home *** CD-ROM | disk | FTP | other *** search
- // Matrix manipulations. -*- C++ -*-
- /*
-
- Copyright (C) 1992, 1993, 1994, 1995 John W. Eaton
-
- This file is part of Octave.
-
- Octave is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 2, or (at your option) any
- later version.
-
- Octave is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with Octave; see the file COPYING. If not, write to the Free
- Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
-
- */
-
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
-
- #include <sys/types.h>
- #include <iostream.h>
- #include <stdio.h>
- #include <float.h>
-
- #include <Complex.h>
-
- #include "mx-base.h"
- #include "dbleDET.h"
- #include "dbleSVD.h"
- #include "mx-inlines.cc"
- #include "lo-error.h"
- #include "f77-uscore.h"
-
- // Fortran functions we call.
-
- extern "C"
- {
- int F77_FCN (dgemm) (const char*, const char*, const int*,
- const int*, const int*, const double*,
- const double*, const int*, const double*,
- const int*, const double*, double*, const int*,
- long, long);
-
- int F77_FCN (dgemv) (const char*, const int*, const int*,
- const double*, const double*, const int*,
- const double*, const int*, const double*,
- double*, const int*, long);
-
- int F77_FCN (dgeco) (double*, const int*, const int*, int*, double*,
- double*);
-
- int F77_FCN (dgesl) (const double*, const int*, const int*,
- const int*, double*, const int*);
-
- int F77_FCN (dgedi) (double*, const int*, const int*, const int*,
- double*, double*, const int*);
-
- int F77_FCN (dgelss) (const int*, const int*, const int*, double*,
- const int*, double*, const int*, double*,
- const double*, int*, double*, const int*,
- int*);
-
- // Note that the original complex fft routines were not written for
- // double complex arguments. They have been modified by adding an
- // implicit double precision (a-h,o-z) statement at the beginning of
- // each subroutine.
-
- int F77_FCN (cffti) (const int*, Complex*);
-
- int F77_FCN (cfftf) (const int*, Complex*, Complex*);
-
- int F77_FCN (cfftb) (const int*, Complex*, Complex*);
- }
-
- #define KLUDGE_MATRICES
- #define TYPE double
- #define KL_MAT_TYPE Matrix
- #include "mx-kludge.cc"
- #undef KLUDGE_MATRICES
- #undef TYPE
- #undef KL_MAT_TYPE
-
- /*
- * Matrix class.
- */
-
- Matrix::Matrix (const DiagMatrix& a)
- : Array2<double> (a.rows (), a.cols (), 0.0)
- {
- for (int i = 0; i < a.length (); i++)
- elem (i, i) = a.elem (i, i);
- }
-
- #if 0
- Matrix&
- Matrix::resize (int r, int c)
- {
- if (r < 0 || c < 0)
- {
- (*current_liboctave_error_handler)
- ("can't resize to negative dimensions");
- return *this;
- }
-
- int new_len = r * c;
- double* new_data = 0;
- if (new_len > 0)
- {
- new_data = new double [new_len];
-
- int min_r = nr < r ? nr : r;
- int min_c = nc < c ? nc : c;
-
- for (int j = 0; j < min_c; j++)
- for (int i = 0; i < min_r; i++)
- new_data[r*j+i] = elem (i, j);
- }
-
- delete [] data;
- nr = r;
- nc = c;
- len = new_len;
- data = new_data;
-
- return *this;
- }
-
- Matrix&
- Matrix::resize (int r, int c, double val)
- {
- if (r < 0 || c < 0)
- {
- (*current_liboctave_error_handler)
- ("can't resize to negative dimensions");
- return *this;
- }
-
- int new_len = r * c;
- double *new_data = 0;
- if (new_len > 0)
- {
- new_data = new double [new_len];
-
- // There may be faster or cleaner ways to do this.
-
- if (r > nr || c > nc)
- copy (new_data, new_len, val);
-
- int min_r = nr < r ? nr : r;
- int min_c = nc < c ? nc : c;
-
- for (int j = 0; j < min_c; j++)
- for (int i = 0; i < min_r; i++)
- new_data[r*j+i] = elem (i, j);
- }
-
- delete [] data;
- nr = r;
- nc = c;
- len = new_len;
- data = new_data;
-
- return *this;
- }
- #endif
-
- int
- Matrix::operator == (const Matrix& a) const
- {
- if (rows () != a.rows () || cols () != a.cols ())
- return 0;
-
- return equal (data (), a.data (), length ());
- }
-
- int
- Matrix::operator != (const Matrix& a) const
- {
- return !(*this == a);
- }
-
- Matrix&
- Matrix::insert (const Matrix& a, int r, int c)
- {
- int a_rows = a.rows ();
- int a_cols = a.cols ();
- if (r < 0 || r + a_rows - 1 > rows ()
- || c < 0 || c + a_cols - 1 > cols ())
- {
- (*current_liboctave_error_handler) ("range error for insert");
- return *this;
- }
-
- for (int j = 0; j < a_cols; j++)
- for (int i = 0; i < a_rows; i++)
- elem (r+i, c+j) = a.elem (i, j);
-
- return *this;
- }
-
- Matrix&
- Matrix::insert (const RowVector& a, int r, int c)
- {
- int a_len = a.length ();
- if (r < 0 || r >= rows () || c < 0 || c + a_len - 1 > cols ())
- {
- (*current_liboctave_error_handler) ("range error for insert");
- return *this;
- }
-
- for (int i = 0; i < a_len; i++)
- elem (r, c+i) = a.elem (i);
-
- return *this;
- }
-
- Matrix&
- Matrix::insert (const ColumnVector& a, int r, int c)
- {
- int a_len = a.length ();
- if (r < 0 || r + a_len - 1 > rows () || c < 0 || c >= cols ())
- {
- (*current_liboctave_error_handler) ("range error for insert");
- return *this;
- }
-
- for (int i = 0; i < a_len; i++)
- elem (r+i, c) = a.elem (i);
-
- return *this;
- }
-
- Matrix&
- Matrix::insert (const DiagMatrix& a, int r, int c)
- {
- if (r < 0 || r + a.rows () - 1 > rows ()
- || c < 0 || c + a.cols () - 1 > cols ())
- {
- (*current_liboctave_error_handler) ("range error for insert");
- return *this;
- }
-
- for (int i = 0; i < a.length (); i++)
- elem (r+i, c+i) = a.elem (i, i);
-
- return *this;
- }
-
- Matrix&
- Matrix::fill (double val)
- {
- int nr = rows ();
- int nc = cols ();
- if (nr > 0 && nc > 0)
- for (int j = 0; j < nc; j++)
- for (int i = 0; i < nr; i++)
- elem (i, j) = val;
-
- return *this;
- }
-
- Matrix&
- Matrix::fill (double val, int r1, int c1, int r2, int c2)
- {
- int nr = rows ();
- int nc = cols ();
- if (r1 < 0 || r2 < 0 || c1 < 0 || c2 < 0
- || r1 >= nr || r2 >= nr || c1 >= nc || c2 >= nc)
- {
- (*current_liboctave_error_handler) ("range error for fill");
- return *this;
- }
-
- if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; }
- if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
-
- for (int j = c1; j <= c2; j++)
- for (int i = r1; i <= r2; i++)
- elem (i, j) = val;
-
- return *this;
- }
-
- Matrix
- Matrix::append (const Matrix& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nr != a.rows ())
- {
- (*current_liboctave_error_handler) ("row dimension mismatch for append");
- return Matrix ();
- }
-
- int nc_insert = nc;
- Matrix retval (nr, nc + a.cols ());
- retval.insert (*this, 0, 0);
- retval.insert (a, 0, nc_insert);
- return retval;
- }
-
- Matrix
- Matrix::append (const RowVector& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nr != 1)
- {
- (*current_liboctave_error_handler) ("row dimension mismatch for append");
- return Matrix ();
- }
-
- int nc_insert = nc;
- Matrix retval (nr, nc + a.length ());
- retval.insert (*this, 0, 0);
- retval.insert (a, 0, nc_insert);
- return retval;
- }
-
- Matrix
- Matrix::append (const ColumnVector& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nr != a.length ())
- {
- (*current_liboctave_error_handler) ("row dimension mismatch for append");
- return Matrix ();
- }
-
- int nc_insert = nc;
- Matrix retval (nr, nc + 1);
- retval.insert (*this, 0, 0);
- retval.insert (a, 0, nc_insert);
- return retval;
- }
-
- Matrix
- Matrix::append (const DiagMatrix& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nr != a.rows ())
- {
- (*current_liboctave_error_handler) ("row dimension mismatch for append");
- return *this;
- }
-
- int nc_insert = nc;
- Matrix retval (nr, nc + a.cols ());
- retval.insert (*this, 0, 0);
- retval.insert (a, 0, nc_insert);
- return retval;
- }
-
- Matrix
- Matrix::stack (const Matrix& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("column dimension mismatch for stack");
- return Matrix ();
- }
-
- int nr_insert = nr;
- Matrix retval (nr + a.rows (), nc);
- retval.insert (*this, 0, 0);
- retval.insert (a, nr_insert, 0);
- return retval;
- }
-
- Matrix
- Matrix::stack (const RowVector& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nc != a.length ())
- {
- (*current_liboctave_error_handler)
- ("column dimension mismatch for stack");
- return Matrix ();
- }
-
- int nr_insert = nr;
- Matrix retval (nr + 1, nc);
- retval.insert (*this, 0, 0);
- retval.insert (a, nr_insert, 0);
- return retval;
- }
-
- Matrix
- Matrix::stack (const ColumnVector& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nc != 1)
- {
- (*current_liboctave_error_handler)
- ("column dimension mismatch for stack");
- return Matrix ();
- }
-
- int nr_insert = nr;
- Matrix retval (nr + a.length (), nc);
- retval.insert (*this, 0, 0);
- retval.insert (a, nr_insert, 0);
- return retval;
- }
-
- Matrix
- Matrix::stack (const DiagMatrix& a) const
- {
- int nr = rows ();
- int nc = cols ();
- if (nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("column dimension mismatch for stack");
- return Matrix ();
- }
-
- int nr_insert = nr;
- Matrix retval (nr + a.rows (), nc);
- retval.insert (*this, 0, 0);
- retval.insert (a, nr_insert, 0);
- return retval;
- }
-
- Matrix
- Matrix::transpose (void) const
- {
- int nr = rows ();
- int nc = cols ();
- Matrix result (nc, nr);
- if (length () > 0)
- {
- for (int j = 0; j < nc; j++)
- for (int i = 0; i < nr; i++)
- result.elem (j, i) = elem (i, j);
- }
- return result;
- }
-
- Matrix
- Matrix::extract (int r1, int c1, int r2, int c2) const
- {
- if (r1 > r2) { int tmp = r1; r1 = r2; r2 = tmp; }
- if (c1 > c2) { int tmp = c1; c1 = c2; c2 = tmp; }
-
- int new_r = r2 - r1 + 1;
- int new_c = c2 - c1 + 1;
-
- Matrix result (new_r, new_c);
-
- for (int j = 0; j < new_c; j++)
- for (int i = 0; i < new_r; i++)
- result.elem (i, j) = elem (r1+i, c1+j);
-
- return result;
- }
-
- // extract row or column i.
-
- RowVector
- Matrix::row (int i) const
- {
- int nc = cols ();
- if (i < 0 || i >= rows ())
- {
- (*current_liboctave_error_handler) ("invalid row selection");
- return RowVector ();
- }
-
- RowVector retval (nc);
- for (int j = 0; j < nc; j++)
- retval.elem (j) = elem (i, j);
-
- return retval;
- }
-
- RowVector
- Matrix::row (char *s) const
- {
- if (! s)
- {
- (*current_liboctave_error_handler) ("invalid row selection");
- return RowVector ();
- }
-
- char c = *s;
- if (c == 'f' || c == 'F')
- return row (0);
- else if (c == 'l' || c == 'L')
- return row (rows () - 1);
- else
- {
- (*current_liboctave_error_handler) ("invalid row selection");
- return RowVector ();
- }
- }
-
- ColumnVector
- Matrix::column (int i) const
- {
- int nr = rows ();
- if (i < 0 || i >= cols ())
- {
- (*current_liboctave_error_handler) ("invalid column selection");
- return ColumnVector ();
- }
-
- ColumnVector retval (nr);
- for (int j = 0; j < nr; j++)
- retval.elem (j) = elem (j, i);
-
- return retval;
- }
-
- ColumnVector
- Matrix::column (char *s) const
- {
- if (! s)
- {
- (*current_liboctave_error_handler) ("invalid column selection");
- return ColumnVector ();
- }
-
- char c = *s;
- if (c == 'f' || c == 'F')
- return column (0);
- else if (c == 'l' || c == 'L')
- return column (cols () - 1);
- else
- {
- (*current_liboctave_error_handler) ("invalid column selection");
- return ColumnVector ();
- }
- }
-
- Matrix
- Matrix::inverse (void) const
- {
- int info;
- double rcond;
- return inverse (info, rcond);
- }
-
- Matrix
- Matrix::inverse (int& info) const
- {
- double rcond;
- return inverse (info, rcond);
- }
-
- Matrix
- Matrix::inverse (int& info, double& rcond) const
- {
- int nr = rows ();
- int nc = cols ();
- int len = length ();
- if (nr != nc || nr == 0 || nc == 0)
- {
- (*current_liboctave_error_handler) ("inverse requires square matrix");
- return Matrix ();
- }
-
- info = 0;
-
- int *ipvt = new int [nr];
- double *z = new double [nr];
- double *tmp_data = dup (data (), len);
-
- F77_FCN (dgeco) (tmp_data, &nr, &nc, ipvt, &rcond, z);
-
- volatile double tmp_rcond = rcond;
- if (tmp_rcond + 1.0 == 1.0)
- {
- info = -1;
- copy (tmp_data, data (), len); // Restore matrix contents.
- }
- else
- {
- int job = 1;
- double dummy;
-
- F77_FCN (dgedi) (tmp_data, &nr, &nc, ipvt, &dummy, z, &job);
- }
-
- delete [] ipvt;
- delete [] z;
-
- return Matrix (tmp_data, nr, nc);
- }
-
- Matrix
- Matrix::pseudo_inverse (double tol)
- {
- SVD result (*this);
-
- DiagMatrix S = result.singular_values ();
- Matrix U = result.left_singular_matrix ();
- Matrix V = result.right_singular_matrix ();
-
- ColumnVector sigma = S.diag ();
-
- int r = sigma.length () - 1;
- int nr = rows ();
- int nc = cols ();
-
- if (tol <= 0.0)
- {
- if (nr > nc)
- tol = nr * sigma.elem (0) * DBL_EPSILON;
- else
- tol = nc * sigma.elem (0) * DBL_EPSILON;
- }
-
- while (r >= 0 && sigma.elem (r) < tol)
- r--;
-
- if (r < 0)
- return Matrix (nc, nr, 0.0);
- else
- {
- Matrix Ur = U.extract (0, 0, nr-1, r);
- DiagMatrix D = DiagMatrix (sigma.extract (0, r)) . inverse ();
- Matrix Vr = V.extract (0, 0, nc-1, r);
- return Vr * D * Ur.transpose ();
- }
- }
-
- ComplexMatrix
- Matrix::fourier (void) const
- {
- int nr = rows ();
- int nc = cols ();
- int npts, nsamples;
- if (nr == 1 || nc == 1)
- {
- npts = nr > nc ? nr : nc;
- nsamples = 1;
- }
- else
- {
- npts = nr;
- nsamples = nc;
- }
-
- int nn = 4*npts+15;
- Complex *wsave = new Complex [nn];
- Complex *tmp_data = make_complex (data (), length ());
-
- F77_FCN (cffti) (&npts, wsave);
-
- for (int j = 0; j < nsamples; j++)
- F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave);
-
- delete [] wsave;
-
- return ComplexMatrix (tmp_data, nr, nc);
- }
-
- ComplexMatrix
- Matrix::ifourier (void) const
- {
- int nr = rows ();
- int nc = cols ();
- int npts, nsamples;
- if (nr == 1 || nc == 1)
- {
- npts = nr > nc ? nr : nc;
- nsamples = 1;
- }
- else
- {
- npts = nr;
- nsamples = nc;
- }
-
- int nn = 4*npts+15;
- Complex *wsave = new Complex [nn];
- Complex *tmp_data = make_complex (data (), length ());
-
- F77_FCN (cffti) (&npts, wsave);
-
- for (int j = 0; j < nsamples; j++)
- F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave);
-
- for (j = 0; j < npts*nsamples; j++)
- tmp_data[j] = tmp_data[j] / (double) npts;
-
- delete [] wsave;
-
- return ComplexMatrix (tmp_data, nr, nc);
- }
-
- ComplexMatrix
- Matrix::fourier2d (void) const
- {
- int nr = rows ();
- int nc = cols ();
- int npts, nsamples;
- if (nr == 1 || nc == 1)
- {
- npts = nr > nc ? nr : nc;
- nsamples = 1;
- }
- else
- {
- npts = nr;
- nsamples = nc;
- }
-
- int nn = 4*npts+15;
- Complex *wsave = new Complex [nn];
- Complex *tmp_data = make_complex (data (), length ());
-
- F77_FCN (cffti) (&npts, wsave);
-
- for (int j = 0; j < nsamples; j++)
- F77_FCN (cfftf) (&npts, &tmp_data[npts*j], wsave);
-
- delete [] wsave;
-
- npts = nc;
- nsamples = nr;
- nn = 4*npts+15;
- wsave = new Complex [nn];
- Complex *row = new Complex[npts];
-
- F77_FCN (cffti) (&npts, wsave);
-
- for (j = 0; j < nsamples; j++)
- {
- for (int i = 0; i < npts; i++)
- row[i] = tmp_data[i*nr + j];
-
- F77_FCN (cfftf) (&npts, row, wsave);
-
- for (i = 0; i < npts; i++)
- tmp_data[i*nr + j] = row[i];
- }
-
- delete [] wsave;
- delete [] row;
-
- return ComplexMatrix (tmp_data, nr, nc);
- }
-
- ComplexMatrix
- Matrix::ifourier2d (void) const
- {
- int nr = rows ();
- int nc = cols ();
- int npts, nsamples;
- if (nr == 1 || nc == 1)
- {
- npts = nr > nc ? nr : nc;
- nsamples = 1;
- }
- else
- {
- npts = nr;
- nsamples = nc;
- }
-
- int nn = 4*npts+15;
- Complex *wsave = new Complex [nn];
- Complex *tmp_data = make_complex (data (), length ());
-
- F77_FCN (cffti) (&npts, wsave);
-
- for (int j = 0; j < nsamples; j++)
- F77_FCN (cfftb) (&npts, &tmp_data[npts*j], wsave);
-
- delete [] wsave;
-
- for (j = 0; j < npts*nsamples; j++)
- tmp_data[j] = tmp_data[j] / (double) npts;
-
- npts = nc;
- nsamples = nr;
- nn = 4*npts+15;
- wsave = new Complex [nn];
- Complex *row = new Complex[npts];
-
- F77_FCN (cffti) (&npts, wsave);
-
- for (j = 0; j < nsamples; j++)
- {
- for (int i = 0; i < npts; i++)
- row[i] = tmp_data[i*nr + j];
-
- F77_FCN (cfftb) (&npts, row, wsave);
-
- for (i = 0; i < npts; i++)
- tmp_data[i*nr + j] = row[i] / (double) npts;
- }
-
- delete [] wsave;
- delete [] row;
-
- return ComplexMatrix (tmp_data, nr, nc);
- }
-
- DET
- Matrix::determinant (void) const
- {
- int info;
- double rcond;
- return determinant (info, rcond);
- }
-
- DET
- Matrix::determinant (int& info) const
- {
- double rcond;
- return determinant (info, rcond);
- }
-
- DET
- Matrix::determinant (int& info, double& rcond) const
- {
- DET retval;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr == 0 || nc == 0)
- {
- double d[2];
- d[0] = 1.0;
- d[1] = 0.0;
- retval = DET (d);
- }
- else
- {
- info = 0;
- int *ipvt = new int [nr];
-
- double *z = new double [nr];
- double *tmp_data = dup (data (), length ());
-
- F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
-
- volatile double tmp_rcond = rcond;
- if (tmp_rcond + 1.0 == 1.0)
- {
- info = -1;
- retval = DET ();
- }
- else
- {
- int job = 10;
- double d[2];
- F77_FCN (dgedi) (tmp_data, &nr, &nr, ipvt, d, z, &job);
- retval = DET (d);
- }
-
- delete [] tmp_data;
- delete [] ipvt;
- delete [] z;
- }
-
- return retval;
- }
-
- Matrix
- Matrix::solve (const Matrix& b) const
- {
- int info;
- double rcond;
- return solve (b, info, rcond);
- }
-
- Matrix
- Matrix::solve (const Matrix& b, int& info) const
- {
- double rcond;
- return solve (b, info, rcond);
- }
-
- Matrix
- Matrix::solve (const Matrix& b, int& info, double& rcond) const
- {
- Matrix retval;
-
- int nr = rows ();
- int nc = cols ();
- if (nr == 0 || nc == 0 || nr != nc || nr != b.rows ())
- {
- (*current_liboctave_error_handler)
- ("matrix dimension mismatch solution of linear equations");
- return Matrix ();
- }
-
- info = 0;
- int *ipvt = new int [nr];
-
- double *z = new double [nr];
- double *tmp_data = dup (data (), length ());
-
- F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
-
- volatile double tmp_rcond = rcond;
- if (tmp_rcond + 1.0 == 1.0)
- {
- info = -2;
- }
- else
- {
- int job = 0;
-
- double *result = dup (b.data (), b.length ());
-
- int b_nc = b.cols ();
- for (int j = 0; j < b_nc; j++)
- F77_FCN (dgesl) (tmp_data, &nr, &nr, ipvt, &result[nr*j], &job);
-
- retval = Matrix (result, b.rows (), b_nc);
- }
-
- delete [] tmp_data;
- delete [] ipvt;
- delete [] z;
-
- return retval;
- }
-
- ComplexMatrix
- Matrix::solve (const ComplexMatrix& b) const
- {
- ComplexMatrix tmp (*this);
- return tmp.solve (b);
- }
-
- ComplexMatrix
- Matrix::solve (const ComplexMatrix& b, int& info) const
- {
- ComplexMatrix tmp (*this);
- return tmp.solve (b, info);
- }
-
- ComplexMatrix
- Matrix::solve (const ComplexMatrix& b, int& info, double& rcond) const
- {
- ComplexMatrix tmp (*this);
- return tmp.solve (b, info, rcond);
- }
-
- ColumnVector
- Matrix::solve (const ColumnVector& b) const
- {
- int info; double rcond;
- return solve (b, info, rcond);
- }
-
- ColumnVector
- Matrix::solve (const ColumnVector& b, int& info) const
- {
- double rcond;
- return solve (b, info, rcond);
- }
-
- ColumnVector
- Matrix::solve (const ColumnVector& b, int& info, double& rcond) const
- {
- ColumnVector retval;
-
- int nr = rows ();
- int nc = cols ();
- if (nr == 0 || nc == 0 || nr != nc || nr != b.length ())
- {
- (*current_liboctave_error_handler)
- ("matrix dimension mismatch solution of linear equations");
- return ColumnVector ();
- }
-
- info = 0;
- int *ipvt = new int [nr];
-
- double *z = new double [nr];
- double *tmp_data = dup (data (), length ());
-
- F77_FCN (dgeco) (tmp_data, &nr, &nr, ipvt, &rcond, z);
-
- volatile double tmp_rcond = rcond;
- if (tmp_rcond + 1.0 == 1.0)
- {
- info = -2;
- }
- else
- {
- int job = 0;
-
- int b_len = b.length ();
-
- double *result = dup (b.data (), b_len);
-
- F77_FCN (dgesl) (tmp_data, &nr, &nr, ipvt, result, &job);
-
- retval = ColumnVector (result, b_len);
- }
-
- delete [] tmp_data;
- delete [] ipvt;
- delete [] z;
-
- return retval;
- }
-
- ComplexColumnVector
- Matrix::solve (const ComplexColumnVector& b) const
- {
- ComplexMatrix tmp (*this);
- return tmp.solve (b);
- }
-
- ComplexColumnVector
- Matrix::solve (const ComplexColumnVector& b, int& info) const
- {
- ComplexMatrix tmp (*this);
- return tmp.solve (b, info);
- }
-
- ComplexColumnVector
- Matrix::solve (const ComplexColumnVector& b, int& info, double& rcond) const
- {
- ComplexMatrix tmp (*this);
- return tmp.solve (b, info, rcond);
- }
-
- Matrix
- Matrix::lssolve (const Matrix& b) const
- {
- int info;
- int rank;
- return lssolve (b, info, rank);
- }
-
- Matrix
- Matrix::lssolve (const Matrix& b, int& info) const
- {
- int rank;
- return lssolve (b, info, rank);
- }
-
- Matrix
- Matrix::lssolve (const Matrix& b, int& info, int& rank) const
- {
- int nrhs = b.cols ();
-
- int m = rows ();
- int n = cols ();
-
- if (m == 0 || n == 0 || m != b.rows ())
- {
- (*current_liboctave_error_handler)
- ("matrix dimension mismatch in solution of least squares problem");
- return Matrix ();
- }
-
- double *tmp_data = dup (data (), length ());
-
- int nrr = m > n ? m : n;
- Matrix result (nrr, nrhs);
-
- int i, j;
- for (j = 0; j < nrhs; j++)
- for (i = 0; i < m; i++)
- result.elem (i, j) = b.elem (i, j);
-
- double *presult = result.fortran_vec ();
-
- int len_s = m < n ? m : n;
- double *s = new double [len_s];
- double rcond = -1.0;
- int lwork;
- if (m < n)
- lwork = 3*m + (2*m > nrhs ? (2*m > n ? 2*m : n) : (nrhs > n ? nrhs : n));
- else
- lwork = 3*n + (2*n > nrhs ? (2*n > m ? 2*n : m) : (nrhs > m ? nrhs : m));
-
- double *work = new double [lwork];
-
- F77_FCN (dgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s,
- &rcond, &rank, work, &lwork, &info);
-
- Matrix retval (n, nrhs);
- for (j = 0; j < nrhs; j++)
- for (i = 0; i < n; i++)
- retval.elem (i, j) = result.elem (i, j);
-
- delete [] tmp_data;
- delete [] s;
- delete [] work;
-
- return retval;
- }
-
- ComplexMatrix
- Matrix::lssolve (const ComplexMatrix& b) const
- {
- ComplexMatrix tmp (*this);
- return tmp.lssolve (b);
- }
-
- ComplexMatrix
- Matrix::lssolve (const ComplexMatrix& b, int& info) const
- {
- ComplexMatrix tmp (*this);
- return tmp.lssolve (b);
- }
-
- ComplexMatrix
- Matrix::lssolve (const ComplexMatrix& b, int& info, int& rank) const
- {
- ComplexMatrix tmp (*this);
- return tmp.lssolve (b);
- }
-
- ColumnVector
- Matrix::lssolve (const ColumnVector& b) const
- {
- int info;
- int rank; return lssolve (b, info, rank);
- }
-
- ColumnVector
- Matrix::lssolve (const ColumnVector& b, int& info) const
- {
- int rank;
- return lssolve (b, info, rank);
- }
-
- ColumnVector
- Matrix::lssolve (const ColumnVector& b, int& info, int& rank) const
- {
- int nrhs = 1;
-
- int m = rows ();
- int n = cols ();
-
- if (m == 0 || n == 0 || m != b.length ())
- {
- (*current_liboctave_error_handler)
- ("matrix dimension mismatch in solution of least squares problem");
- return ColumnVector ();
- }
-
- double *tmp_data = dup (data (), length ());
-
- int nrr = m > n ? m : n;
- ColumnVector result (nrr);
-
- int i;
- for (i = 0; i < m; i++)
- result.elem (i) = b.elem (i);
-
- double *presult = result.fortran_vec ();
-
- int len_s = m < n ? m : n;
- double *s = new double [len_s];
- double rcond = -1.0;
- int lwork;
- if (m < n)
- lwork = 3*m + (2*m > nrhs ? (2*m > n ? 2*m : n) : (nrhs > n ? nrhs : n));
- else
- lwork = 3*n + (2*n > nrhs ? (2*n > m ? 2*n : m) : (nrhs > m ? nrhs : m));
-
- double *work = new double [lwork];
-
- F77_FCN (dgelss) (&m, &n, &nrhs, tmp_data, &m, presult, &nrr, s,
- &rcond, &rank, work, &lwork, &info);
-
- ColumnVector retval (n);
- for (i = 0; i < n; i++)
- retval.elem (i) = result.elem (i);
-
- delete [] tmp_data;
- delete [] s;
- delete [] work;
-
- return retval;
- }
-
- ComplexColumnVector
- Matrix::lssolve (const ComplexColumnVector& b) const
- {
- ComplexMatrix tmp (*this);
- return tmp.lssolve (b);
- }
-
- ComplexColumnVector
- Matrix::lssolve (const ComplexColumnVector& b, int& info) const
- {
- ComplexMatrix tmp (*this);
- return tmp.lssolve (b, info);
- }
-
- ComplexColumnVector
- Matrix::lssolve (const ComplexColumnVector& b, int& info, int& rank) const
- {
- ComplexMatrix tmp (*this);
- return tmp.lssolve (b, info, rank);
- }
-
- Matrix&
- Matrix::operator += (const Matrix& a)
- {
- int nr = rows ();
- int nc = cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix += operation attempted");
- return *this;
- }
-
- if (nr == 0 || nc == 0)
- return *this;
-
- double *d = fortran_vec (); // Ensures only one reference to my privates!
-
- add2 (d, a.data (), length ());
-
- return *this;
- }
-
- Matrix&
- Matrix::operator -= (const Matrix& a)
- {
- int nr = rows ();
- int nc = cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix -= operation attempted");
- return *this;
- }
-
- if (nr == 0 || nc == 0)
- return *this;
-
- double *d = fortran_vec (); // Ensures only one reference to my privates!
-
- subtract2 (d, a.data (), length ());
-
- return *this;
- }
-
- Matrix&
- Matrix::operator += (const DiagMatrix& a)
- {
- if (rows () != a.rows () || cols () != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix += operation attempted");
- return *this;
- }
-
- for (int i = 0; i < a.length (); i++)
- elem (i, i) += a.elem (i, i);
-
- return *this;
- }
-
- Matrix&
- Matrix::operator -= (const DiagMatrix& a)
- {
- if (rows () != a.rows () || cols () != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix += operation attempted");
- return *this;
- }
-
- for (int i = 0; i < a.length (); i++)
- elem (i, i) -= a.elem (i, i);
-
- return *this;
- }
-
- // unary operations
-
- Matrix
- Matrix::operator ! (void) const
- {
- int nr = rows ();
- int nc = cols ();
-
- Matrix b (nr, nc);
-
- for (int j = 0; j < nc; j++)
- for (int i = 0; i < nr; i++)
- b.elem (i, j) = ! elem (i, j);
-
- return b;
- }
-
- // matrix by scalar -> matrix operations.
-
- ComplexMatrix
- operator + (const Matrix& a, const Complex& s)
- {
- return ComplexMatrix (add (a.data (), a.length (), s),
- a.rows (), a.cols ());
- }
-
- ComplexMatrix
- operator - (const Matrix& a, const Complex& s)
- {
- return ComplexMatrix (subtract (a.data (), a.length (), s),
- a.rows (), a.cols ());
- }
-
- ComplexMatrix
- operator * (const Matrix& a, const Complex& s)
- {
- return ComplexMatrix (multiply (a.data (), a.length (), s),
- a.rows (), a.cols ());
- }
-
- ComplexMatrix
- operator / (const Matrix& a, const Complex& s)
- {
- return ComplexMatrix (divide (a.data (), a.length (), s),
- a.rows (), a.cols ());
- }
-
- // scalar by matrix -> matrix operations.
-
- ComplexMatrix
- operator + (const Complex& s, const Matrix& a)
- {
- return ComplexMatrix (add (s, a.data (), a.length ()),
- a.rows (), a.cols ());
- }
-
- ComplexMatrix
- operator - (const Complex& s, const Matrix& a)
- {
- return ComplexMatrix (subtract (s, a.data (), a.length ()),
- a.rows (), a.cols ());
- }
-
- ComplexMatrix
- operator * (const Complex& s, const Matrix& a)
- {
- return ComplexMatrix (multiply (a.data (), a.length (), s),
- a.rows (), a.cols ());
- }
-
- ComplexMatrix
- operator / (const Complex& s, const Matrix& a)
- {
- return ComplexMatrix (divide (s, a.data (), a.length ()),
- a.rows (), a.cols ());
- }
-
- // matrix by column vector -> column vector operations
-
- ColumnVector
- operator * (const Matrix& m, const ColumnVector& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nc != a.length ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix multiplication attempted");
- return ColumnVector ();
- }
-
- if (nr == 0 || nc == 0)
- return ColumnVector (0);
-
- char trans = 'N';
- int ld = nr;
- double alpha = 1.0;
- double beta = 0.0;
- int i_one = 1;
-
- double *y = new double [nr];
-
- F77_FCN (dgemv) (&trans, &nr, &nc, &alpha, m.data (), &ld, a.data (),
- &i_one, &beta, y, &i_one, 1L);
-
- return ColumnVector (y, nr);
- }
-
- ComplexColumnVector
- operator * (const Matrix& m, const ComplexColumnVector& a)
- {
- ComplexMatrix tmp (m);
- return tmp * a;
- }
-
- // matrix by diagonal matrix -> matrix operations
-
- Matrix
- operator + (const Matrix& m, const DiagMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix addition attempted");
- return Matrix ();
- }
-
- if (nr == 0 || nc == 0)
- return Matrix (nr, nc);
-
- Matrix result (m);
- int a_len = a.length ();
- for (int i = 0; i < a_len; i++)
- result.elem (i, i) += a.elem (i, i);
-
- return result;
- }
-
- Matrix
- operator - (const Matrix& m, const DiagMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix subtraction attempted");
- return Matrix ();
- }
-
- if (nr == 0 || nc == 0)
- return Matrix (nr, nc);
-
- Matrix result (m);
- int a_len = a.length ();
- for (int i = 0; i < a_len; i++)
- result.elem (i, i) -= a.elem (i, i);
-
- return result;
- }
-
- Matrix
- operator * (const Matrix& m, const DiagMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- int a_nr = a.rows ();
- int a_nc = a.cols ();
- if (nc != a_nr)
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix multiplication attempted");
- return Matrix ();
- }
-
- if (nr == 0 || nc == 0 || a_nc == 0)
- return Matrix (nr, a_nc, 0.0);
-
- double *c = new double [nr*a_nc];
- double *ctmp = 0;
-
- int a_len = a.length ();
- for (int j = 0; j < a_len; j++)
- {
- int idx = j * nr;
- ctmp = c + idx;
- if (a.elem (j, j) == 1.0)
- {
- for (int i = 0; i < nr; i++)
- ctmp[i] = m.elem (i, j);
- }
- else if (a.elem (j, j) == 0.0)
- {
- for (int i = 0; i < nr; i++)
- ctmp[i] = 0.0;
- }
- else
- {
- for (int i = 0; i < nr; i++)
- ctmp[i] = a.elem (j, j) * m.elem (i, j);
- }
- }
-
- if (a_nr < a_nc)
- {
- for (int i = nr * nc; i < nr * a_nc; i++)
- ctmp[i] = 0.0;
- }
-
- return Matrix (c, nr, a_nc);
- }
-
- ComplexMatrix
- operator + (const Matrix& m, const ComplexDiagMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix addition attempted");
- return ComplexMatrix ();
- }
-
- if (nr == 0 || nc == 0)
- return ComplexMatrix (nr, nc);
-
- ComplexMatrix result (m);
- for (int i = 0; i < a.length (); i++)
- result.elem (i, i) += a.elem (i, i);
-
- return result;
- }
-
- ComplexMatrix
- operator - (const Matrix& m, const ComplexDiagMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix subtraction attempted");
- return ComplexMatrix ();
- }
-
- if (nr == 0 || nc == 0)
- return ComplexMatrix (nr, nc);
-
- ComplexMatrix result (m);
- for (int i = 0; i < a.length (); i++)
- result.elem (i, i) -= a.elem (i, i);
-
- return result;
- }
-
- ComplexMatrix
- operator * (const Matrix& m, const ComplexDiagMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- int a_nr = a.rows ();
- int a_nc = a.cols ();
- if (nc != a_nr)
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix multiplication attempted");
- return ComplexMatrix ();
- }
-
- if (nr == 0 || nc == 0 || a_nc == 0)
- return ComplexMatrix (nr, a_nc, 0.0);
-
- Complex *c = new Complex [nr*a_nc];
- Complex *ctmp = 0;
-
- for (int j = 0; j < a.length (); j++)
- {
- int idx = j * nr;
- ctmp = c + idx;
- if (a.elem (j, j) == 1.0)
- {
- for (int i = 0; i < nr; i++)
- ctmp[i] = m.elem (i, j);
- }
- else if (a.elem (j, j) == 0.0)
- {
- for (int i = 0; i < nr; i++)
- ctmp[i] = 0.0;
- }
- else
- {
- for (int i = 0; i < nr; i++)
- ctmp[i] = a.elem (j, j) * m.elem (i, j);
- }
- }
-
- if (a_nr < a_nc)
- {
- for (int i = nr * nc; i < nr * a_nc; i++)
- ctmp[i] = 0.0;
- }
-
- return ComplexMatrix (c, nr, a_nc);
- }
-
- // matrix by matrix -> matrix operations
-
- Matrix
- operator * (const Matrix& m, const Matrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- int a_nr = a.rows ();
- int a_nc = a.cols ();
- if (nc != a_nr)
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix multiplication attempted");
- return Matrix ();
- }
-
- if (nr == 0 || nc == 0 || a_nc == 0)
- return Matrix (nr, a_nc, 0.0);
-
- char trans = 'N';
- char transa = 'N';
-
- int ld = nr;
- int lda = a_nr;
-
- double alpha = 1.0;
- double beta = 0.0;
-
- double *c = new double [nr*a_nc];
-
- F77_FCN (dgemm) (&trans, &transa, &nr, &a_nc, &nc, &alpha, m.data (),
- &ld, a.data (), &lda, &beta, c, &nr, 1L, 1L);
-
- return Matrix (c, nr, a_nc);
- }
-
- ComplexMatrix
- operator * (const Matrix& m, const ComplexMatrix& a)
- {
- ComplexMatrix tmp (m);
- return tmp * a;
- }
-
- ComplexMatrix
- operator + (const Matrix& m, const ComplexMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix addition attempted");
- return ComplexMatrix ();
- }
-
- return ComplexMatrix (add (m.data (), a.data (), m.length ()), nr, nc);
- }
-
- ComplexMatrix
- operator - (const Matrix& m, const ComplexMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix subtraction attempted");
- return ComplexMatrix ();
- }
-
- if (nr == 0 || nc == 0)
- return ComplexMatrix (nr, nc);
-
- return ComplexMatrix (subtract (m.data (), a.data (), m.length ()), nr, nc);
- }
-
- ComplexMatrix
- product (const Matrix& m, const ComplexMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix product attempted");
- return ComplexMatrix ();
- }
-
- if (nr == 0 || nc == 0)
- return ComplexMatrix (nr, nc);
-
- return ComplexMatrix (multiply (m.data (), a.data (), m.length ()), nr, nc);
- }
-
- ComplexMatrix
- quotient (const Matrix& m, const ComplexMatrix& a)
- {
- int nr = m.rows ();
- int nc = m.cols ();
- if (nr != a.rows () || nc != a.cols ())
- {
- (*current_liboctave_error_handler)
- ("nonconformant matrix quotient attempted");
- return ComplexMatrix ();
- }
-
- if (nr == 0 || nc == 0)
- return ComplexMatrix (nr, nc);
-
- return ComplexMatrix (divide (m.data (), a.data (), m.length ()), nr, nc);
- }
-
- // other operations.
-
- Matrix
- map (d_d_Mapper f, const Matrix& a)
- {
- Matrix b (a);
- b.map (f);
- return b;
- }
-
- void
- Matrix::map (d_d_Mapper f)
- {
- double *d = fortran_vec (); // Ensures only one reference to my privates!
-
- for (int i = 0; i < length (); i++)
- d[i] = f (d[i]);
- }
-
- // XXX FIXME XXX Do these really belong here? They should maybe be
- // cleaned up a bit, no? What about corresponding functions for the
- // Vectors?
-
- Matrix
- Matrix::all (void) const
- {
- int nr = rows ();
- int nc = cols ();
- Matrix retval;
- if (nr > 0 && nc > 0)
- {
- if (nr == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 1.0;
- for (int j = 0; j < nc; j++)
- {
- if (elem (0, j) == 0.0)
- {
- retval.elem (0, 0) = 0.0;
- break;
- }
- }
- }
- else if (nc == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 1.0;
- for (int i = 0; i < nr; i++)
- {
- if (elem (i, 0) == 0.0)
- {
- retval.elem (0, 0) = 0.0;
- break;
- }
- }
- }
- else
- {
- retval.resize (1, nc);
- for (int j = 0; j < nc; j++)
- {
- retval.elem (0, j) = 1.0;
- for (int i = 0; i < nr; i++)
- {
- if (elem (i, j) == 0.0)
- {
- retval.elem (0, j) = 0.0;
- break;
- }
- }
- }
- }
- }
- return retval;
- }
-
- Matrix
- Matrix::any (void) const
- {
- int nr = rows ();
- int nc = cols ();
- Matrix retval;
- if (nr > 0 && nc > 0)
- {
- if (nr == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 0.0;
- for (int j = 0; j < nc; j++)
- {
- if (elem (0, j) != 0.0)
- {
- retval.elem (0, 0) = 1.0;
- break;
- }
- }
- }
- else if (nc == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 0.0;
- for (int i = 0; i < nr; i++)
- {
- if (elem (i, 0) != 0.0)
- {
- retval.elem (0, 0) = 1.0;
- break;
- }
- }
- }
- else
- {
- retval.resize (1, nc);
- for (int j = 0; j < nc; j++)
- {
- retval.elem (0, j) = 0.0;
- for (int i = 0; i < nr; i++)
- {
- if (elem (i, j) != 0.0)
- {
- retval.elem (0, j) = 1.0;
- break;
- }
- }
- }
- }
- }
- return retval;
- }
-
- Matrix
- Matrix::cumprod (void) const
- {
- Matrix retval;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr == 1)
- {
- retval.resize (1, nc);
- if (nc > 0)
- {
- double prod = elem (0, 0);
- for (int j = 0; j < nc; j++)
- {
- retval.elem (0, j) = prod;
- if (j < nc - 1)
- prod *= elem (0, j+1);
- }
- }
- }
- else if (nc == 1)
- {
- retval.resize (nr, 1);
- if (nr > 0)
- {
- double prod = elem (0, 0);
- for (int i = 0; i < nr; i++)
- {
- retval.elem (i, 0) = prod;
- if (i < nr - 1)
- prod *= elem (i+1, 0);
- }
- }
- }
- else
- {
- retval.resize (nr, nc);
- if (nr > 0 && nc > 0)
- {
- for (int j = 0; j < nc; j++)
- {
- double prod = elem (0, j);
- for (int i = 0; i < nr; i++)
- {
- retval.elem (i, j) = prod;
- if (i < nr - 1)
- prod *= elem (i+1, j);
- }
- }
- }
- }
- return retval;
- }
-
- Matrix
- Matrix::cumsum (void) const
- {
- Matrix retval;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr == 1)
- {
- retval.resize (1, nc);
- if (nc > 0)
- {
- double sum = elem (0, 0);
- for (int j = 0; j < nc; j++)
- {
- retval.elem (0, j) = sum;
- if (j < nc - 1)
- sum += elem (0, j+1);
- }
- }
- }
- else if (nc == 1)
- {
- retval.resize (nr, 1);
- if (nr > 0)
- {
- double sum = elem (0, 0);
- for (int i = 0; i < nr; i++)
- {
- retval.elem (i, 0) = sum;
- if (i < nr - 1)
- sum += elem (i+1, 0);
- }
- }
- }
- else
- {
- retval.resize (nr, nc);
- if (nr > 0 && nc > 0)
- {
- for (int j = 0; j < nc; j++)
- {
- double sum = elem (0, j);
- for (int i = 0; i < nr; i++)
- {
- retval.elem (i, j) = sum;
- if (i < nr - 1)
- sum += elem (i+1, j);
- }
- }
- }
- }
- return retval;
- }
-
- Matrix
- Matrix::prod (void) const
- {
- Matrix retval;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 1.0;
- for (int j = 0; j < nc; j++)
- retval.elem (0, 0) *= elem (0, j);
- }
- else if (nc == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 1.0;
- for (int i = 0; i < nr; i++)
- retval.elem (0, 0) *= elem (i, 0);
- }
- else
- {
- if (nc == 0)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 1.0;
- }
- else
- retval.resize (1, nc);
-
- for (int j = 0; j < nc; j++)
- {
- retval.elem (0, j) = 1.0;
- for (int i = 0; i < nr; i++)
- retval.elem (0, j) *= elem (i, j);
- }
- }
- return retval;
- }
-
- Matrix
- Matrix::sum (void) const
- {
- Matrix retval;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 0.0;
- for (int j = 0; j < nc; j++)
- retval.elem (0, 0) += elem (0, j);
- }
- else if (nc == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 0.0;
- for (int i = 0; i < nr; i++)
- retval.elem (0, 0) += elem (i, 0);
- }
- else
- {
- if (nc == 0)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 0.0;
- }
- else
- retval.resize (1, nc);
-
- for (int j = 0; j < nc; j++)
- {
- retval.elem (0, j) = 0.0;
- for (int i = 0; i < nr; i++)
- retval.elem (0, j) += elem (i, j);
- }
- }
- return retval;
- }
-
- Matrix
- Matrix::sumsq (void) const
- {
- Matrix retval;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 0.0;
- for (int j = 0; j < nc; j++)
- {
- double d = elem (0, j);
- retval.elem (0, 0) += d * d;
- }
- }
- else if (nc == 1)
- {
- retval.resize (1, 1);
- retval.elem (0, 0) = 0.0;
- for (int i = 0; i < nr; i++)
- {
- double d = elem (i, 0);
- retval.elem (0, 0) += d * d;
- }
- }
- else
- {
- retval.resize (1, nc);
- for (int j = 0; j < nc; j++)
- {
- retval.elem (0, j) = 0.0;
- for (int i = 0; i < nr; i++)
- {
- double d = elem (i, j);
- retval.elem (0, j) += d * d;
- }
- }
- }
- return retval;
- }
-
- ColumnVector
- Matrix::diag (void) const
- {
- return diag (0);
- }
-
- ColumnVector
- Matrix::diag (int k) const
- {
- int nnr = rows ();
- int nnc = cols ();
- if (k > 0)
- nnc -= k;
- else if (k < 0)
- nnr += k;
-
- ColumnVector d;
-
- if (nnr > 0 && nnc > 0)
- {
- int ndiag = (nnr < nnc) ? nnr : nnc;
-
- d.resize (ndiag);
-
- if (k > 0)
- {
- for (int i = 0; i < ndiag; i++)
- d.elem (i) = elem (i, i+k);
- }
- else if ( k < 0)
- {
- for (int i = 0; i < ndiag; i++)
- d.elem (i) = elem (i-k, i);
- }
- else
- {
- for (int i = 0; i < ndiag; i++)
- d.elem (i) = elem (i, i);
- }
- }
- else
- cerr << "diag: requested diagonal out of range\n";
-
- return d;
- }
-
- ColumnVector
- Matrix::row_min (void) const
- {
- ColumnVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nr);
-
- for (int i = 0; i < nr; i++)
- {
- double res = elem (i, 0);
- for (int j = 1; j < nc; j++)
- if (elem (i, j) < res)
- res = elem (i, j);
- result.elem (i) = res;
- }
- }
-
- return result;
- }
-
- ColumnVector
- Matrix::row_min_loc (void) const
- {
- ColumnVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nr);
-
- for (int i = 0; i < nr; i++)
- {
- int res = 0;
- for (int j = 0; j < nc; j++)
- if (elem (i, j) < elem (i, res))
- res = j;
- result.elem (i) = (double) (res + 1);
- }
- }
-
- return result;
- }
-
- ColumnVector
- Matrix::row_max (void) const
- {
- ColumnVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nr);
-
- for (int i = 0; i < nr; i++)
- {
- double res = elem (i, 0);
- for (int j = 1; j < nc; j++)
- if (elem (i, j) > res)
- res = elem (i, j);
- result.elem (i) = res;
- }
- }
-
- return result;
- }
-
- ColumnVector
- Matrix::row_max_loc (void) const
- {
- ColumnVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nr);
-
- for (int i = 0; i < nr; i++)
- {
- int res = 0;
- for (int j = 0; j < nc; j++)
- if (elem (i, j) > elem (i, res))
- res = j;
- result.elem (i) = (double) (res + 1);
- }
- }
-
- return result;
- }
-
- RowVector
- Matrix::column_min (void) const
- {
- RowVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nc);
-
- for (int j = 0; j < nc; j++)
- {
- double res = elem (0, j);
- for (int i = 1; i < nr; i++)
- if (elem (i, j) < res)
- res = elem (i, j);
- result.elem (j) = res;
- }
- }
-
- return result;
- }
- RowVector
- Matrix::column_min_loc (void) const
- {
- RowVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nc);
-
- for (int j = 0; j < nc; j++)
- {
- int res = 0;
- for (int i = 0; i < nr; i++)
- if (elem (i, j) < elem (res, j))
- res = i;
- result.elem (j) = (double) (res + 1);
- }
- }
-
- return result;
- }
-
-
- RowVector
- Matrix::column_max (void) const
- {
- RowVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nc);
-
- for (int j = 0; j < nc; j++)
- {
- double res = elem (0, j);
- for (int i = 1; i < nr; i++)
- if (elem (i, j) > res)
- res = elem (i, j);
- result.elem (j) = res;
- }
- }
-
- return result;
- }
-
- RowVector
- Matrix::column_max_loc (void) const
- {
- RowVector result;
-
- int nr = rows ();
- int nc = cols ();
-
- if (nr > 0 && nc > 0)
- {
- result.resize (nc);
-
- for (int j = 0; j < nc; j++)
- {
- int res = 0;
- for (int i = 0; i < nr; i++)
- if (elem (i, j) > elem (res, j))
- res = i;
- result.elem (j) = (double) (res + 1);
- }
- }
-
- return result;
- }
-
- ostream&
- operator << (ostream& os, const Matrix& a)
- {
- // int field_width = os.precision () + 7;
- for (int i = 0; i < a.rows (); i++)
- {
- for (int j = 0; j < a.cols (); j++)
- os << " " /* setw (field_width) */ << a.elem (i, j);
- os << "\n";
- }
- return os;
- }
-
- istream&
- operator >> (istream& is, Matrix& a)
- {
- int nr = a.rows ();
- int nc = a.cols ();
-
- if (nr < 1 || nc < 1)
- is.clear (ios::badbit);
- else
- {
- double tmp;
- for (int i = 0; i < nr; i++)
- for (int j = 0; j < nc; j++)
- {
- is >> tmp;
- if (is)
- a.elem (i, j) = tmp;
- else
- break;
- }
- }
-
- return is;
- }
-
- /*
- * Read an array of data froma file in binary format.
- */
- int
- Matrix::read (FILE *fptr, char *type)
- {
- // Allocate buffer pointers.
-
- union
- {
- void *vd;
- char *ch;
- u_char *uc;
- short *sh;
- u_short *us;
- int *in;
- u_int *ui;
- long *ln;
- u_long *ul;
- float *fl;
- double *db;
- }
- buf;
-
- // Convert data to double.
-
- if (! type)
- {
- (*current_liboctave_error_handler)
- ("fread: invalid NULL type parameter");
- return 0;
- }
-
- int count;
- int nitems = length ();
-
- double *d = fortran_vec (); // Ensures only one reference to my privates!
-
- #define DO_FREAD(TYPE,ELEM) \
- do \
- { \
- size_t size = sizeof (TYPE); \
- buf.ch = new char [size * nitems]; \
- count = fread (buf.ch, size, nitems, fptr); \
- for (int k = 0; k < count; k++) \
- d[k] = buf.ELEM[k]; \
- delete [] buf.ch; \
- } \
- while (0)
-
- if (strcasecmp (type, "double") == 0)
- DO_FREAD (double, db);
- else if (strcasecmp (type, "char") == 0)
- DO_FREAD (char, ch);
- else if (strcasecmp (type, "uchar") == 0)
- DO_FREAD (u_char, uc);
- else if (strcasecmp (type, "short") == 0)
- DO_FREAD (short, sh);
- else if (strcasecmp (type, "ushort") == 0)
- DO_FREAD (u_short, us);
- else if (strcasecmp (type, "int") == 0)
- DO_FREAD (int, in);
- else if (strcasecmp (type, "uint") == 0)
- DO_FREAD (u_int, ui);
- else if (strcasecmp (type, "long") == 0)
- DO_FREAD (long, ul);
- else if (strcasecmp (type, "float") == 0)
- DO_FREAD (float, fl);
- else
- {
- (*current_liboctave_error_handler)
- ("fread: invalid NULL type parameter");
- return 0;
- }
-
- return count;
- }
-
- /*
- * Write the data array to a file in binary format.
- */
- int
- Matrix::write (FILE *fptr, char *type)
- {
- // Allocate buffer pointers.
-
- union
- {
- void *vd;
- char *ch;
- u_char *uc;
- short *sh;
- u_short *us;
- int *in;
- u_int *ui;
- long *ln;
- u_long *ul;
- float *fl;
- double *db;
- }
- buf;
-
- int nitems = length ();
-
- double *d = fortran_vec ();
-
- // Convert from double to correct size.
-
- if (! type)
- {
- (*current_liboctave_error_handler)
- ("fwrite: invalid NULL type parameter");
- return 0;
- }
-
- size_t size;
- int count;
-
- #define DO_FWRITE(TYPE,ELEM) \
- do \
- { \
- size = sizeof (TYPE); \
- buf.ELEM = new TYPE [nitems]; \
- for (int k = 0; k < nitems; k++) \
- buf.ELEM[k] = (TYPE) d[k]; \
- count = fwrite (buf.ELEM, size, nitems, fptr); \
- delete [] buf.ELEM; \
- } \
- while (0)
-
- if (strcasecmp (type, "double") == 0)
- DO_FWRITE (double, db);
- else if (strcasecmp (type, "char") == 0)
- DO_FWRITE (char, ch);
- else if (strcasecmp (type, "uchar") == 0)
- DO_FWRITE (u_char, uc);
- else if (strcasecmp (type, "short") == 0)
- DO_FWRITE (short, sh);
- else if (strcasecmp (type, "ushort") == 0)
- DO_FWRITE (u_short, us);
- else if (strcasecmp (type, "int") == 0)
- DO_FWRITE (int, in);
- else if (strcasecmp (type, "uint") == 0)
- DO_FWRITE (u_int, ui);
- else if (strcasecmp (type, "long") == 0)
- DO_FWRITE (long, ln);
- else if (strcasecmp (type, "ulong") == 0)
- DO_FWRITE (u_long, ul);
- else if (strcasecmp (type, "float") == 0)
- DO_FWRITE (float, fl);
- else
- {
- (*current_liboctave_error_handler)
- ("fwrite: unrecognized type parameter %s", type);
- return 0;
- }
-
- return count;
- }
-
- /*
- ;;; Local Variables: ***
- ;;; mode: C++ ***
- ;;; page-delimiter: "^/\\*" ***
- ;;; End: ***
- */
-