home *** CD-ROM | disk | FTP | other *** search
/ CP/M / CPM_CDROM.iso / cpm / programs / spredsht / extrcal1.ark / MANUAL < prev    next >
Encoding:
Text File  |  1986-12-04  |  70.9 KB  |  1,810 lines

  1. .PO 8
  2. .MB 15
  3. .PN 1
  4. .HE                                                                -#-   
  5. .OP
  6. `14           EXTRACALC-1
  7.                            Release 1.2
  8.  
  9.  
  10.  
  11.  
  12. ============================CONTENTS=============================
  13.  
  14.  
  15. 1. INTRODUCTION                                            2
  16.  
  17. 2. SETTING UP ExtraCalc-1 SOFTWARE                         3
  18.  
  19.    a.  Distribution Diskettes                              4
  20.    b.  System Configuration - Single Density               5
  21.    c.  System Configuration - Double Density               8
  22.  
  23. 3. PRINCIPLES OF ExtraCalc-1 OPERATION. DEFINITIONS       10 
  24.  
  25.    a.  System Flowchart and Operation.                    10  
  26.    b.  Definitions of Matrix Operands                     12
  27.    c.  Matrices. Definitions of Operations.               13
  28.        Determination of Operand sizes.
  29.  
  30. 4. OPERATING INSTRUCTIONS                                 18
  31.  
  32.    a.  Manual Operation                                   18  
  33.    b.  Using SuperCalc's XQT file≤                        19
  34.    c«  Usinτ Programmablσ Keys and XQT files              20
  35.    d.  Automatic Operation                                21
  36.  
  37. 5. NUMERIC EXAMPLES                                       22
  38.  
  39. 6. COMPOSITE OPERATIONS. APPLICATIONS                     36
  40.    
  41.    a. Least Squares Technique                             36
  42.    b. Numeric Example: Dow Jones Regression model         37
  43.  
  44. 7. ExtraCalc-1 ERROR MESSAGES                             51
  45.  
  46. =================================================================
  47. .PA
  48. è1. INTRODUCTION
  49.  
  50. ExtraCalc-1TMùáá i≤á aεá add-oεá t∩á thσá SuperCalcTMùáá electroniπ ì
  51. spreadshee⌠á prograφ whicΦ add≤ matri° operation≤ t∩á SuperCalc'≤ ì
  52. rangσáá oµá operatioεá unde≥á CP/MTMùá operatinτáá system«áá Thesσ ì
  53. operation≤ arσ 
  54.  
  55. 1  - Transposition along main diagonal
  56. 2  - Transposition along secondary diagonal
  57. 3  - Reflection in a row
  58. 4  - Reflection in a column
  59. 5  - Inversion (including calculation of determinant)
  60. ╢  - Findinτ Eigenvalue≤ anΣ Eigenvector≤ oµ symmetriπ matrices
  61. 7  - Solution of system of linear equations
  62. 8  - Addition of general matrices
  63. 9  - Subtraction of general matrices
  64. 10 - Multiplication of general matrices
  65.  
  66. T∩á initiatσ onσ oµ thσ abovσ  operation≤ thσ use≥ ha≤ t∩ specif∙ ì
  67. entr∙áá rangσá anΣá operatioεá type«áá Afte≥áá tha⌠áá ExtraCalc-▒ ì
  68. automaticall∙á transfer≤á datß froφ electroniπ speadshee⌠ t∩á thσ ì
  69. datß processinτ softwarσ (.CO═ type)¼á perform≤ computations¼ anΣ ì
  70. return≤ bacδ t∩ thσ spreadshee⌠ anΣ load≤ result≤ oµá computatioε ì
  71. int∩ ß designateΣ area« Thσ abovσ basicÖ operation≤ allo≈ thσ use≥ ì
  72. t∩á perforφ compositσ matri° operation≤ usinτ separatσ steps«á A⌠ ì
  73. thσá enΣ oµ thi≤ guidσ wσ illustratσ usσ oµ thσ packagσá fo≥á Do≈ ì
  74. Jone≤ inde° forecastinτ usinτ Leas⌠ Square≤ Technique« 
  75.  
  76. Afte≥áá installatioεá ExtraCalc-▒á doe≤á no⌠á becomσá ßá par⌠á oµ ì
  77. Supercalπá bu⌠á remain≤á ß separatσá entit∙á consistinτá oµá fou≥ ì
  78. permanen⌠á program≤ anΣ numbe≥ oµ permanen⌠ anΣ transien⌠á files« ì
  79. Becausσá i⌠á i≤ no⌠ ß templateÖ bu⌠ ß systeφ oµá machinσá languagσ ì
  80. file≤á (programs)¼á i⌠ allow≤ t∩ havσ al∞ oµ SuperCalc'≤ interna∞ ì
  81. memor∙ fo≥ speadshee⌠ calculation≤ and/o≥ templates«á ExtraCalc-▒ ì
  82. work≤á witΦá AN┘á sizσ oµ workshee⌠á tha⌠á SupecCalπá caεá handlσ ì
  83. withou⌠ occupyinτ ß singlσ bi⌠ oµ valuablσ speadshee⌠ memory« 
  84.  
  85. ExtraCalc-▒á i≤á thσá firs⌠ prograφ iεá thσá ExtraCalc-nÖá series« ì
  86. Futurσá release≤á oµá ExtraCalc-2TM¼áá ExtraCalc-3TM¼áá etc«á arσ ì
  87. intendeΣá t∩á supplemen⌠á SuperCalπ iε area≤á othe≥á thaεá Matri° ì
  88. Algebra«á Thσá labe∞ oε you≥ ExtraCalc-▒ mus⌠ matcΦ you≥ compute≥ ì
  89. systeφ anΣ thσ releasσ numbe≥ oµ you≥ SuperCalc«á Iµ not¼á ge⌠ iε ì
  90. toucΦá witΦ you≥ deale≥ o≥ witΦ Smirno÷á Associates¼ (617⌐964-6607.
  91.  
  92. TMùá SuperCalπ i≤ thσ registereΣ trademarδ oµ Sorcim¼á CP/═ i≤ thσ ì
  93. registereΣ trademarδ oµ Digita∞ ResearcΦ Inc.¼á anΣá ExtraCalc-1¼ ì
  94. ExtraCalc-2¼áá etc«áá arσáá registereΣáá trademark≤á oµáá Smirno÷ ì
  95. AssociatesR.
  96. è2. SETTING UP ExtraCalc-1 SOFTWARE
  97.  
  98.  
  99.  
  100.  
  101. Wσá recommenΣ tha⌠ yo⌡ makσ backup≤ oµ al∞ distributioε diskette≤ ì
  102. immediatelyÖá t∩á avoiΣ accidenta∞ los≤ o≥ damagσá oµá ExtraCalc-▒ ì
  103. files (consult user guide for your system)«  
  104.  
  105. Please¼á notσ tha⌠ therσ i≤ n∩ systeφ oε thσ systeφ track≤ oµ thσ ì
  106. ExtraCalc-▒áá distributioεá diskettes«áá D∩á no⌠á boo⌠á t∩á thesσ ì
  107. diskette≤ !!í D∩ no⌠ exi⌠ froφ you≥ COP┘ o≥ PI╨ utilit∙ whilσ thσ ì
  108. distributioε diskettσ i≤ iε drivσ A«á Doinτ eithe≥ wil∞ producσ ß ì
  109. screeε ful∞ oµ garbagσ anΣ possibl∙ overwritσ diskette.
  110.  
  111. Thσ ExtraCalc-▒ distributioε diskette/diskette≤ ma∙ bσ iεá singlσ ì
  112. density«á Iµ yo⌡ arσ usinτ doublσ density¼á makσ ß doublσ densit∙ ì
  113. copy«á Afte≥á yo⌡á havσ madσ thσ copy¼á pu⌠ ß cop∙ oµá you≥á CP/═ ì
  114. systeφ oε it≤ systeφ tracks« 
  115.  
  116. .PA
  117. è   a.  Distribution Diskettes
  118.  
  119.  
  120. Diskettσá o≥á diskette≤ tha⌠ yo⌡ havσ receiveΣ witΦá thi≤á manua∞ ì
  121. contaiεá thσá followinτ file≤ (sizσ i≤ giveε fo≥á singlσá densit∙ ì
  122. versioε - roundeΣ t∩ highe≥ eveε #)
  123.  
  124. OP.CO═ (8k)é i≤ thσ Matri° Operation≤ Manage≥ program«á I⌠á serve≤ ì
  125. a≤á interfacσ betweeε SuperCalπ anΣ thσ numbe≥ processinτ par⌠ oµ ì
  126. ExtraCalc-1« Thi≤ prograφ als∩ support≤ selectioε oµ ß particula≥ ì
  127. matri° operatioε b∙ user.
  128.  
  129. OP04.CO═ (32k)é i≤ thσ firs⌠ oµ threσ number-crunchingÖ program≤ oµ ì
  130. ExtraCalc-1« I⌠ perform≤ operations
  131.  
  132.               1  - Transposition along main diagonal
  133.               2  - Transposition along secondary diagonal
  134.               3  - Reflection in a row
  135.               4  - Reflection in a column
  136.               8  - Addition
  137.               9  - Subtraction
  138.               10 - Multiplication
  139.  
  140. remark: ## correspond to ## in program module
  141.  
  142. OP13.CO═á (36k)éá i≤á thσá seconΣ oµá thσá abovσá mentioneΣá threσ ì
  143. programs« I⌠ perform≤ operation≤ of
  144.  
  145.               ╡á - Inversioεá(includinτ calculatioεáoµ determinant)
  146.               7  - Solution of a system of linear equations
  147.  
  148. OP2.CO═ (40k)é i≤ thσ las⌠ onσ oµ three« I⌠ perform≤ operation
  149.  
  150.               ╢á - Findinτáof Eigenvalue≤áanΣ Eigenvectors
  151.                    of symmetric matrices
  152.  
  153. MAT1.PRN¼á MAT2.PRN¼ MAT3.PR╬ (0δ each)é arσ Matri° OperandÖ files« ì
  154. The∙ currentl∙ don't contaiε anything.
  155.  
  156. $.▒á (0k)é i≤ temporar∙ defaul⌠ SuperCalπ (.CAL⌐ typσ file«á I⌠ i≤ ì
  157. als∩ initiall∙ set a≤ zer∩ file.
  158.  
  159. SAV.XQ╘á (2k)é i≤ thσ SuperCalπ eXecutσ (.XQT⌐ filσ tha⌠á prepare≤ ì
  160. speadshee⌠á anΣ defaul⌠ $.▒ filσ iε preparatioε fo≥á transfe≥á t∩ ì
  161. ExtraCalc-1.
  162.  
  163. RES.XQ╘á (2k)é i≤ SuperCalπ eXecutσ filσ tha⌠ control≤ loadinτá oµ ì
  164. result≤ oµ computatioε froφ ExtraCalc-1.
  165. è   b.  ExtraCalc-1 Configuration - Single Density
  166.  
  167. T∩ proceed¼á yo⌡ wil∞ neeΣ fou≥ blanδ diskettes« Wσ wil∞ cal∞ thσ ì
  168. firs⌠á - Maste≥ diskettσ (D1⌐ anΣ seconΣ througΦ fourtΦ - D2¼á D│ ì
  169. anΣ D┤ diskettes.
  170.  
  171. 1«á Placσá you≥á CP/═á diskettσ iε drivσ ┴ anΣá thσá firs⌠á blanδ ì
  172.     formatteΣá    diskettσá (D1⌐á iε drivσá B«á Pres≤á RESE╘á anΣ ì
  173.     carriagσ returε <CR╛ (o≥ d∩ othe≥ appropriatσ step≤ t∩ invokσ ì
  174.     CP/═ - consul⌠ you≥ systeφ use≥ manual)
  175.  
  176. 2.  When you see A> prompt, type PIP<CR>.
  177.  
  178. 3«á Wheεá yo⌡áseσ ¬ promp⌠, placσ firs⌠ distributioε diskettσá iε ì
  179.     drive A and type
  180.  
  181.     *B:=A:OP.COM<CR>
  182.     *B:=A:RES.XQT<CR>
  183.     *B:=A:SAV.XQT<CR>
  184.  
  185.    note║á firs⌠ characte≥ (*⌐ iε abovσ threσ line≤ i≤ PI╨ prompt« ì
  186.               D╧ NO╘ TYP┼ I╘ IN.
  187.  
  188. 4«á Placσ diskettσ containinτ SuperCalπ (v1.1▓ anΣ up⌐ iε drivσ ┴ ì
  189.     and type
  190.  
  191.     *B:=A:SC.*<CR>ì
  192.  
  193.     note║ S├ i≤ thσ namσ oµ SuperCalπ oε you≥ diskette
  194.  
  195. 5«á Iµá yo⌡á havσ SUBMIT.CO═ o≥ simila≥ batcΦ processinτá utilit∙ ì
  196.     placσ diskettσ containinτ i⌠ int∩ drivσ ┴ aεd type
  197.  
  198.     *B:=A:SUBMIT.COM
  199.  
  200. 6«á Next¼á cop∙á CP/═ ont∩ you≥ Maste≥ disδ b∙ usinτá thσá SYSGE╬ ì
  201.     utilit∙á (o≥á similar⌐ oε you≥ CP/═ disk«á T∩ d∩á this,inser⌠     ì
  202.     you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛     ì
  203.     prompt¼ type
  204.  
  205.     A>SYSGEN<CR>
  206.  
  207.     note 1: Do not type in CP/M prompt A>
  208.             Specify A as the source and B as the destination
  209.     note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
  210.             t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
  211.  
  212. 7.  Put away your Master disk now (D1)
  213. è8«á Placσá you≥á CP/═á diskettσá iε drivσá ┴á anΣá seconΣá blanδ ì
  214.     formatteΣá diskettσá (D2⌐ iε drivσ B«á Pres≤ ^├ o≥á d∩á othe≥ ì
  215.     appropriatσ step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥á systeφ ì
  216.     use≥ manual.
  217.  
  218. 9.  When you see A> prompt, type PIP<CR>.
  219.  
  220. 10«áWheεá yo⌡ seσ ¬ promp⌠ placσ firs⌠ distributioε diskettσá iε ì
  221.     drivσ ┴ anΣ type
  222.  
  223.     *B:=A:OP04.COM<CR>
  224.     *B:=A:*.PRN<CR>
  225.     *B:=A:$.1<CR>
  226.  
  227. 11«áNext¼á cop∙á CP/═  ont∩  you≥ D▓  disδ b∙  usinτá thσá SYSGE╬ ì
  228.     utilit∙á (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩ this¼á inser⌠ ì
  229.     you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛ ì
  230.     prompt¼ type
  231.  
  232.     A>SYSGEN<CR>
  233.  
  234.     note 1: Do not type in CP/M prompt A>
  235.             Specify A as the source and B as the destination
  236.     note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
  237.             t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
  238.  
  239. 12. Put away your D2 disk.
  240.  
  241. 13« Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ third blanδ formatteΣ ì
  242.     diskettσá (D3⌐ iε drivσ B«á Pres≤ ^├ o≥ d∩ othe≥á appropriatσ ì
  243.     step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥ systeφ use≥ manual.
  244.  
  245. 14. When you see A> prompt, type PIP<CR>.
  246.  
  247. 15«áWheεá yo⌡ seσ ¬ promp⌠ placσ firs⌠ distributioε diskettσá iε ì
  248.     drivσ ┴ anΣ type
  249.  
  250.     *B:=A:OP13.COM<CR>
  251.     *B:=A:*.PRN<CR>
  252.     *B:=A:$.1<CR>
  253.  
  254. 16«áNext¼á cop∙á  CP/═  ont∩  you≥ D│  disδ b∙  usinτ thσá SYSGE╬ ì
  255.     utilit∙ (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩á this¼á inser⌠     ì
  256.     you≥ CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσá A╛     ì
  257.     prompt¼ type
  258.  
  259.  
  260.     A>SYSGEN<CR>
  261. è    note 1: Do not type in CP/M prompt A>
  262.             Specify A as the source and B as the destination
  263.     note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
  264.             t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
  265.  
  266. 17. Put away your D3 disk.
  267.  
  268. 18« Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ fourth blanδ formatteΣ ì
  269.     diskettσá (D4⌐ iε drivσ B«á Pres≤ ^├ o≥ d∩ othe≥á appropriatσ ì
  270.     step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥ systeφ use≥ manual.
  271.  
  272. 19. When you see A> prompt, type PIP<CR>.
  273.  
  274. 20«áWheεá yo⌡ seσ ¬ promp⌠ placσ seconΣ distributioε diskettσ iε ì
  275.     drivσ ┴ anΣ type
  276.  
  277.     *B:=A:OP2.COM<CR>
  278.     *B:=A:*.PRN<CR>
  279.     *B:=A:$.1<CR>
  280.  
  281. 21«áNext¼á cop∙á CP/═  ont∩  you≥ D┤  disδ b∙  usinτá thσá SYSGE╬ ì
  282.     utilit∙á (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩ this¼á inser⌠ ì
  283.     you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛ ì
  284.     prompt¼ type
  285.  
  286.     A>SYSGEN<CR>
  287.  
  288.     note 1: Do not type in CP/M prompt A>
  289.             Specify A as the source and B as the destination
  290.     note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
  291.             t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
  292.  
  293. 22«áPu⌠á awa∙á you≥ D┤ disk«á You≥á ExtraCalc-▒á SINGL┼á densit∙ ì
  294.     configuratioε i≤ no≈ complete« 
  295.  
  296. .PA
  297. è   c.  System Configuration - Double Density
  298.  
  299.  
  300. T∩ proceed¼á yo⌡ wil∞ neeΣ tw∩ blanδ diskettes«á Wσ wil∞ cal∞ thσ ì
  301. firs⌠ - Maste≥ diskettσ (D1⌐ anΣ thσ seconΣ D2.
  302.  
  303. 1«á Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ firs⌠ blanδ formatteΣ ì
  304.     diskettσá (D1⌐á iε drivσ B«á Pres≤ RESE╘ anΣ carriagσá returε ì
  305.     <CR╛ (o≥ d∩ othe≥ appropriatσ step≤ t∩ invokσ CP/═á - consul⌠ ì
  306.     you≥ systeφ use≥ manual)
  307.  
  308. 2.  When you see A> prompt, type PIP<CR>.
  309.  
  310. 3«á Wheεáyo⌡á seσ ¬ promp⌠, placσ firs⌠ distributioε diskettσá iε ì
  311.     drive A and type
  312.  
  313.     *B:=A:*.COM<CR>
  314.     *B:=A:RES.XQT<CR>
  315.     *B:=A:SAV.XQT<CR>
  316.  
  317.     note║ firs⌠ characte≥ (*⌐ iε abovσ threσ line≤ i≤ PI╨ prompt« ì
  318.           D╧ NO╘ TYP┼ I╘ IN.
  319.  
  320. 4«á Placσ seconΣ  distributioε diskettσ (witΦ OP2.COM⌐ iε drivσ ┴ ì
  321.     (iµ yo⌡ receiveΣ onl∙ onσ diskettσ iε doublσ densityÖ leavσ i⌠ ì
  322.     iε drivσ A:⌐ anΣ type
  323.  
  324.     *B:=A:*.COM
  325.  
  326. 5«á Placσ diskettσ containinτ SuperCalπ (v1.1▓ anΣ up⌐ iε drivσ ┴ ì
  327.     and type
  328.  
  329.     *B:=A:SC.*<CR>ì
  330.  
  331.     note║ S├ i≤ thσ namσ oµ SuperCalπ oε you≥ diskette
  332.  
  333. 6«á Iµ yo⌡ havσ SUBMIT.CO═ o≥ a simila≥ batcΦ processinτáutilit∙, ì
  334.     placσ diskettσ containinτ i⌠ int∩ drivσ ┴ aε type
  335.  
  336.     *B:=A:SUBMIT.COM
  337.  
  338. 7«á Next¼á cop∙á CP/═  ont∩ you≥ Maste≥ disδ b∙ usinτ thσá SYSGE╬ ì
  339.     utilit∙ (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩á this¼á inser⌠ ì
  340.     you≥ CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσá A╛ ì
  341.     prompt¼ type
  342.  
  343.  
  344.     A>SYSGEN<CR>
  345. è    note 1: Do not type in CP/M prompt A>
  346.             Specify A as the source and B as the destination
  347.     note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
  348.             t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
  349.  
  350. 8.  Put away your Master disk now (D1)
  351.  
  352. 9«  Placσ you≥ CP/═ diskettσ iε drivσ ┴ anΣ seconΣ blanδ formatteΣ ì
  353.     diskettσá (D2⌐ iε drivσ B«á Pres≤ ^├ o≥ d∩ othe≥á appropriatσ ì
  354.     step≤ t∩ REINITIALIZ┼ CP/═ - consul⌠ you≥ systeφ use≥ manual.
  355.  
  356. 10. When you see A> prompt, type PIP<CR>.
  357.  
  358. 11«áWheεáyo⌡ seσ ¬ promp⌠, placσ firs⌠ distributioε diskettσá iε ì
  359.     drivσ ┴ anΣ type
  360.  
  361.     *B:=A:*.PRN<CR>
  362.     *B:=A:$.1<CR>
  363.  
  364. 12«áNext¼á cop∙á CP/═  ont∩  you≥ D▓  disδ  b∙  usinτ thσá SYSGE╬ ì
  365.     utilit∙á (o≥ similar⌐ oε you≥ CP/═ disk«á T∩ d∩ this¼á inser⌠ ì
  366.     you≥á CP/═ diskettσ iε drivσ ┴ anΣ pres≤ ^C«á Wheε yo⌡ seσ A╛ ì
  367.     prompt¼ type
  368.  
  369.     A>SYSGEN<CR>
  370.  
  371.     note 1: Do not type in CP/M prompt A>
  372.             Specify A as the source and B as the destination
  373.     note 2║ Yo⌡ ma∙ als∩ wan⌠ t∩ usσ thσ SETU╨ utilit∙ (o≥ similar⌐ ì
  374.             t∩ specif∙ thσ prope≥ interfacσ fo≥ you≥ printer.
  375.  
  376.  
  377. No≈á pu⌠á awa∙á you≥ D▓ disk«á You≥á ExtraCalc-▒á DOUBL┼á densit∙ ì
  378. configuratioε i≤ no≈ complete« 
  379. .PA
  380. è4. PRINCIPLES OF ExtraCalc-1 OPERATION. DEFINITIONS
  381.  
  382.    a.  System Flowchart and Operation.
  383.  
  384. Flowchar⌠ oµ ExtraCalc-▒ i≤ showε iε Figurσ ▒ below« Blacδ arrow≤ ì
  385. stanΣá fo≥á connection≤ betweeε prograφ file≤ whilσá grayÖá arrow≤ ì
  386. sho≈á connection≤ betweeε datß file≤ anΣ programs«á Thσ arro≈á i≤ ì
  387. blacδá anΣá gra∙  betweeε SuperCalπ anΣ $.▒ filσ becausσá oµá thσ ì
  388. structurσá oµá SuperCalπá files«á Pleasσ notσá tha⌠á gra∙á (data⌐ ì
  389. connection≤ arσ eithe≥ unidirectiona∞ (operanΣ MAT1¼ operanΣ MAT│ ì
  390. - inpu⌠ o≥ outpu⌠ file≤ only⌐ o≥ bidirectiona∞ (operanΣ MAT2).
  391.  
  392. T∩ operatσ ExtraCalπ yo⌡ shoulΣ alway≤ havσ you≥ Maste≥á diskettσ ì
  393. iεá drivσ ┴ anΣ DnÖ diskettσ iε drivσ ┬ (nÖ ╜ ▓ fo≥ doublσ density¼ ì
  394. o≥ 2¼ 3¼ ┤ fo≥ singlσ densit∙ versions)« Thσ numbe≥ nÖ (fo≥ singlσ ì
  395. density⌐ i≤ defineΣ b∙ thσ typσ oµ operation≤ i⌠ performs:
  396.  
  397.              n = 2 for operations ## 1-4 and ## 8-10
  398.              n = 3 for operations # 5 and # 7 
  399.              n = 4 for operations # 6
  400.  
  401.  
  402.  
  403.  
  404.  
  405.  
  406.  
  407.  
  408.  
  409.  
  410.  
  411.  
  412.  
  413.  
  414.  
  415.  
  416.  
  417.  
  418.  
  419.  
  420.  
  421.  
  422.  
  423.  
  424.  
  425.  
  426.  
  427.                             Figure 1
  428. èInteractioεá witΦá ExtraCalπá usuall∙á begin≤á iεá thσá SuperCalπ ì
  429. environment«á Iεá spreadshee⌠á yo⌡á shoulΣá specif∙á you≥á matri° ì
  430. operand≤á - MAT1¼á MAT▓ anΣ maybσ MAT│ (seσ nex⌠ section)«á Afte≥ ì
  431. tha⌠á yo⌡á havσá t∩á leavσá SuperCalπá anΣá ente≥á (manuall∙áá o≥ ì
  432. automatically⌐á thσá firs⌠ prograφ oµ ExtraCalc-1¼á whicΦ b∙á thσ ì
  433. way¼ alway≤ reside≤ oε drivσ ┴ (OP.COM).
  434.  
  435. Afte≥ loadinτ itself¼á OP.CO═ wil∞ displa∙ thσ maiε men⌡ a≤ showε ì
  436. below:
  437.  
  438.   MATRIX OPERATIONS
  439.  
  440.      1)  TRANSPOSITION (MAIN DIAGONAL)
  441.      2)  TRANSPOSITION (SECONDARY DIAGONAL)
  442.      3)  REFLECTION IN A COLUMN
  443.      4)  REFLECTION IN A ROW
  444.      5)  INVERSION
  445.      6)  EIGENVALUES AND EIGENVECTORS
  446.      7)  SOLUTION OF SYSTEM OF LINEAR EQUATIONS
  447.      8)  ADDITION
  448.      9)  SUBTRACTION
  449.      10) MULTIPLICATION 
  450.  
  451.  
  452.   11) EXIT TO SUPERCALC
  453.  
  454.  
  455. ENTER YOUR CHOICE:
  456.  
  457. Dependinτá oε thσ choice≤ yo⌡ make¼á OP.CO═ wil∞ routσ yo⌡á t∩á ß ì
  458. numbe≥á oµá differen⌠á programs¼á tha⌠á (durinτá execution⌐á wil∞ ì
  459. providσáá yo⌡á witΦá differen⌠á run-time¼áá diagnostiπá o≥á erro≥ ì
  460. messages« Example≤ oµ typica∞ message≤ showε below
  461.  
  462.     CHAINING TO OPERATION #         n
  463.         SIZING THE MATRIX ...
  464.         THE MATRIX IS    p\q
  465.         SIZING THE MATRIX ...
  466.         THE MATRIX IS    P1\Q1
  467. ERROR: WRONG OUTPUT MATRIX DIMENSIONS
  468.  
  469. Afte≥á succesfu∞ computation≤ (n∩ ERRO╥ messages⌐ ExtraCalπá wil∞ ì
  470. returεá t∩ you≥ spreadshee⌠ (seσ sectioε oε automatiπá operation⌐ ì
  471. anΣ reaΣ iε result≤ int∩ you≥ spreadshee⌠ automatically«á Iε casσ ì
  472. oµá unsuccessfu∞á computation≤ (errors)¼á ExtraCalπ wil∞ iεá mos⌠ ì
  473. case≤á returεá yo⌡á t∩ thσ OP.CO═ prograφá anΣá asδá fo≥á furthe≥ ì
  474. instructions.
  475. .PA
  476. è   b.  Definitions of Matrix Operands
  477.  
  478.  
  479. ExtraCalc-▒ ha≤ provision≤ fo≥ threσ matri° operanΣ file≤ - MAT1¼ ì
  480. MAT▓ anΣ MAT3« OperanΣ file≤ arσ createΣ oε SuperCalπ leve∞ usinτ ì
  481. /Outpu⌠ commanΣ anΣ thereforσ havσ .PR╬ type.
  482.  
  483. Thσá use≥á ha≤á t∩ creatσ tw∩ operanΣ file≤ (MAT▒ anΣá MAT2⌐á  t∩ ì
  484. perforφáá unitaryÖáá operation≤áá (transpositions¼ááá reflections¼ ì
  485. inversion)
  486.  
  487.  
  488.                      MAT2 = operation {MAT1} 
  489.  
  490.  
  491. o≥ threσ  operanΣ file≤ (MAT1¼á MAT2¼ MAT3⌐ fo≥ binaryÖ operation≤ ì
  492. (addition¼ subtraction¼ multiplication¼ solutioε oµ systems)
  493.  
  494.  
  495.                   MAT3 = operation {MAT1, MAT2}  
  496.  
  497.  
  498. anΣá fo≥á unitaryÖ operatioε witΦ binaryÖ outpu⌠á (eigenvalue≤á anΣ ì
  499. eigenvectors)
  500.  
  501.  
  502.                  {MAT2, MAT3} = operation {MAT1}  
  503.  
  504.  
  505. Worksheet≤á iε SuperCalπ tha⌠ arσ useΣ t∩ derivσ matri°á operand≤ ì
  506. shoulΣ consis⌠ oµ number≤ witΦ o≥ withou⌠ underlyinτ formulae« N∩ ì
  507. BLANK≤á o≥á TEX╘ i≤ allowed«á BLANK≤ iεá workshee⌠á wil∞á producσ ì
  508. ExtraCalc-▒á ERRO╥ messagσ whilσ TEXT≤ wil∞ bσ interpreteΣ a≤ 0s« ì
  509. Dimension≤á oµá matrice≤á (size≤ oµ matri°á operands⌐á shoulΣá bσ ì
  510. consisten⌠ witΦ eacΦ othe≥ a≤ wel∞ a≤ witΦ matri° operatioε t∩ bσ ì
  511. performeΣ (seσ nex⌠ section).
  512.  
  513. .PA
  514. è   c.  Matrices. Definitions of Operations. 
  515.        Determination of Operand sizes.
  516.  
  517. Matrices:éá Herσ wσ formulatσ onl∙ basiπ definition≤ anΣá concept≤ ì
  518. oµ matri° algebrß tha⌠ werσ useΣ iε ExtraCalc-▒ design«á Iεá casσ ì
  519. use≥á doe≤á no⌠ completel∙ understanΣ thi≤ materia∞ o≥á need≤á t∩ ì
  520. kno≈ abou⌠ morσ advanceΣ concept≤ tha⌠ arσ mentioneΣ herσ withou⌠ ì
  521. explanation¼á wσá recommenΣ readinτ thσ firs⌠ fe≈ chapter≤ oµ an∙ ì
  522. booδ oε linea≥ o≥ matri° algebrß « 
  523.  
  524. ┴ matri° i≤ ß rectangula≥ arra∙ oµ term≤ calleΣ elements¼ sucΦ as
  525.  
  526.  
  527.                    1 2 3  7        `` a11 a12 ``
  528.                    3 4 0  4   or   `` a21 a22 ``
  529.                    5 6 7 -1        ` a31 a32 `
  530.  
  531.  
  532. ┴á rea∞ matrixÖ anΣ ß comple° matrixÖ arσ matrice≤á whosσá element≤ ì
  533. arσá rea∞á number≤ o≥ comple° number≤á respectively«á ExtraCalc-▒ ì
  534. work≤á witΦá rea∞ matrice≤ only«á T∩á perforφá calculation≤á witΦ ì
  535. comple°á number≤ onσ shoulΣ usσ compositeÖ matri° operation≤á (seσ ì
  536. sectioε below)« 
  537.  
  538. Thσ orderÖ o≥ dimensionÖ oµ ß matri° i≤ giveε b∙ statinτ thσ numbe≥ ì
  539. oµá row≤ (N⌐ anΣ theε thσ numbe≥ oµ column≤ (M⌐ iε thσ matri°á a≤ ì
  540. N\M«á Therefore¼á thσá abovσá matrice≤ arσ oµ 3\┤ anΣá 3\▓á orde≥ ì
  541. respectively.
  542.  
  543. ┴ squareÖ matri° i≤ ß matri° fo≥ whicΦ thσ numbe≥ oµ row≤ i≤ equa∞ ì
  544. t∩ thσ numbe≥ oµ columns« 
  545.  
  546. Thσ diagona∞ froφ thσ uppe≥ lef⌠ corne≥ t∩ thσ lowe≥ righ⌠ corne≥ ì
  547. i≤á thσ principalÖ o≥ mainÖ diagonal«á Thσ diagona∞ froφ thσá lowe≥ ì
  548. lef⌠ corne≥ t∩ thσ uppe≥ righ⌠ corne≥ i≤ thσ secondaryÖ diagonal« 
  549.  
  550. Thσ determinantÖ oµ ß squarσ matri° i≤ thσ determinan⌠ obtaineΣ b∙ ì
  551. considerinτ thσ arra∙ oµ element≤ iε thσ matri° a≤ ß determinant« 
  552.  
  553. ┴ squarσ matri° i≤ singularÖ iµ it≤ determinan⌠ i≤ equa∞ t∩á zero« ì
  554. Otherwisσ i⌠ i≤  nonsingular.
  555.  
  556. ┴á diagonalÖá matri°á i≤á ß squarσ matri°á witΦá al∞á it≤á nonzer∩ ì
  557. element≤ iε thσ principa∞ diagonal« 
  558.  
  559. Aεá identityÖ (o≥ unit⌐ matri° i≤ ß diagona∞ matri° whosσ element≤ ì
  560. iε thσ principa∞ diagona∞ arσ al∞ unity.
  561.  
  562. èDefinition≤ oµ Operations« Determinatioε oµ OperanΣ sizes.
  563.  
  564.  
  565. 1) TRANSPOSITION (MAIN DIAGONAL)    
  566.    unitary operation
  567.  
  568. Thσ transposσ oµ ß matri° alonτ maiε diagona∞ i≤ thσ matri°á (AT⌐ ì
  569. resultinτá froφá interchanginτ thσ row≤ anΣ column≤ iε thσá giveε ì
  570. matri°á (A⌐á alonτá thσ diagona∞ drawε froφ to≡á lef⌠á corne≥á t∩ ì
  571. bottoφ righ⌠ corner« Iµ 
  572.  
  573.        A = {ai,j} then AT = {aj,i), i=1,2,...N, j=1,2,...M
  574.  
  575. Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
  576. Therefore¼á iµá MAT▒á i≤ N\═ theε matri° MAT▓ shoulΣá bσá oµá M\╬ ì
  577. dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation« 
  578.  
  579.  
  580. 2) TRANSPOSITION (SECONDARY DIAGONAL)
  581.    unitary operation
  582.  
  583. Thσ transposσ oµ ß matri° alonτ secondar∙ diagona∞ i≤ thσá matri° ì
  584. (At⌐á resultinτá froφ interchanginτ thσ row≤ anΣ column≤á iεá thσ ì
  585. giveεá matri° (A⌐ alonτ thσ diagona∞ drawε froφ to≡ righ⌠á corne≥ ì
  586. t∩ bottoφ lef⌠ corner« Iµ 
  587.  
  588.        A = {ai,j} then At = {aM-j+1,N-i+1), i=1,2,...N, j=1,2,...M
  589.  
  590. Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
  591. Therefore¼á iµá MAT▒á i≤á N\═ theε matri° MAT▓ shoulΣ bσá oµá M\╬ ì
  592. dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation.
  593.  
  594.  
  595. 3) REFLECTION IN A COLUMN
  596.    unitary operation
  597.  
  598. Thσá reflectioεá oµá ßá matri° iε ß columεá i≤á thσá matri°á (AC⌐ ì
  599. resultinτ froφ interchanginτ thσ row≤ iε thσ giveε matri° (A)« If
  600.  
  601.      A = {ai,j} then AC = {aN-i+1,j), i=1,2,...N, j=1,2,...M
  602.  
  603. Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
  604. Therefore¼á iµ MAT▒ i≤ N\═ matri° theε MAT▓ shoulΣ als∩ bσ oµ N\═ ì
  605. dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation.
  606. .PA
  607. è4) REFLECTION IN A COLUMN
  608.    unitary operation
  609.  
  610.  
  611. Thσá reflectioε oµ ß matri° iε ß ro≈ i≤ thσ matri° (AR⌐ resultinτ ì
  612. froφ interchanginτ thσ column≤ iε thσ giveε matri° (A)« If
  613.  
  614.      A = {ai,j} then AR = {ai,M-j+1), i=1,2,...N, j=1,2,...M
  615.  
  616. Herσá ╬ i≤ numbe≥ oµ row≤ iε ┴ anΣ ═ i≤ numbe≥ oµ column≤á iεá A« ì
  617. Therefore¼á iµ MAT▒ i≤ N\═ matri° theε MAT▓ shoulΣ als∩ bσ oµ N\═ ì
  618. dimension« MAT│ i≤ no⌠ requireΣ fo≥ thi≤ operation.
  619.  
  620.  
  621. 5) INVERSION and calculation of determinants
  622.    unitary operation
  623.  
  624. Fo≥á ß nonsingularÖ squarσ matri° (A)¼á thσ inversσ (A-1⌐á i≤á thσ ì
  625. quotien⌠á oµ thσ adjointÖ oµ thσ matri° anΣ thσ determinantÖ oµ thσ ì
  626. matrix« Iµ A-1ù i≤ thσ inversσ oµ A¼ theε produc⌠ AA-1ù ╜ A-1┴ ╜ I¼ ì
  627. wherσ ╔ i≤ thσ identit∙ matrix«á Thσ inversσ i≤ defineΣ onl∙á fo≥ ì
  628. nonsingula≥á squarσá matrices«á MAT▒ shoulΣ thereforσ bσá oµá N\╬ ì
  629. dimensioε anΣ havσ ß non-zer∩ determinant« MAT▓ i≤ als∩ N\N« Iε ß ì
  630. thσá coursσá oµá thi≤á operatioε thσ determinan⌠á oµá ┴á i≤á als∩ ì
  631. calculated¼á checkeΣá fo≥á non-zero¼á anΣ storeΣ fo≥ usσá iεá thσ ì
  632. spreadsheet.
  633.  
  634.  
  635. 6) Eigenvalues and Eigenvectors.
  636.    unitary operation with binary result
  637.  
  638.  
  639. Fo≥ ß squarσ matri° ANxN¼á thσ eigenvaluσ i≤ ß scala≥ ∞ fo≥ whicΦ ì
  640. therσ i≤ ß nonzer∩ columε matri° ° ╜ {x1,x2,...,xN² anΣ fo≥ which
  641.  
  642.                             A.x = l.x
  643.  
  644. Thσá vecto≥ ° i≤ aε eigenvectorÖ o≥ Öá characteristicÖá vector«á Thσ ì
  645. matri°á ┴ caε havσ ╬ eigenvalue≤ tha⌠ arσ a⌠ thσ samσ timσá root≤ ì
  646. oµ characteristicÖ equation
  647.  
  648.                        det |B[ lI - A |E] = 0
  649.  
  650. Characteristiπá root≤ arσ als∩ calleΣ latentÖá roots«á ExtraCalc-▒ ì
  651. caεá calculatσá botΦá thσ eigenvalue≤ anΣ thσ eigenvector≤á oµá ß ì
  652. symmetricÖá matri° A«á MAT▒ anΣ MAT│ shoulΣ bσ squarσ matrice≤á oµ ì
  653. N\╬á order«á MAT▓ shoulΣ havσ numbe≥ oµ element≤ greate≥ thaεá o≥ ì
  654. equa∞ t∩ N.
  655. è7) SOLUTION OF SYSTEM OF LINEAR EQUATIONS
  656.    binary operation
  657.  
  658.  
  659. ┴á systeφá oµá simultaneousÖá linea≥á equation≤á i≤á ßá systeφá oµ ì
  660. equation≤ tha⌠ arσ linea≥ (oµ thσ firs⌠ degree⌐ iε thσ variables« ì
  661. Matri°á (A⌐á oµá coefficient≤ oµ ßá se⌠á oµá simultaneou≤á linea≥ ì
  662. equation≤á i≤á thσá rectangula≥á arra∙ lef⌠á afte≥á droppinτá thσ ì
  663. variable≤á froφá thσ equation≤ s∩ tha⌠ thσ coefficient≤á oµá likσ ì
  664. variable≤á arσ iε thσ samσ column≤ (zer∩ beinτ useΣ iµ ß terφá i≤ ì
  665. missing)« Iµ thσ systeφ oµ equation≤ is
  666.  
  667.  
  668.             a11x1 + a12x2 + a13x3 + ... + a1MxM = d1
  669.             a21x1 + a22x2 + a23x3 + ... + a2MxM = d2
  670.             a31x1 + a32x2 + a33x3 + ... + a3MxM = d3
  671.             ........................................
  672.             aN1x1 + aN2x2 + aN3x3 + ... + aNMxM = dN
  673.  
  674. then 
  675.  
  676.  
  677.            A = {ai,j} , i=1,2,3,...,N; j=1,2,3,...,M.
  678.  
  679.  
  680. Columε matri° (D⌐ oµ constan⌠ term≤ oµ thσ equation≤ above is
  681.  
  682.  
  683.                      D = {di}, i=1,2,3,...,N
  684.  
  685.  
  686. Thσ systeφ oµ linea≥ equatioε iε matri° forφ is¼ therefore¼ giveε ì
  687. by
  688.  
  689.                              Ax = D 
  690.  
  691. wherσá ° ╜ {xi}¼á i=1,2,3,...,M«á AlthougΦ solutioε oµ thσ systeφ ì
  692. caεá als∩á bσ founΣ b∙ usinτ inversσ matri° A-1ù (a≤á °á ╜á A-1D)¼ ì
  693. ExtraCalc-▒ employ≤ ß differen⌠ procedurσ fo≥ solvinτ thσ system« ì
  694. Thσá methoΣ oµ solutioε i≤ b∙ elimination¼á usinτ larges⌠ pivota∞ ì
  695. divisor« EacΦ stagσ oµ eliminatioε consist≤ oµ interchanginτ row≤ ì
  696. wheε necessar∙ t∩ avoiΣ divisioε b∙ zer∩ o≥ smal∞ elements« 
  697.  
  698. T∩á avoiΣ error≤ MAT▒ (matri° A⌐ shoulΣ bσ oµá N\╬á order¼á whilσ ì
  699. MAT▓ (columε matri° D⌐ oµ N\1¼ anΣ MAT│ (vecto≥ x⌐ oµ N\▒ o≥ 1\N.
  700. .PA
  701. è8. ADDDITION
  702.    binary operation
  703.  
  704. Thσá suφá ┴á ½á ┬ oµ tw∩ matrice≤ ┴ anΣ ┬á i≤á thσá matri°á whosσ ì
  705. element≤á arσá formeΣ b∙ thσ rulσ tha⌠ thσ elemen⌠ iε ro≈á iÖá anΣ ì
  706. columεá jÖá i≤á thσ suφ oµ thσ element≤ aijù anΣ bijù iε ro≈á iÖá anΣ ì
  707. columε jÖ oµ ┴ anΣ B« Or¼ if
  708.  
  709.       A = {ai,j} and B = {bi,j} then A + B = {ai,j + bi,j}  
  710.  
  711. Thi≤ operatioε i≤ defineΣ onl∙ iµ ┴ anΣ ┬ havσ thσ samσ numbe≥ oµ ì
  712. row≤á anΣ thσ samσ numbe≥ oµ columns«á Thereforσ MAT1¼á MAT▓á anΣ ì
  713. MAT│ shoulΣ al∞ bσ oµ samσ dimensioε N\M.
  714.  
  715.  
  716. 9. SUBTRACTION
  717.    binary operation
  718.  
  719. Thσá differencσ ┴ - ┬ oµ tw∩ matrice≤ aµ matrice≤ ┴ anΣ ┬ i≤á thσ ì
  720. matri°á whosσ element≤ arσ formeΣ b∙ thσ rulσ tha⌠ thσ elemen⌠ iε ì
  721. ro≈ iÖ anΣ columε jÖ i≤ thσ differencσ oµ thσ element≤ aijù anΣá bijù ì
  722. iε ro≈ iÖ anΣ columε jÖ oµ ┴ anΣ B« Or¼ if
  723.  
  724.       A = {ai,j} and B = {bi,j} then A - B = {ai,j - bi,j}  
  725.  
  726. Thi≤ operatioε i≤ defineΣ onl∙ iµ ┴ anΣ ┬ havσ thσ samσ numbe≥ oµ ì
  727. row≤á anΣ thσ samσ numbe≥ oµ columns«á Thereforσ MAT1¼á MAT▓á anΣ ì
  728. MAT│ shoulΣ al∞ bσ oµ samσ dimensioε N\M.
  729.   
  730.  
  731. 10«áMULTIPLICATION
  732.     binary operation
  733.  
  734. Thσá produc⌠ A┬ oµ matrice≤ ┴ anΣ ┬ i≤ thσ matri° whosσá element≤ ì
  735. arσá determineΣ b∙ thσ rulσ tha⌠ thσ elemen⌠ cijù oµ matri° resul⌠ ì
  736. iεá ro≈á Θ anΣ columε Ω i≤ thσ suφ ove≥ kÖ oµ thσ produc⌠á oµá thσ ì
  737. elemen⌠ aikù iε ro≈ Θ anΣ columε kÖ oµ ┴ b∙ thσ elemen⌠ bkjù iεá ro≈ ì
  738. kÖ anΣ columε Ω oµ B:
  739.  
  740.                                 P    
  741.                      C = ci,j = $#% aikbkj = A.B
  742.                                 k=1
  743.  
  744. herσá i=1,2,...,N╗áá j=1,2,...,M╗á k=1,2,...,P«á Thσá produc⌠á i≤ ì
  745. defineΣá onl∙á iµá thσ numbe≥ ═ oµ column≤ iε ┴ i≤ equa∞á t∩á thσ ì
  746. numbe≥ oµ row≤ iε B«á Therefore¼ MAT▒ shoulΣ bσ oµ N\╨ dimension¼ ì
  747. MAT▓ oµ P\═ anΣ MAT│ oµ N\M«á Iε al∞ othe≥ situation≤ ExtraCalc-▒ ì
  748. wil∞ senΣ an erro≥ messagσ t∩ thσ terminal..PO 8
  749. è4. OPERATING INSTRUCTIONS
  750.  
  751.    a.  Manual Operation
  752.  
  753. Iεá thi≤á sectioε wσ describσ al∞ thσ entrie≤ t∩ perforφá onσá oµ ì
  754. abovσá matri°á operation≤ wheε yo⌡ d∩ no⌠ wan⌠ t∩á usσá SuperCalπ ì
  755. eXecutσá file≤ and/o≥ programmablσ keys«á Keyinτ oµ operatioεá i≤ ì
  756. ver∙á slo≈ anΣ tediou≤ iε thi≤ case«á I⌠ i≤ no⌠ expecteΣ tha⌠ thσ ì
  757. averagσá use≥á wil∞ emplo∙ thi≤ optioεá often«á Manua∞á entr∙á i≤ ì
  758. presenteΣáá herσáá t∩á providσá completσá understandinτá oµáá ho≈ ì
  759. ExtraCalc-▒ work≤ anΣ interact≤ witΦ SuperCalπ anΣ CP/M.
  760.  
  761. Al∞ expanation≤ belo≈ arσ giveε t∩ thσ righ⌠ oµ ";"« Line≤ markeΣ ì
  762. witΦá *ùá iε explanationsÖ arσ no⌠ necessar∙ bu⌠á makσá runninτá oµ ì
  763. spreadshee⌠á and/o≥á program≤ smoother«á No≈ inser⌠á you≥á Maste≥ ì
  764. diskettσá iεá drivσá A║á anΣá DnÖ diskettσá iεá drivσá B:«á Invokσ ì
  765. SuperCalπ anΣ creatσ samplσ worksheet.
  766.  
  767. note: 1> is the SuperCalc prompt
  768.  
  769. ^                ; Position the cursor UP*.
  770. =A1<CR>          ; Move cursor to top left corner*.
  771. /SB:$.1,B┴       ╗ Save curren⌠ workshee⌠ iε backu≡ file $.1.
  772. /CA1:BK254,A1,V  ; Eliminate formulae and text in worksheet.
  773. =A1<CR>          ; Move cursor to top left corner*.
  774.  
  775. /OCn1:m1,DB:MAT1,B<CR>      ; Create operand MAT1=n1:m1.
  776. /OCn2:m2,DB:MAT2,B<CR>      ; Create operand MAT2=n2:m2.
  777. /OCn3:m3,DB:MAT3,B<CR>      ; Create operand MAT3=n3:m3.
  778. /QY                         ; Leave SuperCalc.
  779. O╨<CR>                      ╗ Star⌠ firs⌠ prograφ oµ ExtraCalc« In
  780.                             ╗áresponsσ t∩ ExtraCalπ-1á promp⌠
  781.                             ╗ use≥  wil∞ havσ t∩ ente≥ hi≤ choicσ                               ì
  782.                             ; of OPERATION (## 1:10) or EXIT code
  783.                             ╗áú 11«á ExtraCalc-▒  wil∞á terminatσ ì
  784.                             ╗áwitΦáSTO╨ámessage« A╛ i≤ CP/═ prompt
  785. SC<CR>               ; Return to SuperCalc.
  786. /LB:$.1,A            ; Load last version of spreadsheet. 
  787. >                    ; Set cursor direction to the RIGHT.
  788. /GM                  ; Switch to manual recalculation.
  789. /XB:RES▒<CR>         ╗áExecutσáfilσ  RES1.XQ╘. It will load inì
  790.                      ; the result≤ oµ matri° operation.
  791. /XB:RES2<CR>         ; Optional command used with operations # 5 
  792.                      ; and # 6. In case of # 5 it will load value
  793.                      ; of matrix determinant in the first row, just 
  794.                      ; above the current worksheet« Wheε useΣ afte≥
  795.                      ; operatioε ú ╢ i⌠ wil∞ loaΣ eigenvector≤ iε
  796.                      ; locatioε tha⌠ i≤ specified b∙ MAT3.
  797. è   b.  Using SuperCalc's XQT file≤
  798.  
  799.  
  800. Significan⌠ numbe≥ oµ entrie≤ iε 4a« i≤ eliminateΣ iµ onσ employ≤ ì
  801. powerfu∞ SuperCalπ  eXecutσ optioε (versioε 1.1▓ anΣ higher⌐ tha⌠ ì
  802. allow≤ yo⌡ t∩ ruε sequence≤ oµ SuperCalπ command≤á automatically« ì
  803. Wσá wil∞á translatσ thσ sequencσ oµ statement≤ describeΣá iεá 4a« ì
  804. usinτ tw∩ eXecutσ file≤ - RES.XQ╘ anΣ SAV.XQT.
  805.  
  806. /XSAV<CR>
  807. /OCn1:m1,DB:MAT1,B<CR>
  808. /OCn2:m2,DB:MAT2,B<CR>
  809. /OCn3:m3,DB:MAT3,B<CR>
  810. /QY
  811. O╨              ; Choice of operation ## 1:10 or EXIT # 11.
  812. SC RES<CR>      ; It is allowed to specify XQT filename when 
  813.                 ; SuperCalc is invoked.
  814. /XB:RES2<CR>    ; Optional for operations 5 and 6.
  815.  
  816.  
  817. Here file SAV.XQT consists of
  818.  
  819.  
  820. =A1
  821. /SB:$.1,B┴ 
  822. /CA1:BK254,A1,V
  823. =A1
  824.  
  825.  
  826.  
  827. and file RES.XQT is
  828.  
  829.  
  830. /LB:$.1,A
  831. >
  832. /GM
  833. /XB:RES▒ì
  834.  
  835.  
  836. note║á N∩á space≤á arσ alloweΣ iε .XQ╘ file≤ afte≥á las⌠á (right⌐ ì
  837. characte≥ oε eacΦ oµ lines.
  838. .PA
  839. è   c«  Usinτ Programmablσ Keys and XQT files
  840.  
  841.  
  842. Usinτ XQ╘ file≤ alread∙ simplifieΣ ExtraCalc-▒ operatioε t∩  onl∙ ì
  843. seveε line≤ oµ entrie≤ pe≥ matri° operation« Herσ wσ arσ goinτ t∩ ì
  844. sho≈á thσ conveniencσ oµ usinτ programmablσ key≤ t∩ reducσ numbe≥ ì
  845. oµá character≤ iε eacΦ linσ oµ entries«á Wσ recommenΣ t∩ usσá thσ ì
  846. followinτ programminτ fo≥ you≥ keys
  847.  
  848.  
  849.                         0: /XSAV<CR>
  850.                         1: ,DB:MAT1,B<CR>
  851.                         2: ,DB:MAT2,B<CR>
  852.                         3: ,DB:MAT3,B<CR>
  853.                         6: /XB:RES2<CR>
  854.                         7: /QY
  855.                         9: /OC
  856.  
  857.  
  858.  
  859. Iε thi≤ casσ thσ abovσ sequencσ oµ entrie≤ fo≥ onσ operatioε wil∞ ì
  860. looδ a≤ follows
  861.  
  862. ^0
  863. ^9n1:m1^1    ; User should enter MATn ranges manually, of course.
  864. ^9n2:m2^2     
  865. ^9n3:m3^3
  866. ^7
  867. O╨<CR>       ; Choice of operation ## 1:10 or EXIT # 11.
  868. SC RES<CR> 
  869.  
  870. notσá 1║á N∩ space≤ arσ alloweΣ iε .XQ╘ file≤ afte≥ las⌠á (right⌐ ì
  871. characte≥ oε eacΦ oµ lines.
  872.  
  873. notσ  2║á N∩ space≤ arσ alloweΣ iε ke∙ definitioε line≤ afte≥ las⌠ ì
  874. (right⌐ characte≥ oε thσ linσ.
  875.  
  876. .PA
  877. è   d.  Automatic Operation
  878.  
  879.  
  880. T∩á providσ ß trul∙ efficien⌠ anΣ automaticÖ runninτ oµ ExtraCalc-ì
  881. 1¼á onσ shoulΣ usσ CP/M'≤ SUBMIT.CO═ utility«á I⌠ wil∞ securσá aε ì
  882. automatiπá transitioε betweeε SuperCalπ anΣ OP.CO═ (firs⌠ prograφ ì
  883. oµ ExtraCalc-1⌐ anΣ bacδ t∩ SuperCalπ spreadsheet«á Wσá recommenΣ ì
  884. usσ oµ filσ O.SU┬ whicΦ consist≤ oµ tw∩ lines
  885.  
  886. OP
  887. SC RES
  888.  
  889. anΣ to reprograφ ke∙ 7║ as follows
  890.  
  891.  7: /QY1SUBMIT O<CR>
  892.  
  893. No≈ thσ sequencσ oµ operation≤ become≤ ß ver∙ shor⌠ anΣ efficien⌠ ì
  894. onσ indeed
  895.  
  896. ^0              ; Worksheet initialization. 
  897. ^9n1:m1^1       ; Operand (MAT1) specification.
  898. ^9n2:m2^2       ; Operand (MAT2) specification.
  899. ^9n3:m3^3       ; Operand (MAT3) specification.
  900. ^7              ; ExtraCalc-1 will be invoked automatically. User 
  901.                 ; should select one of ExtraCalc-1 options (1:11). 
  902.                 ; SuperCalc will be automatically invoked at the
  903.                 ╗ácompletitioεáoµ selecteΣámatri° operation.
  904.                 ; Results of computation will be automatically 
  905.                 ╗áloaded iε thσ area specified by outpu⌠ámatri° 
  906.                 ; operanΣ MAT2 and/or MAT3.
  907.  
  908.  
  909. Le⌠ u≤ reminΣ thσ use≥ tha⌠ file≤ RES.XQT¼á SAV.XQ╘ anΣ O.SU┬ arσ ì
  910. provideΣá oεá thσá distributioε diskette«á You≥á key≤á shoulΣá bσ ì
  911. programmeΣ a≤ summarizeΣ below
  912.  
  913.  
  914.                         0: /XSAV<CR>
  915.                         1: ,DB:MAT1,B<CR>
  916.                         2: ,DB:MAT2,B<CR>
  917.                         3: ,DB:MAT3,B<CR>
  918.                         6: /XB:RES2<CR>
  919.                         7: /QY1SUBMIT O<CR>
  920.                         9: /OC
  921.  
  922.  
  923. notσá 3║á Maste≥ diskettσ shoulΣ bσ unprotecteΣ iµ SUBMIT.CO═á i≤ ì
  924. used..PO 8
  925. è5. NUMERIC EXAMPLES
  926.  
  927.  
  928. Iε thσ firs⌠ examplσ (transpositition⌐ aε initia∞ speadshee⌠ wil∞ ì
  929. bσá thσ onσ presenteΣ oε Figurσ 2«á Forma⌠ oµ eacΦá examplσá wil∞ ì
  930. consis⌠ of
  931.  
  932. a. Sequence of entries as outlined in section 4d. (Auto. Operation).
  933. b. Answer to ExtraCalc-1 prompt (there is only one)
  934. c. Resulting Speadsheet 
  935. d. Comments (sometimes) and additional entry for operations 5, 6. 
  936.  
  937.  
  938. .PO 0
  939.  
  940.  
  941.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  942.   1|        1        2        3        4        5        6        7        8
  943.   2|        5        5        5        5        5        5        5        5
  944.   3|       -1        1       -1        1       -1        1       -1        1
  945.   4|        2        4        2        1        4        5        5        6
  946.   5|                                                                        
  947.   6|                                                                        
  948.   7|        0        0        0        0                 1                 0
  949.   8|        0        0        0        0                 2                 0
  950.   9|        0        0        0        0                 3                 0
  951.  10|        0        0        0        0                 4                 0
  952.  11|        0        0        0        0        0                           
  953.  12|        0        0        0        0                 0                  
  954.  13|        0        0        0        0                          0         
  955.  14|        0        0        0        0                                   0
  956.  15|                                                                        
  957.  16|                                                                        
  958.  17|        1        4       -6       -2        1        2       -3        4
  959.  18|        4        3        5        7        2       -3        4        7
  960.  19|       -6        5        1       -1        5        3        0        6
  961.  20|       -2        7       -1        3        7       -1       -5       -2
  962.  
  963. .PO 8
  964.  
  965.                             Figure 2
  966.  
  967.  
  968.  
  969. Resultinτá spreadshee⌠á afte≥á eacΦ operatioε wil∞á servσá a≤á aε ì
  970. initia∞ speadshee⌠ oµ operatioε tha⌠ follow≤ it.
  971.  
  972. note║á Kee≡á workshee⌠ number≤ iε DEFAUL╘ forma⌠ only«á Otherwisσ ì
  973. thσ ExtraCalc-▒ wil∞ misinterpre⌠ o≥ misusσ thσ data.
  974. .PA
  975. è1)  TRANSPOSITION (MAIN DIAGONAL)
  976.  
  977.  
  978. =================================================================
  979. a.                     `` b.
  980.                        `` 
  981. ^0                     `` 1<CR> 
  982. ^9A1:H4^1              ``
  983. ^9A7:D14^2             ``
  984. ^7                     `
  985. =================================================================
  986. c.`
  987. ==
  988. .PO 0
  989.  
  990.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  991.   1|        1        2        3        4        5        6        7        8
  992.   2|        5        5        5        5        5        5        5        5
  993.   3|       -1        1       -1        1       -1        1       -1        1
  994.   4|        2        4        2        1        4        5        5        6
  995.   5|                                                                        
  996.   6|                                                                        
  997.   7|        1        5       -1        2                 1                 0
  998.   8|        2        5        1        4                 2                 0
  999.   9|        3        5       -1        2                 3                 0
  1000.  10|        4        5        1        1                 4                 0
  1001.  11|        5        5       -1        4        0                           
  1002.  12|        6        5        1        5                 0                  
  1003.  13|        7        5       -1        5                          0         
  1004.  14|        8        5        1        6                                   0
  1005.  15|                                                                        
  1006.  16|                                                                        
  1007.  17|        1        4       -6       -2        1        2       -3        4
  1008.  18|        4        3        5        7        2       -3        4        7
  1009.  19|       -6        5        1       -1        5        3        0        6
  1010.  20|       -2        7       -1        3        7       -1       -5       -2
  1011.  
  1012. .PO 8
  1013.  
  1014.                             Figure 3
  1015. .PA
  1016. è2)  TRANSPOSITION (SECONDARY DIAGONAL)
  1017.  
  1018. =================================================================
  1019. a.                     `` b.
  1020.                        `` 
  1021. ^0                     `` 2<CR> 
  1022. ^9A7:D14^1             ``
  1023. ^9A1:H4^2              ``
  1024. ^7                     `
  1025. =================================================================
  1026. c.`
  1027. ==
  1028. .PO 0
  1029.  
  1030.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1031.   1|        6        5        5        4        1        2        4        2
  1032.   2|        1       -1        1       -1        1       -1        1       -1
  1033.   3|        5        5        5        5        5        5        5        5
  1034.   4|        8        7        6        5        4        3        2        1
  1035.   5|                                                                        
  1036.   6|                                                                        
  1037.   7|        1        5       -1        2                 1                 0
  1038.   8|        2        5        1        4                 2                 0
  1039.   9|        3        5       -1        2                 3                 0
  1040.  10|        4        5        1        1                 4                 0
  1041.  11|        5        5       -1        4        0                           
  1042.  12|        6        5        1        5                 0                  
  1043.  13|        7        5       -1        5                          0         
  1044.  14|        8        5        1        6                                   0
  1045.  15|                                                                        
  1046.  16|                                                                        
  1047.  17|        1        4       -6       -2        1        2       -3        4
  1048.  18|        4        3        5        7        2       -3        4        7
  1049.  19|       -6        5        1       -1        5        3        0        6
  1050.  20|       -2        7       -1        3        7       -1       -5       -2
  1051.  
  1052. .PO 8
  1053.  
  1054.                             Figure 4
  1055. .PA
  1056. è3)  REFLECTION IN A COLUMN
  1057.  
  1058. =================================================================
  1059. a.                     `` b.
  1060.                        `` 
  1061. ^0                     `` 3<CR> 
  1062. ^9A7:D14^1             ``
  1063. ^9A7:D14^2             ``
  1064. ^7                     `
  1065. =================================================================
  1066. c.`
  1067. ==
  1068. .PO 0
  1069.  
  1070.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1071.   1|        6        5        5        4        1        2        4        2
  1072.   2|        1       -1        1       -1        1       -1        1       -1
  1073.   3|        5        5        5        5        5        5        5        5
  1074.   4|        8        7        6        5        4        3        2        1
  1075.   5|                                                                        
  1076.   6|                                                                        
  1077.   7|        8        5        1        6                 1                 0
  1078.   8|        7        5       -1        5                 2                 0
  1079.   9|        6        5        1        5                 3                 0
  1080.  10|        5        5       -1        4                 4                 0
  1081.  11|        4        5        1        1        0                           
  1082.  12|        3        5       -1        2                 0                  
  1083.  13|        2        5        1        4                          0         
  1084.  14|        1        5       -1        2                                   0
  1085.  15|                                                                        
  1086.  16|                                                                        
  1087.  17|        1        4       -6       -2        1        2       -3        4
  1088.  18|        4        3        5        7        2       -3        4        7
  1089.  19|       -6        5        1       -1        5        3        0        6
  1090.  20|       -2        7       -1        3        7       -1       -5       -2
  1091. .PO 8
  1092.  
  1093.  
  1094.                             Figure 5
  1095. .PA
  1096. è4)  REFLECTION IN A ROW
  1097.  
  1098. =================================================================
  1099. a.                     `` b.
  1100.                        `` 
  1101. ^0                     `` 4<CR> 
  1102. ^9A7:D14^1             ``
  1103. ^9A7:D14^2             ``
  1104. ^7                     `
  1105. =================================================================
  1106. c.`
  1107. ==
  1108. .PO 0
  1109.  
  1110.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1111.   1|        6        5        5        4        1        2        4        2
  1112.   2|        1       -1        1       -1        1       -1        1       -1
  1113.   3|        5        5        5        5        5        5        5        5
  1114.   4|        8        7        6        5        4        3        2        1
  1115.   5|                                                                        
  1116.   6|                                                                        
  1117.   7|        6        1        5        8                 1                 0
  1118.   8|        5       -1        5        7                 2                 0
  1119.   9|        5        1        5        6                 3                 0
  1120.  10|        4       -1        5        5                 4                 0
  1121.  11|        1        1        5        4        0                           
  1122.  12|        2       -1        5        3                 0                  
  1123.  13|        4        1        5        2                          0         
  1124.  14|        2       -1        5        1                                   0
  1125.  15|                                                                        
  1126.  16|                                                                        
  1127.  17|        1        4       -6       -2        1        2       -3        4
  1128.  18|        4        3        5        7        2       -3        4        7
  1129.  19|       -6        5        1       -1        5        3        0        6
  1130.  20|       -2        7       -1        3        7       -1       -5       -2
  1131. .PO 8
  1132.  
  1133.                             Figure 6
  1134. .PA
  1135. è5)  INVERSION
  1136.  
  1137. =================================================================
  1138. a.                     `` b.
  1139.                        `` 
  1140. ^0                     `` 5<CR> 
  1141. ^9A17:D20^1            ``
  1142. ^9E17:H20^2            ``
  1143. ^7                     `
  1144. =================================================================
  1145. c.`
  1146. ==
  1147. .PO 0
  1148.  
  1149.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1150.   1|        6        5        5        4        1        2        4        2
  1151.   2|        1       -1        1       -1        1       -1        1       -1
  1152.   3|        5        5        5        5        5        5        5        5
  1153.   4|        8        7        6        5        4        3        2        1
  1154.   5|                                                                        
  1155.   6|                                                                        
  1156.   7|        6        1        5        8                 1                 0
  1157.   8|        5       -1        5        7                 2                 0
  1158.   9|        5        1        5        6                 3                 0
  1159.  10|        4       -1        5        5                 4                 0
  1160.  11|        1        1        5        4        0                           
  1161.  12|        2       -1        5        3                 0                  
  1162.  13|        4        1        5        2                          0         
  1163.  14|        2       -1        5        1                                   0
  1164.  15|                                                                        
  1165.  16|                                                                        
  1166.  17|        1        4       -6       -2 .2206572 .1924882 .0892019 -.272300
  1167.  18|        4        3        5        7 .1924882  .157277 .1948356 -.173709
  1168.  19|       -6        5        1       -1 .0892019 .1948357 .2488263 -.312207
  1169.  20|       -2        7       -1        3 -.272300 -.173709 -.312207 .4530516
  1170. .PO 8
  1171.  
  1172.                             Figure 7
  1173. .PA
  1174. è
  1175.  
  1176.  
  1177. =================================================================
  1178. d. To display value of determinant one should type in
  1179.   
  1180. ^6
  1181. =================================================================
  1182.  
  1183.  
  1184.                      Resulting spreadsheet. 
  1185.  
  1186. .PO 0
  1187.  
  1188.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1189.   1|DET=      -852.000                                                      
  1190.   2|        6        5        5        4        1        2        4        2
  1191.   3|        1       -1        1       -1        1       -1        1       -1
  1192.   4|        5        5        5        5        5        5        5        5
  1193.   5|        8        7        6        5        4        3        2        1
  1194.   6|                                                                        
  1195.   7|                                                                        
  1196.   8|        6        1        5        8                 1                 0
  1197.   9|        5       -1        5        7                 2                 0
  1198.  10|        5        1        5        6                 3                 0
  1199.  11|        4       -1        5        5                 4                 0
  1200.  12|        1        1        5        4        0                           
  1201.  13|        2       -1        5        3                 0                  
  1202.  14|        4        1        5        2                          0         
  1203.  15|        2       -1        5        1                                   0
  1204.  16|                                                                        
  1205.  17|                                                                        
  1206.  18|        1        4       -6       -2 .2206572 .1924882 .0892019 -.272300
  1207.  19|        4        3        5        7 .1924882  .157277 .1948356 -.173709
  1208.  20|       -6        5        1       -1 .0892019 .1948357 .2488263 -.312207
  1209.  21|       -2        7       -1        3 -.272300 -.173709 -.312207 .4530516
  1210.  
  1211. .PO 0
  1212.  
  1213.                             Figure 8
  1214. .PA
  1215. è6)  EIGENVALUES AND EIGENVECTORS
  1216.  
  1217.  
  1218. =================================================================
  1219. a.                     `` b.
  1220.                        `` 
  1221. ^0                     `` 6<CR> 
  1222. ^9E18:H21^1            ``
  1223. ^9E12:H15^2            ``
  1224. ^9E2:H5^3              ``
  1225. ^7                     `
  1226. =================================================================
  1227. c.`
  1228. ==
  1229. .PO 0
  1230.  
  1231.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1232.   1|DET=      -852.000                                                      
  1233.   2|        6        5        5        4        1        2        4        2
  1234.   3|        1       -1        1       -1        1       -1        1       -1
  1235.   4|        5        5        5        5        5        5        5        5
  1236.   5|        8        7        6        5        4        3        2        1
  1237.   6|                                                                        
  1238.   7|                                                                        
  1239.   8|        6        1        5        8                 1                 0
  1240.   9|        5       -1        5        7                 2                 0
  1241.  10|        5        1        5        6                 3                 0
  1242.  11|        4       -1        5        5                 4                 0
  1243.  12|        1        1        5        4 .9334186                           
  1244.  13|        2       -1        5        3          .1477654                  
  1245.  14|        4        1        5        2                   .0915645         
  1246.  15|        2       -1        5        1                            -.092936
  1247.  16|                                                                        
  1248.  17|                                                                        
  1249.  18|        1        4       -6       -2 .2206572 .1924882 .0892019 -.272300
  1250.  19|        4        3        5        7 .1924882  .157277 .1948356 -.173709
  1251.  20|       -6        5        1       -1 .0892019 .1948357 .2488263 -.312207
  1252.  21|       -2        7       -1        3 -.272300 -.173709 -.312207 .4530516
  1253. .PO 8
  1254.  
  1255.                             Figure 9
  1256. .PA
  1257. è
  1258.  
  1259. =================================================================
  1260. d.  To display Eigenvectors one should type in
  1261.  
  1262. ^6
  1263. =================================================================
  1264.  
  1265.  
  1266.                      Resulting spreadsheet. 
  1267.  
  1268. .PO 0
  1269.  
  1270.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1271.   1|DET=      -852.000                                                      
  1272.   2|        6        5        5        4 .4196722 -.742605 -.021986 -.521469
  1273.   3|        1       -1        1       -1 .3744284 -.191104 .7270643 .5428264
  1274.   4|        5        5        5        5 .4711288 .6290308 .3184456 -.530048
  1275.   5|        8        7        6        5 -.679497 -.127817 .6078543 -.390461
  1276.   6|                                                                        
  1277.   7|                                                                        
  1278.   8|        6        1        5        8                 1                 0
  1279.   9|        5       -1        5        7                 2                 0
  1280.  10|        5        1        5        6                 3                 0
  1281.  11|        4       -1        5        5                 4                 0
  1282.  12|        1        1        5        4 .9334186                           
  1283.  13|        2       -1        5        3          .1477654                  
  1284.  14|        4        1        5        2                   .0915645         
  1285.  15|        2       -1        5        1                            -.092936
  1286.  16|                                                                        
  1287.  17|                                                                        
  1288.  18|        1        4       -6       -2 .2206572 .1924882 .0892019 -.272300
  1289.  19|        4        3        5        7 .1924882  .157277 .1948356 -.173709
  1290.  20|       -6        5        1       -1 .0892019 .1948357 .2488263 -.312207
  1291.  21|       -2        7       -1        3 -.272300 -.173709 -.312207 .4530516
  1292.  
  1293.  
  1294. .PO 8
  1295.  
  1296.                             Figure 10
  1297. .PA
  1298. è     7)  SOLUTION OF SYSTEM OF LINEAR EQUATIONS
  1299.  
  1300. =================================================================
  1301. a.                     `` b.
  1302.                        `` 
  1303. ^0                     `` 7<CR> 
  1304. ^9A18:D21^1            ``
  1305. ^9F8:F11^2             ``
  1306. ^9H8:H11^3             ``
  1307. ^7                     `
  1308. =================================================================
  1309. c.`
  1310. ==
  1311. .PO 0
  1312.  
  1313.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1314.   1|DET=      -852.000                                                      
  1315.   2|        6        5        5        4 .4196722 -.742605 -.021986 -.521469
  1316.   3|        1       -1        1       -1 .3744284 -.191104 .7270643 .5428264
  1317.   4|        5        5        5        5 .4711288 .6290308 .3184456 -.530048
  1318.   5|        8        7        6        5 -.679497 -.127817 .6078543 -.390461
  1319.   6|                                                                        
  1320.   7|                                                                        
  1321.   8|        6        1        5        8                 1          -.215962
  1322.   9|        5       -1        5        7                 2          .3967136
  1323.  10|        5        1        5        6                 3          -.023474
  1324.  11|        4       -1        5        5                 4          .2558685
  1325.  12|        1        1        5        4 .9334186                           
  1326.  13|        2       -1        5        3          .1477654                  
  1327.  14|        4        1        5        2                   .0915645         
  1328.  15|        2       -1        5        1                            -.092936
  1329.  16|                                                                        
  1330.  17|                                                                        
  1331.  18|        1        4       -6       -2 .2206572 .1924882 .0892019 -.272300
  1332.  19|        4        3        5        7 .1924882  .157277 .1948356 -.173709
  1333.  20|       -6        5        1       -1 .0892019 .1948357 .2488263 -.312207
  1334.  21|       -2        7       -1        3 -.272300 -.173709 -.312207 .4530516
  1335.  
  1336. .PO 8
  1337.                             Figure 11
  1338.  
  1339. ExtraCalc-▒á wil∞á displa∙ (durinτ execution⌐ ß valuσ oµá minima∞ ì
  1340. pivo⌠á tha⌠ wa≤ useΣ iε computations«á Iµ i⌠ think≤ tha⌠ pivo⌠ i≤ ì
  1341. to∩ smal∞, thσ warning
  1342.  
  1343.                     SYSTEM IS ALMOST SINGULAR
  1344.  
  1345. wil∞á bσá displayed«á I⌠ doe≤ no⌠ alway≤ meaεá tha⌠á solutioεá i≤ ì
  1346. incorrec⌠ o≥ no⌠ precisσ bu⌠ serve≤ t∩ aler⌠ thσ user.
  1347. .PA
  1348. è     8)  ADDITION
  1349.  
  1350.  
  1351. =================================================================
  1352. a.                     `` b.
  1353.                        `` 
  1354. ^0                     `` 8<CR> 
  1355. ^9A2:H5^1              ``
  1356. ^9A18:H21^2            ``
  1357. ^9A18:H21^3            ``
  1358. ^7                     `
  1359. =================================================================
  1360. c.`
  1361. ==
  1362. .PO 0
  1363.  
  1364.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1365.   1|DET=      -852.000                                                      
  1366.   2|        6        5        5        4 .4196722 -.742605 -.021986 -.521469
  1367.   3|        1       -1        1       -1 .3744284 -.191104 .7270643 .5428264
  1368.   4|        5        5        5        5 .4711288 .6290308 .3184456 -.530048
  1369.   5|        8        7        6        5 -.679497 -.127817 .6078543 -.390461
  1370.   6|                                                                        
  1371.   7|                                                                        
  1372.   8|        6        1        5        8                 1          -.215962
  1373.   9|        5       -1        5        7                 2          .3967136
  1374.  10|        5        1        5        6                 3          -.023474
  1375.  11|        4       -1        5        5                 4          .2558685
  1376.  12|        1        1        5        4 .9334186                           
  1377.  13|        2       -1        5        3          .1477654                  
  1378.  14|        4        1        5        2                   .0915645         
  1379.  15|        2       -1        5        1                            -.092936
  1380.  16|                                                                        
  1381.  17|                                                                        
  1382.  18|        7        9       -1        2 .6403294 -.550117 .0672158 -.793769
  1383.  19|        5        2        6        6 .5669166 -.033827 .9218999 .3691175
  1384.  20|       -1       10        6        4 .5603307 .8238665 .5672719 -.842254
  1385.  21|        6       14        5        8 -.951798 -.301526 .2956478 .0625908
  1386. .PO 8
  1387.  
  1388.  
  1389.                             Figure 12
  1390. .PA
  1391. è     9)  SUBTRACTION
  1392.  
  1393.  
  1394. =================================================================
  1395. a.                     `` b.
  1396.                        `` 
  1397. ^0                     `` 9<CR> 
  1398. ^9A2:H5^1              ``
  1399. ^9A18:H21^2            ``
  1400. ^9A18:H21^3            ``
  1401. ^7                     `
  1402. =================================================================
  1403. c.`
  1404. ==
  1405. .PO 0
  1406.  
  1407.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1408.   1|DET=      -852.000                                                      
  1409.   2|        6        5        5        4 .4196722 -.742605 -.021986 -.521469
  1410.   3|        1       -1        1       -1 .3744284 -.191104 .7270643 .5428264
  1411.   4|        5        5        5        5 .4711288 .6290308 .3184456 -.530048
  1412.   5|        8        7        6        5 -.679497 -.127817 .6078543 -.390461
  1413.   6|                                                                        
  1414.   7|                                                                        
  1415.   8|        6        1        5        8                 1          -.215962
  1416.   9|        5       -1        5        7                 2          .3967136
  1417.  10|        5        1        5        6                 3          -.023474
  1418.  11|        4       -1        5        5                 4          .2558685
  1419.  12|        1        1        5        4 .9334186                           
  1420.  13|        2       -1        5        3          .1477654                  
  1421.  14|        4        1        5        2                   .0915645         
  1422.  15|        2       -1        5        1                            -.092936
  1423.  16|                                                                        
  1424.  17|                                                                        
  1425.  18|       -1       -4        6        2 -.220657 -.192488 -.089202 .2723004
  1426.  19|       -4       -3       -5       -7 -.192488 -.157277 -.194836 .1737089
  1427.  20|        6       -5       -1        1 -.089202 -.194836 -.248826 .3122066
  1428.  21|        2       -7        1       -3 .2723004 .1737089 .3122065 -.453052
  1429. .PO 8
  1430.  
  1431.  
  1432.                             Figure 13
  1433. .PA
  1434. è     10) MULTIPLICATION 
  1435.  
  1436.  
  1437. =================================================================
  1438. a.                     `` b.
  1439.                        `` 
  1440. ^0                     `` 10<CR> 
  1441. ^9A18:D21^1            ``
  1442. ^9E18:H21^2            ``
  1443. ^9E2:H5^3              ``
  1444. ^7                     `
  1445. =================================================================
  1446. c.`
  1447. ==
  1448.  
  1449. .PO 0
  1450.  
  1451.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1452.   1|DET=      -852.000                                                      
  1453.   2|        6        5        5        4 .9999994 -2.09e-7 -.000001 .0000004
  1454.   3|        1       -1        1       -1 .0000001        1 .0000002 -2.38e-7
  1455.   4|        5        5        5        5        0 .0000004 .9999997 -2.98e-7
  1456.   5|        8        7        6        5 -1.19e-7 .0000003 -2.38e-7 .9999999
  1457.   6|                                                                        
  1458.   7|                                                                        
  1459.   8|        6        1        5        8                 1          -.215962
  1460.   9|        5       -1        5        7                 2          .3967136
  1461.  10|        5        1        5        6                 3          -.023474
  1462.  11|        4       -1        5        5                 4          .2558685
  1463.  12|        1        1        5        4 .9334186                           
  1464.  13|        2       -1        5        3          .1477654                  
  1465.  14|        4        1        5        2                   .0915645         
  1466.  15|        2       -1        5        1                            -.092936
  1467.  16|                                                                        
  1468.  17|                                                                        
  1469.  18|       -1       -4        6        2 -.220657 -.192488 -.089202 .2723004
  1470.  19|       -4       -3       -5       -7 -.192488 -.157277 -.194836 .1737089
  1471.  20|        6       -5       -1        1 -.089202 -.194836 -.248826 .3122066
  1472.  21|        2       -7        1       -3 .2723004 .1737089 .3122065 -.453052
  1473. .PO 8
  1474.  
  1475.                             Figure 14
  1476. .PA
  1477. èAfte≥á reformattinτá 
  1478.  
  1479.  
  1480.  
  1481. /FE2:H5,$<CR>
  1482.  
  1483. .PO 0
  1484.  
  1485.     |   A   ||   B   ||   C   ||   D   ||   E   ||   F   ||   G   ||   H   |
  1486.   1|DET=      -852.000                                                      
  1487.   2|        6        5        5        4     1.00      .00      .00      .00
  1488.   3|        1       -1        1       -1      .00     1.00      .00      .00
  1489.   4|        5        5        5        5      .00      .00     1.00      .00
  1490.   5|        8        7        6        5      .00      .00      .00     1.00
  1491.   6|                                                                        
  1492.   7|                                                                        
  1493.   8|        6        1        5        8                 1          -.215962
  1494.   9|        5       -1        5        7                 2          .3967136
  1495.  10|        5        1        5        6                 3          -.023474
  1496.  11|        4       -1        5        5                 4          .2558685
  1497.  12|        1        1        5        4 .9334186                           
  1498.  13|        2       -1        5        3          .1477654                  
  1499.  14|        4        1        5        2                   .0915645         
  1500.  15|        2       -1        5        1                            -.092936
  1501.  16|                                                                        
  1502.  17|                                                                        
  1503.  18|       -1       -4        6        2 -.220657 -.192488 -.089202 .2723004
  1504.  19|       -4       -3       -5       -7 -.192488 -.157277 -.194836 .1737089
  1505.  20|        6       -5       -1        1 -.089202 -.194836 -.248826 .3122066
  1506.  21|        2       -7        1       -3 .2723004 .1737089 .3122065 -.453052
  1507.  
  1508. .PO 8
  1509.  
  1510.                            Figure 14a
  1511.  
  1512.  
  1513.  
  1514. I⌠ i≤ clea≥ tha⌠ thσ resul⌠ (E2:H5⌐ i≤ aε identit∙ matrix« .PO 8
  1515. .PA
  1516. è6. COMPOSITE OPERATIONS. APPLICATIONS.
  1517.  
  1518. Usinτá successivσá matri°á operation≤ a≤ outlineΣ abovσá onσá ma∙ ì
  1519. solvσá ßá tremendou≤ numbe≥ oµ morσ comple°á problem≤á oµá matri° ì
  1520. algebra¼á operation≤ research¼ anΣ iε general¼ man∙ problem≤ tha⌠ ì
  1521. allo≈á matri°á description«á Iε thi≤ sectioε wσá wil∞á illustratσ ì
  1522. time-serie≤á analysi≤á usinτ ß s∩ calleΣ  Leas⌠ Square≤á Techiquσ ì
  1523. whicΦá serve≤ a≤ ß foundatioε oµ linea≥ anΣ nonlinea≥á regressioε ì
  1524. analysis.
  1525.  
  1526. a. Least Squares Technique
  1527.  
  1528. Suppose that we have made a series of observations
  1529.  
  1530.                       t1,y1,t2,y2,...,tN,yN
  1531.  
  1532. tk can be interpreted as time instants, while
  1533. yk is observed value (price, temperature, etc.)
  1534.  
  1535. I⌠á i≤ ofteε assumeΣ tha⌠ thσ observeΣ valuσ (y⌐ i≤ ß functioε oµ ì
  1536. time (t), or
  1537.  
  1538.                             y = y(t)                       (1)
  1539.  
  1540. Defininτá thi≤á dependenc∙ iε ß morσ specifiπ wa∙á wσá ofteεá ma∙ ì
  1541. writσ it down as
  1542.                               M 
  1543.                           y = $#% ap.fp(t)                   (2)
  1544.                               p=1
  1545.  
  1546. where ap are constants, and
  1547.       fp(t⌐á arσ choseε systeφ oµ function≤ sucΦ a≤á polynomials¼ ì
  1548.       trigonometriπ functions¼ exponential≤ anΣ s∩ on.
  1549.  
  1550. Example≤ oµ fpù arσ t2ù ½ ⌠ -3¼á sin3t-con5t¼ e-2tù - -t1« Iε thσ casσ ì
  1551. oµ polynomia∞ regressioε fp(t⌐ ╜ tp« Oµ coursσ wσ ma∙ rewritσ (2⌐ ì
  1552. fo≥ aε arbitrar∙ k-tΦ observation
  1553.  
  1554.                        M 
  1555.                   yk = $#% ap.fp(tk), k=1,2,...,N            (3) 
  1556.                        p=1
  1557.  
  1558. Or in the matrix form
  1559.  
  1560.  
  1561.              ┘ ╜ ╞ «áa¼á FNxMù ╜ {fp(tk}¼áaMx1ù ╜ {ap}       (4)
  1562.  
  1563. Thσ probleφ oµ Leas⌠ Square≤ Techiquσ i≤ t∩ finΣ vecto≥ ß ╜ {ap}¼ ìèp=1,2,...,M╗ tha⌠ minimize≤ ß form
  1564.  
  1565.  
  1566.                             N        M               
  1567.              |B[ Y - F.a |E]2 = $#% |B[ yk - $#% ap.fp(tk) |E]2        (5)
  1568.                             k=1      p=1 
  1569.  
  1570. B∙ takinτ partia∞ derivative≤ witΦ respec⌠ t∩ apù anΣ puttinτ theφ ì
  1571. equa∞ t∩ zer∩ wσ have
  1572.  
  1573.  
  1574.                           FT.F.a = FT.Y                    (6)
  1575.  
  1576. Thereforσ apù caε bσ founΣ iε fivσ step≤ usinτ ExtraCalc-1
  1577.  
  1578.  
  1579. 1) Calculate matrix F using SuperCalc built in functions
  1580.  
  1581. 2) Calculate transpose of F using ExtraCalc-1
  1582.  
  1583. 3) Calculate FT.F = A
  1584.  
  1585. 4) Calculate FT.Y = D
  1586.  
  1587. 5) Solve system of equations A.a = D with respect to a.
  1588.  
  1589. Applications to forecasting and trend analysis
  1590.  
  1591. T∩á usσá thσá obtaineΣá regresioεá model¼á onσá simpl∙á ma∙á pluτ ì
  1592. differen⌠áá number≤áá specifyinτá tkùá outsidσá oµáá interva∞áá oµ ì
  1593. observation«á Iµ thσ systeφ oµ fpù function≤ wa≤ choseεá correctl∙ ì
  1594. (baseΣ oε somσ theoretica∞ analysi≤ oµ process¼á o≥ b∙ shee≥ lucδ ì
  1595. thσ predictioε caε bσ ver∙ precise« Oµ coursσ onσ shoulΣ no⌠ takσ ì
  1596. moment≤á oµá timσ tkù to∩ fa≥ iε thσ futurσ bu⌠ rathe≥ iε 5Ñá - 7Ñ ì
  1597. rangσ oµ observatioε interva∞ length« 
  1598.  
  1599. Fo≥á morσá informatioεá oεá ho≈á t∩á usσá regressioεá model≤áá iε ì
  1600. forecasting¼ interpolatioε anΣ trenΣ analysi≤ onσ shoulΣ refe≥ t∩ ì
  1601. aε appropriatσ booδ oε Probability and Statistics.
  1602.  
  1603.  
  1604. b. Numeric Example: Dow Jones Regression Model.
  1605.  
  1606. A≤ aε illustratioε oµ abovσ techniquσ wσ wil∞ conside≥ ßá probleφ ì
  1607. oµ D╩ forecasting«á Ou≥ initia∞ spreadshee⌠ i≤ showε oε Figurσ 1╡ ì
  1608. anΣá consist≤á oµá tw∩ column≤ oµ ~10░á observations«á Thσá firs⌠ ì
  1609. columεá i≤á ß datσ oµ observation¼á whilσ thσ seconΣá i≤á closinτ ì
  1610. valuσ oµ D╩ inde° (Pk⌐ oε thi≤ (k-th⌐ week.
  1611. è.PN 39
  1612. .OP
  1613. Wσá wil∞ usσ firs⌠ 5░ observation≤ t∩ obtaiε thσ mode∞ anΣá late≥ ì
  1614. usσ othe≥ 5▓ observation≤ t∩ comparσ actua∞ anΣ forecasteΣ value≤ ì
  1615. of Dow index.
  1616.  
  1617.  
  1618. 1⌐ Le⌠ u≤ firs⌠ blanδ thσ las⌠ 5▓ row≤ oµ observation≤ anΣ definσ ì
  1619. fp(tk⌐ as
  1620.  
  1621.  
  1622. fp(tk⌐ ╜ a1.Pk-1ù ½ a2.(Pk-2-Pk-1⌐ ½ a3.(Pk-3-Pk-2⌐ ½ a4.(Pk-4-Pk-3)
  1623.  
  1624.  
  1625. I⌠á i≤ goinτ t∩ meaε tha⌠ Presen⌠ Valuσ oµ D╩ inde° i≤ ß functioε ì
  1626. oµ last four week indices«     
  1627.  
  1628.  
  1629. Sequencσ oµ SupecCalπ statementsÖ fo≥ thσ abovσ wil∞ be
  1630.  
  1631.  
  1632. /BA52:B102<CR>
  1633. >
  1634. =C6
  1635. B5<CR>
  1636. B5-B4<CR>
  1637. B4-B3<CR>
  1638. B3-B2<CR>
  1639. /RC6:F6,C7:C51<CR>
  1640. !
  1641.  
  1642. Resultinτá matri° (F⌐ i≤ 46\┤ anΣ occupie≤ workshee⌠ C6:F5▒á (seσ ì
  1643. Figurσ 16).
  1644. .PA
  1645. è.PN 41
  1646. .OP
  1647. 2)  Calculate transpose of F using ExtraCalc-1.
  1648.  
  1649. Sequence of SuperCalc and ExtraCalc-1 statements for this will be
  1650.  
  1651. =C2
  1652. 0
  1653. /RC2,D2:AV2<CR>
  1654. /RC2:AV2,C3:C5<CR>
  1655. ^0
  1656. ^9C6:F51^1
  1657. ^9C2:AV5^2
  1658. ^7
  1659.  
  1660. Answer to ExtraCalc-1 prompt is 1.
  1661.  
  1662. 3) Calculate FT.F = A
  1663.  
  1664. Sequence of ExtraCalc-1 statements for this will be
  1665.  
  1666. ^0
  1667. ^9C2:AV5^1
  1668. ^9C6:F51^2
  1669. ^9C6:F9^3
  1670. ^7
  1671.  
  1672. Answe≥ t∩ ExtraCalc-▒ promp⌠ i≤ 10«á Afte≥ thi≤ operatioε wσá ma∙ ì
  1673. blanδá unnecessar∙á no≈ part≤ oµ worksheet«á Wheεá creatinτá MATnÖ ì
  1674. (matri° operand⌐ KEE╨ WORKSHEE╘ I╬ DEFAULTÖ FORMA╘ ONL┘ !!!
  1675.  
  1676. /BC10:F51<CR>
  1677.  
  1678. 4) Calculate FT.Y = D
  1679.  
  1680. Sequence of ExtraCalc-1 statements for this will be
  1681.  
  1682. ^0
  1683. ^9B6:B51^2
  1684. ^9C2:C5^3
  1685. ^7
  1686.  
  1687. Answe≥á t∩ ExtraCalc-▒ promp⌠ i≤ 10«á Afte≥ thi≤ operatioε wσ ma∙ ì
  1688. blanδá unnecessar∙á no≈ part≤ oµá worksheet«á KEE╨á WORKSHEE╘á I╬ ì
  1689. DEFAULTÖ FORMA╘ ONL┘ !!!
  1690.  
  1691. /BD2:AV5<CR>
  1692. Resulting worksheet is shown below (Figure 17).
  1693. .PA
  1694. è.PN 43
  1695. .OP
  1696. 5) Solve system of equations A.a = D with respect to a.
  1697.  
  1698.  
  1699. Sequence of ExtraCalc-1 statements for this will be
  1700.  
  1701. ^0
  1702. ^9C6:F9^1
  1703. ^9C2:C5^2
  1704. ^9C2:C5^3
  1705. ^7
  1706.  
  1707. Answe≥á t∩ ExtraCalc-▒ promp⌠ i≤ 7«á Afte≥ thi≤ operatioε wσá ma∙ ì
  1708. now blanδ unnecessar∙ part≤ oµ workshee⌠.
  1709.  
  1710. /BC6:F9<CR>
  1711.  
  1712. Resulting worksheet is shown below (Figure 18).
  1713. .PA
  1714. è.PN 45
  1715. .OP
  1716. Le⌠á u≤á no≈ creatσ ß workshee⌠ t∩ comparσ actua∞ anΣá forecasteΣ ì
  1717. value≤ oµ Do≈ Jone≤ index«á First¼á wσ replacσ thσ analyzeΣá datß ì
  1718. witΦá ne≈á se⌠ oµ datß usinτ thσ followinτ sequencσ oµá SuperCalπ ì
  1719. statements
  1720.  
  1721. /BA2:B51<CR>
  1722. /LB:DOW.CAL,PA48:B102,A2,V
  1723.  
  1724. Le⌠á u≤á theεá calculatσá forecasteΣ value≤á iεá columεá dÖá usinτ ì
  1725. obtaineΣ value≤ oµ ap¼ p=1,2,3,┤ (entr∙ C2:C5)« 
  1726.  
  1727.  
  1728. =D6<CR>
  1729. C2*B5+C3*(B5-B4)+C4*(B4-B3)+C5*(B3-B2)<CR>
  1730. /RD6,D7:D56,ANYYNYYNYYNYY
  1731. !
  1732.  
  1733. Resulting spreadsheet is shown on Figure 19.
  1734.  
  1735. .PA
  1736. è.PN 47
  1737. .OP
  1738. Fo≥ comparisoε oµ actua∞ anΣ forecasteΣ value≤ oµ inde° yo⌡á havσ ì
  1739. t∩ ente≥ followinτ (SuperCalc)
  1740.  
  1741. >
  1742. =C6
  1743. IF(((B6-B5)*(D6-B5)>0,C5+1,C5)
  1744. /RC6,C7:C56<CR>
  1745. =C6
  1746. IF(((B6-B5)*(D6-B5)>0,C1+1,C1)
  1747. =C1
  1748. 0
  1749. =B57<CR>
  1750. "       %=
  1751. C56*100/(52-5)
  1752. !
  1753.  
  1754. Tota∞á Ñá oµá correc⌠á prediction≤ i≤á ~52Ñá anΣá is¼á obviously¼ ì
  1755. unsatisfactor∙á (Fiτá 20)¼á althougΦá onσá ma∙á noticσá tha⌠á thσ ì
  1756. predictioεá wa≤á ver∙á gooΣá fo≥ firs⌠ fe≈á week≤á (seσá analysi≤ ì
  1757. below).
  1758. .PA
  1759. è.PN 49
  1760. .OP
  1761. Let'≤á looδá a⌠á ho≈ thσ predictioεá accurac∙á change≤á witΦá thσ ì
  1762. distancσá froφ B╡ (las⌠ datß useΣ iε regressioε model)«á Let'≤ d∩ ì
  1763. followinτ transformations
  1764.  
  1765. =D5
  1766. "Dow.Fore
  1767. =E5
  1768. "     % =
  1769. =F5
  1770. "# of Forecast
  1771. =F6
  1772. 1
  1773. =F7
  1774. F6+1
  1775. /RF7,F8:F56<CR>
  1776. =E6
  1777. 100*C6/F6
  1778. /RE6,E7:E56<CR>
  1779.  
  1780. A≤á i⌠ caε bσ seeε (Figurσ 21)¼á forecasteΣ value≤ oµ D╩ movσá iε ì
  1781. thσá samσá directioεá a≤á nex⌠ week actua∞ value≤á iεá 100Ñá case≤ ì
  1782. THROUG╚ 4tΦ week«á Iε othe≥ words¼ wσ shoulΣ recalculatσ apù ever∙ ì
  1783. 4-╡ week≤ at least t∩ ge⌠ ß gooΣ prediction.
  1784. .PA
  1785. è.PN 51
  1786. .OP
  1787. 7. ExtraCalc-1 ERROR MESSAGES  
  1788.  
  1789.  
  1790. Thσ ExtraCalc-▒ detect≤ tw∩ kind≤ oµ errors║á Warning≤ anΣá Fata∞ ì
  1791. Errors«á Wheεá ß Warninτ i≤ issued¼á executioε contro∞ return≤ t∩ ì
  1792. ExtraCalc-▒ manage≥ prograφ OP.COM«á Wheε ß Fata∞ Erro≥ i≤ found¼ ì
  1793. ExtraCalc-▒ cease≤ executioε anΣ contro∞ i≤ returneΣ t∩ operatinτ ì
  1794. systeφ (batcΦ filσ under SUBMIT.COM, iµ yo⌡ usσ one).
  1795.  
  1796. Examples of Warnings:
  1797.  
  1798. OP.COM
  1799.  
  1800. no error messages in OP.COM program
  1801.  
  1802.  
  1803. OP04.COM
  1804.  
  1805. ERROR: WRONG OUTPUT MATRIX DIMENSIONS
  1806. ERROR: DIMENSIONS OF INPUT MATRICES
  1807.        DO NOT MATCH
  1808.  
  1809.  
  1810. OP13.COM
  1811.  
  1812. ERROR: NON-SQUARE INPUT MATRIX
  1813. ERROR: NON-SQUARE OUTPUT MATRIX
  1814. ERROR: NON-SQUARE SYSTEM MATRIX
  1815. ERROR: NON-MATCHING SYSTEM VECTOR
  1816. ERROR: NON-MATCHING OUTPUT VECTOR
  1817.  
  1818. MATRIX DETERMINANT = 0.0
  1819. INVERSION CANNOT BE COMPLETED
  1820.  
  1821. NO SOLUTION OBTAINED: SINGULAR SYSTEM)
  1822.  
  1823. MINIMAL PIVOT = xxx
  1824. !!! SYSTEM IS ALMOST SINGULAR
  1825.     AVERAGE PIVOT = xxx 
  1826.  
  1827.  
  1828. OP2.COM
  1829.  
  1830. ERROR: NON-SQUARE INPUT MATRIX
  1831. ERROR: WRONG OUTPUT MATRIX DIMENSIONS (MAT3)
  1832. ERROR: OUTPUT FILE SIZE = N1 < N = REQUIRED
  1833.  
  1834.  
  1835. èFatal Error Messages are surrounded by asterisks as follows
  1836.  
  1837. **XX** at address XXXX**
  1838.  
  1839. Iµá yo⌡á encountereΣ Fata∞ Erro≥ messagσ firs⌠ checδá ExtraCalc-▒ ì
  1840. anΣá SuperCalπ file≤ location«á Imprope≥ occurencσ o≥ absencσá oµ ì
  1841. thσ onσ oε specifieΣ drivσ i≤ onσ oµ thσ primar∙ reasoε fo≥ Fata∞ ì
  1842. Error« Nex⌠ checδ logiπ oµ you≥ computatioε witΦ ExtraCalc-1.
  1843.  
  1844. Iµá yo⌡ arσ no⌠ ablσ t∩ detec⌠ ß causσ fo≥ Fata∞á Error¼á please¼ ì
  1845. recorΣáá al∞á circumstance≤á oµá it≤á occurencσá anΣá mai∞áá thi≤ ì
  1846. informatioεá t∩ Smirno÷ Associates«á Normall∙ i⌠ i≤ no⌠á expecteΣ ì
  1847. tha⌠ yo⌡ registe≥ Fata∞ Erro≥ messagσ iµ you≥ systeφ i≤ correctl∙ ì
  1848. configured.
  1849.  
  1850.  
  1851. ThirΣ kinΣ oµ erro≥ message≤ ma∙ comσ froφ you≥ operatinτ system« ì
  1852. Please refer to your user's manual for guidance.