∩ ente≥ hi≤ choicσ ì
- ; of OPERATION (## 1:10) or EXIT code
- ╗áú 11«á ExtraCalc-▒ wil∞á terminatσ ì
- ╗áwitΦáSTO╨ámessage« A╛ i≤ CP/═ prompt
- SC<CR> ; Return to SuperCalc.
- /LB:$.1,A ; Load last version of spreadsheet.
- > ; Set cursor direction to the RIGHT.
- /GM ; Switch to manual recalculation.
- /XB:RES▒<CR> ╗áExecutσáfilσ RES1.XQ╘. It will load inì
- ; the result≤ oµ matri° operation.
- /XB:RES2<CR> ; Optional command used with operations # 5
- ; and # 6. In case of # 5 it will load value
- ; of matrix determinant in the first row, just
- ; above the current worksheet« Wheε useΣ afte≥
- ; operatioε ú ╢ i⌠ wil∞ loaΣ eigenvector≤ iε
- ; locatioε tha⌠ i≤ specified b∙ MAT3.
- è b. Using SuperCalc's XQT file≤
-
-
- Significan⌠ numbe≥ oµ entrie≤ iε 4a« i≤ eliminateΣ iµ onσ employ≤ ì
- powerfu∞ SuperCalπ eXecutσ optioε (versioε 1.1▓ anΣ higher⌐ tha⌠ ì
- allow≤ yo⌡ t∩ ruε sequence≤ oµ SuperCalπ command≤á automatically« ì
- Wσá wil∞á translatσ thσ sequencσ oµ statement≤ describeΣá iεá 4a« ì
- usinτ tw∩ eXecutσ file≤ - RES.XQ╘ anΣ SAV.XQT.
-
- /XSAV<CR>
- /OCn1:m1,DB:MAT1,B<CR>
- /OCn2:m2,DB:MAT2,B<CR>
- /OCn3:m3,DB:MAT3,B<CR>
- /QY
- O╨ ; Choice of operation ## 1:10 or EXIT # 11.
- SC RES<CR> ; It is allowed to specify XQT filename when
- ; SuperCalc is invoked.
- /XB:RES2<CR> ; Optional for operations 5 and 6.
-
-
- Here file SAV.XQT consists of
-
-
- ^
- =A1
- /SB:$.1,B┴
- /CA1:BK254,A1,V
- =A1
-
-
-
- and file RES.XQT is
-
-
- /LB:$.1,A
- >
- /GM
- /XB:RES▒ì
-
-
- note║á N∩á space≤á arσ alloweΣ iε .XQ╘ file≤ afte≥á las⌠á (right⌐ ì
- characte≥ oε eacΦ oµ lines.
- .PA
- è c« Usinτ Programmablσ Keys and XQT files
-
-
- Usinτ XQ╘ file≤ alread∙ simplifieΣ ExtraCalc-▒ operatioε t∩ onl∙ ì
- seveε line≤ oµ entrie≤ pe≥ matri° operation« Herσ wσ arσ goinτ t∩ ì
- sho≈á thσ conveniencσ oµ usinτ programmablσ key≤ t∩ reducσ numbe≥ ì
- oµá character≤ iε eacΦ linσ oµ entries«á Wσ recommenΣ t∩ usσá thσ ì
- followinτ programminτ fo≥ you≥ keys
-
-
- 0: /XSAV<CR>
- 1: ,DB:MAT1,B<CR>
- 2: ,DB:MAT2,B<CR>
- 3: ,DB:MAT3,B<CR>
- 6: /XB:RES2<CR>
- 7: /QY
- 9: /OC
-
-
-
- Iε thi≤ casσ thσ abovσ sequencσ oµ entrie≤ fo≥ onσ operatioε wil∞ ì
- looδ a≤ follows
-
- ^0
- ^9n1:m1^1 ; User should enter MATn ranges manually, of course.
- ^9n2:m2^2
- ^9n3:m3^3
- ^7
- O╨<CR> ; Choice of operation ## 1:10 or EXIT # 11.
- SC RES<CR>
-
- notσá 1║á N∩ space≤ arσ alloweΣ iε .XQ╘ file≤ afte≥ las⌠á (right⌐ ì
- characte≥ oε eacΦ oµ lines.
-
- notσ 2║á N∩ space≤ arσ alloweΣ iε ke∙ definitioε line≤ afte≥ las⌠ ì
- (right⌐ characte≥ oε thσ linσ.
-
- .PA
- è d. Automatic Operation
-
-
- T∩á providσ ß trul∙ efficien⌠ anΣ automaticÖ runninτ oµ ExtraCalc-ì
- 1¼á onσ shoulΣ usσ CP/M'≤ SUBMIT.CO═ utility«á I⌠ wil∞ securσá aε ì
- automatiπá transitioε betweeε SuperCalπ anΣ OP.CO═ (firs⌠ prograφ ì
- oµ ExtraCalc-1⌐ anΣ bacδ t∩ SuperCalπ spreadsheet«á Wσá recommenΣ ì
- usσ oµ filσ O.SU┬ whicΦ consist≤ oµ tw∩ lines
-
- OP
- SC RES
-
- anΣ to reprograφ ke∙ 7║ as follows
-
- 7: /QY1SUBMIT O<CR>
-
- No≈ thσ sequencσ oµ operation≤ become≤ ß ver∙ shor⌠ anΣ efficien⌠ ì
- onσ indeed
-
- ^0 ; Worksheet initialization.
- ^9n1:m1^1 ; Operand (MAT1) specification.
- ^9n2:m2^2 ; Operand (MAT2) specification.
- ^9n3:m3^3 ; Operand (MAT3) specification.
- ^7 ; ExtraCalc-1 will be invoked automatically. User
- ; should select one of ExtraCalc-1 options (1:11).
- ; SuperCalc will be automatically invoked at the
- ╗ácompletitioεáoµ selecteΣámatri° operation.
- ; Results of computation will be automatically
- ╗áloaded iε thσ area specified by outpu⌠ámatri°
- ; operanΣ MAT2 and/or MAT3.
-
-
- Le⌠ u≤ reminΣ thσ use≥ tha⌠ file≤ RES.XQT¼á SAV.XQ╘ anΣ O.SU┬ arσ ì
- provideΣá oεá thσá distributioε diskette«á You≥á key≤á shoulΣá bσ ì
- programmeΣ a≤ summarizeΣ below
-
-
- 0: /XSAV<CR>
- 1: ,DB:MAT1,B<CR>
- 2: ,DB:MAT2,B<CR>
- 3: ,DB:MAT3,B<CR>
- 6: /XB:RES2<CR>
- 7: /QY1SUBMIT O<CR>
- 9: /OC
-
-
- notσá 3║á Maste≥ diskettσ shoulΣ bσ unprotecteΣ iµ SUBMIT.CO═á i≤ ì
- used..PO 8
- è5. NUMERIC EXAMPLES
-
-
- Iε thσ firs⌠ examplσ (transpositition⌐ aε initia∞ speadshee⌠ wil∞ ì
- bσá thσ onσ presenteΣ oε Figurσ 2«á Forma⌠ oµ eacΦá examplσá wil∞ ì
- consis⌠ of
-
- a. Sequence of entries as outlined in section 4d. (Auto. Operation).
- b. Answer to ExtraCalc-1 prompt (there is only one)
- c. Resulting Speadsheet
- d. Comments (sometimes) and additional entry for operations 5, 6.
-
-
- .PO 0
-
-
- | A || B || C || D || E || F || G || H |
- 1| 1 2 3 4 5 6 7 8
- 2| 5 5 5 5 5 5 5 5
- 3| -1 1 -1 1 -1 1 -1 1
- 4| 2 4 2 1 4 5 5 6
- 5|
- 6|
- 7| 0 0 0 0 1 0
- 8| 0 0 0 0 2 0
- 9| 0 0 0 0 3 0
- 10| 0 0 0 0 4 0
- 11| 0 0 0 0 0
- 12| 0 0 0 0 0
- 13| 0 0 0 0 0
- 14| 0 0 0 0 0
- 15|
- 16|
- 17| 1 4 -6 -2 1 2 -3 4
- 18| 4 3 5 7 2 -3 4 7
- 19| -6 5 1 -1 5 3 0 6
- 20| -2 7 -1 3 7 -1 -5 -2
-
- .PO 8
-
- Figure 2
-
-
-
- Resultinτá spreadshee⌠á afte≥á eacΦ operatioε wil∞á servσá a≤á aε ì
- initia∞ speadshee⌠ oµ operatioε tha⌠ follow≤ it.
-
- note║á Kee≡á workshee⌠ number≤ iε DEFAUL╘ forma⌠ only«á Otherwisσ ì
- thσ ExtraCalc-▒ wil∞ misinterpre⌠ o≥ misusσ thσ data.
- .PA
- è1) TRANSPOSITION (MAIN DIAGONAL)
-
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 1<CR>
- ^9A1:H4^1 ``
- ^9A7:D14^2 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1| 1 2 3 4 5 6 7 8
- 2| 5 5 5 5 5 5 5 5
- 3| -1 1 -1 1 -1 1 -1 1
- 4| 2 4 2 1 4 5 5 6
- 5|
- 6|
- 7| 1 5 -1 2 1 0
- 8| 2 5 1 4 2 0
- 9| 3 5 -1 2 3 0
- 10| 4 5 1 1 4 0
- 11| 5 5 -1 4 0
- 12| 6 5 1 5 0
- 13| 7 5 -1 5 0
- 14| 8 5 1 6 0
- 15|
- 16|
- 17| 1 4 -6 -2 1 2 -3 4
- 18| 4 3 5 7 2 -3 4 7
- 19| -6 5 1 -1 5 3 0 6
- 20| -2 7 -1 3 7 -1 -5 -2
-
- .PO 8
-
- Figure 3
- .PA
- è2) TRANSPOSITION (SECONDARY DIAGONAL)
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 2<CR>
- ^9A7:D14^1 ``
- ^9A1:H4^2 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1| 6 5 5 4 1 2 4 2
- 2| 1 -1 1 -1 1 -1 1 -1
- 3| 5 5 5 5 5 5 5 5
- 4| 8 7 6 5 4 3 2 1
- 5|
- 6|
- 7| 1 5 -1 2 1 0
- 8| 2 5 1 4 2 0
- 9| 3 5 -1 2 3 0
- 10| 4 5 1 1 4 0
- 11| 5 5 -1 4 0
- 12| 6 5 1 5 0
- 13| 7 5 -1 5 0
- 14| 8 5 1 6 0
- 15|
- 16|
- 17| 1 4 -6 -2 1 2 -3 4
- 18| 4 3 5 7 2 -3 4 7
- 19| -6 5 1 -1 5 3 0 6
- 20| -2 7 -1 3 7 -1 -5 -2
-
- .PO 8
-
- Figure 4
- .PA
- è3) REFLECTION IN A COLUMN
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 3<CR>
- ^9A7:D14^1 ``
- ^9A7:D14^2 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1| 6 5 5 4 1 2 4 2
- 2| 1 -1 1 -1 1 -1 1 -1
- 3| 5 5 5 5 5 5 5 5
- 4| 8 7 6 5 4 3 2 1
- 5|
- 6|
- 7| 8 5 1 6 1 0
- 8| 7 5 -1 5 2 0
- 9| 6 5 1 5 3 0
- 10| 5 5 -1 4 4 0
- 11| 4 5 1 1 0
- 12| 3 5 -1 2 0
- 13| 2 5 1 4 0
- 14| 1 5 -1 2 0
- 15|
- 16|
- 17| 1 4 -6 -2 1 2 -3 4
- 18| 4 3 5 7 2 -3 4 7
- 19| -6 5 1 -1 5 3 0 6
- 20| -2 7 -1 3 7 -1 -5 -2
- .PO 8
-
-
- Figure 5
- .PA
- è4) REFLECTION IN A ROW
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 4<CR>
- ^9A7:D14^1 ``
- ^9A7:D14^2 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1| 6 5 5 4 1 2 4 2
- 2| 1 -1 1 -1 1 -1 1 -1
- 3| 5 5 5 5 5 5 5 5
- 4| 8 7 6 5 4 3 2 1
- 5|
- 6|
- 7| 6 1 5 8 1 0
- 8| 5 -1 5 7 2 0
- 9| 5 1 5 6 3 0
- 10| 4 -1 5 5 4 0
- 11| 1 1 5 4 0
- 12| 2 -1 5 3 0
- 13| 4 1 5 2 0
- 14| 2 -1 5 1 0
- 15|
- 16|
- 17| 1 4 -6 -2 1 2 -3 4
- 18| 4 3 5 7 2 -3 4 7
- 19| -6 5 1 -1 5 3 0 6
- 20| -2 7 -1 3 7 -1 -5 -2
- .PO 8
-
- Figure 6
- .PA
- è5) INVERSION
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 5<CR>
- ^9A17:D20^1 ``
- ^9E17:H20^2 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1| 6 5 5 4 1 2 4 2
- 2| 1 -1 1 -1 1 -1 1 -1
- 3| 5 5 5 5 5 5 5 5
- 4| 8 7 6 5 4 3 2 1
- 5|
- 6|
- 7| 6 1 5 8 1 0
- 8| 5 -1 5 7 2 0
- 9| 5 1 5 6 3 0
- 10| 4 -1 5 5 4 0
- 11| 1 1 5 4 0
- 12| 2 -1 5 3 0
- 13| 4 1 5 2 0
- 14| 2 -1 5 1 0
- 15|
- 16|
- 17| 1 4 -6 -2 .2206572 .1924882 .0892019 -.272300
- 18| 4 3 5 7 .1924882 .157277 .1948356 -.173709
- 19| -6 5 1 -1 .0892019 .1948357 .2488263 -.312207
- 20| -2 7 -1 3 -.272300 -.173709 -.312207 .4530516
- .PO 8
-
- Figure 7
- .PA
- è
-
-
- =================================================================
- d. To display value of determinant one should type in
-
- ^6
- =================================================================
-
-
- Resulting spreadsheet.
-
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 1 2 4 2
- 3| 1 -1 1 -1 1 -1 1 -1
- 4| 5 5 5 5 5 5 5 5
- 5| 8 7 6 5 4 3 2 1
- 6|
- 7|
- 8| 6 1 5 8 1 0
- 9| 5 -1 5 7 2 0
- 10| 5 1 5 6 3 0
- 11| 4 -1 5 5 4 0
- 12| 1 1 5 4 0
- 13| 2 -1 5 3 0
- 14| 4 1 5 2 0
- 15| 2 -1 5 1 0
- 16|
- 17|
- 18| 1 4 -6 -2 .2206572 .1924882 .0892019 -.272300
- 19| 4 3 5 7 .1924882 .157277 .1948356 -.173709
- 20| -6 5 1 -1 .0892019 .1948357 .2488263 -.312207
- 21| -2 7 -1 3 -.272300 -.173709 -.312207 .4530516
-
- .PO 0
-
- Figure 8
- .PA
- è6) EIGENVALUES AND EIGENVECTORS
-
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 6<CR>
- ^9E18:H21^1 ``
- ^9E12:H15^2 ``
- ^9E2:H5^3 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 1 2 4 2
- 3| 1 -1 1 -1 1 -1 1 -1
- 4| 5 5 5 5 5 5 5 5
- 5| 8 7 6 5 4 3 2 1
- 6|
- 7|
- 8| 6 1 5 8 1 0
- 9| 5 -1 5 7 2 0
- 10| 5 1 5 6 3 0
- 11| 4 -1 5 5 4 0
- 12| 1 1 5 4 .9334186
- 13| 2 -1 5 3 .1477654
- 14| 4 1 5 2 .0915645
- 15| 2 -1 5 1 -.092936
- 16|
- 17|
- 18| 1 4 -6 -2 .2206572 .1924882 .0892019 -.272300
- 19| 4 3 5 7 .1924882 .157277 .1948356 -.173709
- 20| -6 5 1 -1 .0892019 .1948357 .2488263 -.312207
- 21| -2 7 -1 3 -.272300 -.173709 -.312207 .4530516
- .PO 8
-
- Figure 9
- .PA
- è
-
- =================================================================
- d. To display Eigenvectors one should type in
-
- ^6
- =================================================================
-
-
- Resulting spreadsheet.
-
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 .4196722 -.742605 -.021986 -.521469
- 3| 1 -1 1 -1 .3744284 -.191104 .7270643 .5428264
- 4| 5 5 5 5 .4711288 .6290308 .3184456 -.530048
- 5| 8 7 6 5 -.679497 -.127817 .6078543 -.390461
- 6|
- 7|
- 8| 6 1 5 8 1 0
- 9| 5 -1 5 7 2 0
- 10| 5 1 5 6 3 0
- 11| 4 -1 5 5 4 0
- 12| 1 1 5 4 .9334186
- 13| 2 -1 5 3 .1477654
- 14| 4 1 5 2 .0915645
- 15| 2 -1 5 1 -.092936
- 16|
- 17|
- 18| 1 4 -6 -2 .2206572 .1924882 .0892019 -.272300
- 19| 4 3 5 7 .1924882 .157277 .1948356 -.173709
- 20| -6 5 1 -1 .0892019 .1948357 .2488263 -.312207
- 21| -2 7 -1 3 -.272300 -.173709 -.312207 .4530516
-
-
- .PO 8
-
- Figure 10
- .PA
- è 7) SOLUTION OF SYSTEM OF LINEAR EQUATIONS
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 7<CR>
- ^9A18:D21^1 ``
- ^9F8:F11^2 ``
- ^9H8:H11^3 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 .4196722 -.742605 -.021986 -.521469
- 3| 1 -1 1 -1 .3744284 -.191104 .7270643 .5428264
- 4| 5 5 5 5 .4711288 .6290308 .3184456 -.530048
- 5| 8 7 6 5 -.679497 -.127817 .6078543 -.390461
- 6|
- 7|
- 8| 6 1 5 8 1 -.215962
- 9| 5 -1 5 7 2 .3967136
- 10| 5 1 5 6 3 -.023474
- 11| 4 -1 5 5 4 .2558685
- 12| 1 1 5 4 .9334186
- 13| 2 -1 5 3 .1477654
- 14| 4 1 5 2 .0915645
- 15| 2 -1 5 1 -.092936
- 16|
- 17|
- 18| 1 4 -6 -2 .2206572 .1924882 .0892019 -.272300
- 19| 4 3 5 7 .1924882 .157277 .1948356 -.173709
- 20| -6 5 1 -1 .0892019 .1948357 .2488263 -.312207
- 21| -2 7 -1 3 -.272300 -.173709 -.312207 .4530516
-
- .PO 8
- Figure 11
-
- ExtraCalc-▒á wil∞á displa∙ (durinτ execution⌐ ß valuσ oµá minima∞ ì
- pivo⌠á tha⌠ wa≤ useΣ iε computations«á Iµ i⌠ think≤ tha⌠ pivo⌠ i≤ ì
- to∩ smal∞, thσ warning
-
- SYSTEM IS ALMOST SINGULAR
-
- wil∞á bσá displayed«á I⌠ doe≤ no⌠ alway≤ meaεá tha⌠á solutioεá i≤ ì
- incorrec⌠ o≥ no⌠ precisσ bu⌠ serve≤ t∩ aler⌠ thσ user.
- .PA
- è 8) ADDITION
-
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 8<CR>
- ^9A2:H5^1 ``
- ^9A18:H21^2 ``
- ^9A18:H21^3 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 .4196722 -.742605 -.021986 -.521469
- 3| 1 -1 1 -1 .3744284 -.191104 .7270643 .5428264
- 4| 5 5 5 5 .4711288 .6290308 .3184456 -.530048
- 5| 8 7 6 5 -.679497 -.127817 .6078543 -.390461
- 6|
- 7|
- 8| 6 1 5 8 1 -.215962
- 9| 5 -1 5 7 2 .3967136
- 10| 5 1 5 6 3 -.023474
- 11| 4 -1 5 5 4 .2558685
- 12| 1 1 5 4 .9334186
- 13| 2 -1 5 3 .1477654
- 14| 4 1 5 2 .0915645
- 15| 2 -1 5 1 -.092936
- 16|
- 17|
- 18| 7 9 -1 2 .6403294 -.550117 .0672158 -.793769
- 19| 5 2 6 6 .5669166 -.033827 .9218999 .3691175
- 20| -1 10 6 4 .5603307 .8238665 .5672719 -.842254
- 21| 6 14 5 8 -.951798 -.301526 .2956478 .0625908
- .PO 8
-
-
- Figure 12
- .PA
- è 9) SUBTRACTION
-
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 9<CR>
- ^9A2:H5^1 ``
- ^9A18:H21^2 ``
- ^9A18:H21^3 ``
- ^7 `
- =================================================================
- c.`
- ==
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 .4196722 -.742605 -.021986 -.521469
- 3| 1 -1 1 -1 .3744284 -.191104 .7270643 .5428264
- 4| 5 5 5 5 .4711288 .6290308 .3184456 -.530048
- 5| 8 7 6 5 -.679497 -.127817 .6078543 -.390461
- 6|
- 7|
- 8| 6 1 5 8 1 -.215962
- 9| 5 -1 5 7 2 .3967136
- 10| 5 1 5 6 3 -.023474
- 11| 4 -1 5 5 4 .2558685
- 12| 1 1 5 4 .9334186
- 13| 2 -1 5 3 .1477654
- 14| 4 1 5 2 .0915645
- 15| 2 -1 5 1 -.092936
- 16|
- 17|
- 18| -1 -4 6 2 -.220657 -.192488 -.089202 .2723004
- 19| -4 -3 -5 -7 -.192488 -.157277 -.194836 .1737089
- 20| 6 -5 -1 1 -.089202 -.194836 -.248826 .3122066
- 21| 2 -7 1 -3 .2723004 .1737089 .3122065 -.453052
- .PO 8
-
-
- Figure 13
- .PA
- è 10) MULTIPLICATION
-
-
- =================================================================
- a. `` b.
- ``
- ^0 `` 10<CR>
- ^9A18:D21^1 ``
- ^9E18:H21^2 ``
- ^9E2:H5^3 ``
- ^7 `
- =================================================================
- c.`
- ==
-
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 .9999994 -2.09e-7 -.000001 .0000004
- 3| 1 -1 1 -1 .0000001 1 .0000002 -2.38e-7
- 4| 5 5 5 5 0 .0000004 .9999997 -2.98e-7
- 5| 8 7 6 5 -1.19e-7 .0000003 -2.38e-7 .9999999
- 6|
- 7|
- 8| 6 1 5 8 1 -.215962
- 9| 5 -1 5 7 2 .3967136
- 10| 5 1 5 6 3 -.023474
- 11| 4 -1 5 5 4 .2558685
- 12| 1 1 5 4 .9334186
- 13| 2 -1 5 3 .1477654
- 14| 4 1 5 2 .0915645
- 15| 2 -1 5 1 -.092936
- 16|
- 17|
- 18| -1 -4 6 2 -.220657 -.192488 -.089202 .2723004
- 19| -4 -3 -5 -7 -.192488 -.157277 -.194836 .1737089
- 20| 6 -5 -1 1 -.089202 -.194836 -.248826 .3122066
- 21| 2 -7 1 -3 .2723004 .1737089 .3122065 -.453052
- .PO 8
-
- Figure 14
- .PA
- èAfte≥á reformattinτá
-
-
-
- /FE2:H5,$<CR>
-
- .PO 0
-
- | A || B || C || D || E || F || G || H |
- 1|DET= -852.000
- 2| 6 5 5 4 1.00 .00 .00 .00
- 3| 1 -1 1 -1 .00 1.00 .00 .00
- 4| 5 5 5 5 .00 .00 1.00 .00
- 5| 8 7 6 5 .00 .00 .00 1.00
- 6|
- 7|
- 8| 6 1 5 8 1 -.215962
- 9| 5 -1 5 7 2 .3967136
- 10| 5 1 5 6 3 -.023474
- 11| 4 -1 5 5 4 .2558685
- 12| 1 1 5 4 .9334186
- 13| 2 -1 5 3 .1477654
- 14| 4 1 5 2 .0915645
- 15| 2 -1 5 1 -.092936
- 16|
- 17|
- 18| -1 -4 6 2 -.220657 -.192488 -.089202 .2723004
- 19| -4 -3 -5 -7 -.192488 -.157277 -.194836 .1737089
- 20| 6 -5 -1 1 -.089202 -.194836 -.248826 .3122066
- 21| 2 -7 1 -3 .2723004 .1737089 .3122065 -.453052
-
- .PO 8
-
- Figure 14a
-
-
-
- I⌠ i≤ clea≥ tha⌠ thσ resul⌠ (E2:H5⌐ i≤ aε identit∙ matrix« .PO 8
- .PA
- è6. COMPOSITE OPERATIONS. APPLICATIONS.
-
- Usinτá successivσá matri°á operation≤ a≤ outlineΣ abovσá onσá ma∙ ì
- solvσá ßá tremendou≤ numbe≥ oµ morσ comple°á problem≤á oµá matri° ì
- algebra¼á operation≤ research¼ anΣ iε general¼ man∙ problem≤ tha⌠ ì
- allo≈á matri°á description«á Iε thi≤ sectioε wσá wil∞á illustratσ ì
- time-serie≤á analysi≤á usinτ ß s∩ calleΣ Leas⌠ Square≤á Techiquσ ì
- whicΦá serve≤ a≤ ß foundatioε oµ linea≥ anΣ nonlinea≥á regressioε ì
- analysis.
-
- a. Least Squares Technique
-
- Suppose that we have made a series of observations
-
- t1,y1,t2,y2,...,tN,yN
-
- tk can be interpreted as time instants, while
- yk is observed value (price, temperature, etc.)
-
- I⌠á i≤ ofteε assumeΣ tha⌠ thσ observeΣ valuσ (y⌐ i≤ ß functioε oµ ì
- time (t), or
-
- y = y(t) (1)
-
- Defininτá thi≤á dependenc∙ iε ß morσ specifiπ wa∙á wσá ofteεá ma∙ ì
- writσ it down as
- M
- y = $#% ap.fp(t) (2)
- p=1
-
- where ap are constants, and
- fp(t⌐á arσ choseε systeφ oµ function≤ sucΦ a≤á polynomials¼ ì
- trigonometriπ functions¼ exponential≤ anΣ s∩ on.
-
- Example≤ oµ fpù arσ t2ù ½ ⌠ -3¼á sin3t-con5t¼ e-2tù - -t1« Iε thσ casσ ì
- oµ polynomia∞ regressioε fp(t⌐ ╜ tp« Oµ coursσ wσ ma∙ rewritσ (2⌐ ì
- fo≥ aε arbitrar∙ k-tΦ observation
-
- M
- yk = $#% ap.fp(tk), k=1,2,...,N (3)
- p=1
-
- Or in the matrix form
-
-
- ┘ ╜ ╞ «áa¼á FNxMù ╜ {fp(tk}¼áaMx1ù ╜ {ap} (4)
-
- Thσ probleφ oµ Leas⌠ Square≤ Techiquσ i≤ t∩ finΣ vecto≥ ß ╜ {ap}¼ ìèp=1,2,...,M╗ tha⌠ minimize≤ ß form
-
-
- N M
- |B[ Y - F.a |E]2 = $#% |B[ yk - $#% ap.fp(tk) |E]2 (5)
- k=1 p=1
-
- B∙ takinτ partia∞ derivative≤ witΦ respec⌠ t∩ apù anΣ puttinτ theφ ì
- equa∞ t∩ zer∩ wσ have
-
-
- FT.F.a = FT.Y (6)
-
- Thereforσ apù caε bσ founΣ iε fivσ step≤ usinτ ExtraCalc-1
-
-
- 1) Calculate matrix F using SuperCalc built in functions
-
- 2) Calculate transpose of F using ExtraCalc-1
-
- 3) Calculate FT.F = A
-
- 4) Calculate FT.Y = D
-
- 5) Solve system of equations A.a = D with respect to a.
-
- Applications to forecasting and trend analysis
-
- T∩á usσá thσá obtaineΣá regresioεá model¼á onσá simpl∙á ma∙á pluτ ì
- differen⌠áá number≤áá specifyinτá tkùá outsidσá oµáá interva∞áá oµ ì
- observation«á Iµ thσ systeφ oµ fpù function≤ wa≤ choseεá correctl∙ ì
- (baseΣ oε somσ theoretica∞ analysi≤ oµ process¼á o≥ b∙ shee≥ lucδ ì
- thσ predictioε caε bσ ver∙ precise« Oµ coursσ onσ shoulΣ no⌠ takσ ì
- moment≤á oµá timσ tkù to∩ fa≥ iε thσ futurσ bu⌠ rathe≥ iε 5Ñá - 7Ñ ì
- rangσ oµ observatioε interva∞ length«
-
- Fo≥á morσá informatioεá oεá ho≈á t∩á usσá regressioεá model≤áá iε ì
- forecasting¼ interpolatioε anΣ trenΣ analysi≤ onσ shoulΣ refe≥ t∩ ì
- aε appropriatσ booδ oε Probability and Statistics.
-
-
- b. Numeric Example: Dow Jones Regression Model.
-
- A≤ aε illustratioε oµ abovσ techniquσ wσ wil∞ conside≥ ßá probleφ ì
- oµ D╩ forecasting«á Ou≥ initia∞ spreadshee⌠ i≤ showε oε Figurσ 1╡ ì
- anΣá consist≤á oµá tw∩ column≤ oµ ~10░á observations«á Thσá firs⌠ ì
- columεá i≤á ß datσ oµ observation¼á whilσ thσ seconΣá i≤á closinτ ì
- valuσ oµ D╩ inde° (Pk⌐ oε thi≤ (k-th⌐ week.
- è.PN 39
- .OP
- Wσá wil∞ usσ firs⌠ 5░ observation≤ t∩ obtaiε thσ mode∞ anΣá late≥ ì
- usσ othe≥ 5▓ observation≤ t∩ comparσ actua∞ anΣ forecasteΣ value≤ ì
- of Dow index.
-
-
- 1⌐ Le⌠ u≤ firs⌠ blanδ thσ las⌠ 5▓ row≤ oµ observation≤ anΣ definσ ì
- fp(tk⌐ as
-
-
- fp(tk⌐ ╜ a1.Pk-1ù ½ a2.(Pk-2-Pk-1⌐ ½ a3.(Pk-3-Pk-2⌐ ½ a4.(Pk-4-Pk-3)
-
-
- I⌠á i≤ goinτ t∩ meaε tha⌠ Presen⌠ Valuσ oµ D╩ inde° i≤ ß functioε ì
- oµ last four week indices«
-
-
- Sequencσ oµ SupecCalπ statementsÖ fo≥ thσ abovσ wil∞ be
-
-
- /BA52:B102<CR>
- >
- =C6
- B5<CR>
- B5-B4<CR>
- B4-B3<CR>
- B3-B2<CR>
- /RC6:F6,C7:C51<CR>
- !
-
- Resultinτá matri° (F⌐ i≤ 46\┤ anΣ occupie≤ workshee⌠ C6:F5▒á (seσ ì
- Figurσ 16).
- .PA
- è.PN 41
- .OP
- 2) Calculate transpose of F using ExtraCalc-1.
-
- Sequence of SuperCalc and ExtraCalc-1 statements for this will be
-
- =C2
- 0
- /RC2,D2:AV2<CR>
- /RC2:AV2,C3:C5<CR>
- ^0
- ^9C6:F51^1
- ^9C2:AV5^2
- ^7
-
- Answer to ExtraCalc-1 prompt is 1.
-
- 3) Calculate FT.F = A
-
- Sequence of ExtraCalc-1 statements for this will be
-
- ^0
- ^9C2:AV5^1
- ^9C6:F51^2
- ^9C6:F9^3
- ^7
-
- Answe≥ t∩ ExtraCalc-▒ promp⌠ i≤ 10«á Afte≥ thi≤ operatioε wσá ma∙ ì
- blanδá unnecessar∙á no≈ part≤ oµ worksheet«á Wheεá creatinτá MATnÖ ì
- (matri° operand⌐ KEE╨ WORKSHEE╘ I╬ DEFAULTÖ FORMA╘ ONL┘ !!!
-
- /BC10:F51<CR>
-
- 4) Calculate FT.Y = D
-
- Sequence of ExtraCalc-1 statements for this will be
-
- ^0
- ^9B6:B51^2
- ^9C2:C5^3
- ^7
-
- Answe≥á t∩ ExtraCalc-▒ promp⌠ i≤ 10«á Afte≥ thi≤ operatioε wσ ma∙ ì
- blanδá unnecessar∙á no≈ part≤ oµá worksheet«á KEE╨á WORKSHEE╘á I╬ ì
- DEFAULTÖ FORMA╘ ONL┘ !!!
-
- /BD2:AV5<CR>
- Resulting worksheet is shown below (Figure 17).
- .PA
- è.PN 43
- .OP
- 5) Solve system of equations A.a = D with respect to a.
-
-
- Sequence of ExtraCalc-1 statements for this will be
-
- ^0
- ^9C6:F9^1
- ^9C2:C5^2
- ^9C2:C5^3
- ^7
-
- Answe≥á t∩ ExtraCalc-▒ promp⌠ i≤ 7«á Afte≥ thi≤ operatioε wσá ma∙ ì
- now blanδ unnecessar∙ part≤ oµ workshee⌠.
-
- /BC6:F9<CR>
-
- Resulting worksheet is shown below (Figure 18).
- .PA
- è.PN 45
- .OP
- Le⌠á u≤á no≈ creatσ ß workshee⌠ t∩ comparσ actua∞ anΣá forecasteΣ ì
- value≤ oµ Do≈ Jone≤ index«á First¼á wσ replacσ thσ analyzeΣá datß ì
- witΦá ne≈á se⌠ oµ datß usinτ thσ followinτ sequencσ oµá SuperCalπ ì
- statements
-
- /BA2:B51<CR>
- /LB:DOW.CAL,PA48:B102,A2,V
-
- Le⌠á u≤á theεá calculatσá forecasteΣ value≤á iεá columεá dÖá usinτ ì
- obtaineΣ value≤ oµ ap¼ p=1,2,3,┤ (entr∙ C2:C5)«
-
-
- =D6<CR>
- C2*B5+C3*(B5-B4)+C4*(B4-B3)+C5*(B3-B2)<CR>
- /RD6,D7:D56,ANYYNYYNYYNYY
- !
-
- Resulting spreadsheet is shown on Figure 19.
-
- .PA
- è.PN 47
- .OP
- Fo≥ comparisoε oµ actua∞ anΣ forecasteΣ value≤ oµ inde° yo⌡á havσ ì
- t∩ ente≥ followinτ (SuperCalc)
-
- >
- =C6
- IF(((B6-B5)*(D6-B5)>0,C5+1,C5)
- /RC6,C7:C56<CR>
- =C6
- IF(((B6-B5)*(D6-B5)>0,C1+1,C1)
- =C1
- 0
- =B57<CR>
- " %=
- C56*100/(52-5)
- !
-
- Tota∞á Ñá oµá correc⌠á prediction≤ i≤á ~52Ñá anΣá is¼á obviously¼ ì
- unsatisfactor∙á (Fiτá 20)¼á althougΦá onσá ma∙á noticσá tha⌠á thσ ì
- predictioεá wa≤á ver∙á gooΣá fo≥ firs⌠ fe≈á week≤á (seσá analysi≤ ì
- below).
- .PA
- è.PN 49
- .OP
- Let'≤á looδá a⌠á ho≈ thσ predictioεá accurac∙á change≤á witΦá thσ ì
- distancσá froφ B╡ (las⌠ datß useΣ iε regressioε model)«á Let'≤ d∩ ì
- followinτ transformations
-
- =D5
- "Dow.Fore
- =E5
- " % =
- =F5
- "# of Forecast
- =F6
- 1
- =F7
- F6+1
- /RF7,F8:F56<CR>
- =E6
- 100*C6/F6
- /RE6,E7:E56<CR>
-
- A≤á i⌠ caε bσ seeε (Figurσ 21)¼á forecasteΣ value≤ oµ D╩ movσá iε ì
- thσá samσá directioεá a≤á nex⌠ week actua∞ value≤á iεá 100Ñá case≤ ì
- THROUG╚ 4tΦ week«á Iε othe≥ words¼ wσ shoulΣ recalculatσ apù ever∙ ì
- 4-╡ week≤ at least t∩ ge⌠ ß gooΣ prediction.
- .PA
- è.PN 51
- .OP
- 7. ExtraCalc-1 ERROR MESSAGES
-
-
- Thσ ExtraCalc-▒ detect≤ tw∩ kind≤ oµ errors║á Warning≤ anΣá Fata∞ ì
- Errors«á Wheεá ß Warninτ i≤ issued¼á executioε contro∞ return≤ t∩ ì
- ExtraCalc-▒ manage≥ prograφ OP.COM«á Wheε ß Fata∞ Erro≥ i≤ found¼ ì
- ExtraCalc-▒ cease≤ executioε anΣ contro∞ i≤ returneΣ t∩ operatinτ ì
- systeφ (batcΦ filσ under SUBMIT.COM, iµ yo⌡ usσ one).
-
- Examples of Warnings:
-
- OP.COM
-
- no error messages in OP.COM program
-
-
- OP04.COM
-
- ERROR: WRONG OUTPUT MATRIX DIMENSIONS
- ERROR: DIMENSIONS OF INPUT MATRICES
- DO NOT MATCH
-
-
- OP13.COM
-
- ERROR: NON-SQUARE INPUT MATRIX
- ERROR: NON-SQUARE OUTPUT MATRIX
- ERROR: NON-SQUARE SYSTEM MATRIX
- ERROR: NON-MATCHING SYSTEM VECTOR
- ERROR: NON-MATCHING OUTPUT VECTOR
-
- MATRIX DETERMINANT = 0.0
- INVERSION CANNOT BE COMPLETED
-
- NO SOLUTION OBTAINED: SINGULAR SYSTEM)
-
- MINIMAL PIVOT = xxx
- !!! SYSTEM IS ALMOST SINGULAR
- AVERAGE PIVOT = xxx
-
-
- OP2.COM
-
- ERROR: NON-SQUARE INPUT MATRIX
- ERROR: WRONG OUTPUT MATRIX DIMENSIONS (MAT3)
- ERROR: OUTPUT FILE SIZE = N1 < N = REQUIRED
-
-
- èFatal Error Messages are surrounded by asterisks as follows
-
- **XX** at address XXXX**
-
- Iµá yo⌡á encountereΣ Fata∞ Erro≥ messagσ firs⌠ checδá ExtraCalc-▒ ì
- anΣá SuperCalπ file≤ location«á Imprope≥ occurencσ o≥ absencσá oµ ì
- thσ onσ oε specifieΣ drivσ i≤ onσ oµ thσ primar∙ reasoε fo≥ Fata∞ ì
- Error« Nex⌠ checδ logiπ oµ you≥ computatioε witΦ ExtraCalc-1.
-
- Iµá yo⌡ arσ no⌠ ablσ t∩ detec⌠ ß causσ fo≥ Fata∞á Error¼á please¼ ì
- recorΣáá al∞á circumstance≤á oµá it≤á occurencσá anΣá mai∞áá thi≤ ì
- informatioεá t∩ Smirno÷ Associates«á Normall∙ i⌠ i≤ no⌠á expecteΣ ì
- tha⌠ yo⌡ registe≥ Fata∞ Erro≥ messagσ iµ you≥ systeφ i≤ correctl∙ ì
- configured.
-
-
- ThirΣ kinΣ oµ erro≥ message≤ ma∙ comσ froφ you≥ operatinτ system« ì
- Please refer to your user's manual for guidance.