home *** CD-ROM | disk | FTP | other *** search
- /* Target-dependent code for the HP PA architecture, for GDB.
- Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
- Free Software Foundation, Inc.
-
- Contributed by the Center for Software Science at the
- University of Utah (pa-gdb-bugs@cs.utah.edu).
-
- This file is part of GDB.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- #include "defs.h"
- #include "frame.h"
- #include "inferior.h"
- #include "value.h"
-
- /* For argument passing to the inferior */
- #include "symtab.h"
-
- #ifdef USG
- #include <sys/types.h>
- #endif
-
- #include <sys/param.h>
- #include <signal.h>
-
- #ifdef COFF_ENCAPSULATE
- #include "a.out.encap.h"
- #else
- #endif
- #ifndef N_SET_MAGIC
- #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
- #endif
-
- /*#include <sys/user.h> After a.out.h */
- #include <sys/file.h>
- #include <sys/stat.h>
- #include "wait.h"
-
- #include "gdbcore.h"
- #include "gdbcmd.h"
- #include "target.h"
- #include "symfile.h"
- #include "objfiles.h"
-
- #define SWAP_TARGET_AND_HOST(buffer,len) \
- do \
- { \
- if (TARGET_BYTE_ORDER != HOST_BYTE_ORDER) \
- { \
- char tmp; \
- char *p = (char *)(buffer); \
- char *q = ((char *)(buffer)) + len - 1; \
- for (; p < q; p++, q--) \
- { \
- tmp = *q; \
- *q = *p; \
- *p = tmp; \
- } \
- } \
- } \
- while (0)
-
- static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
-
- static int hppa_alignof PARAMS ((struct type *));
-
- CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
-
- static int prologue_inst_adjust_sp PARAMS ((unsigned long));
-
- static int is_branch PARAMS ((unsigned long));
-
- static int inst_saves_gr PARAMS ((unsigned long));
-
- static int inst_saves_fr PARAMS ((unsigned long));
-
- static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
-
- static int pc_in_linker_stub PARAMS ((CORE_ADDR));
-
- static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
- const struct unwind_table_entry *));
-
- static void read_unwind_info PARAMS ((struct objfile *));
-
- static void internalize_unwinds PARAMS ((struct objfile *,
- struct unwind_table_entry *,
- asection *, unsigned int,
- unsigned int, CORE_ADDR));
- static void pa_print_registers PARAMS ((char *, int, int));
- static void pa_print_fp_reg PARAMS ((int));
-
-
- /* Routines to extract various sized constants out of hppa
- instructions. */
-
- /* This assumes that no garbage lies outside of the lower bits of
- value. */
-
- int
- sign_extend (val, bits)
- unsigned val, bits;
- {
- return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
- }
-
- /* For many immediate values the sign bit is the low bit! */
-
- int
- low_sign_extend (val, bits)
- unsigned val, bits;
- {
- return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
- }
- /* extract the immediate field from a ld{bhw}s instruction */
-
- unsigned
- get_field (val, from, to)
- unsigned val, from, to;
- {
- val = val >> 31 - to;
- return val & ((1 << 32 - from) - 1);
- }
-
- unsigned
- set_field (val, from, to, new_val)
- unsigned *val, from, to;
- {
- unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
- return *val = *val & mask | (new_val << (31 - from));
- }
-
- /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
-
- extract_3 (word)
- unsigned word;
- {
- return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
- }
-
- extract_5_load (word)
- unsigned word;
- {
- return low_sign_extend (word >> 16 & MASK_5, 5);
- }
-
- /* extract the immediate field from a st{bhw}s instruction */
-
- int
- extract_5_store (word)
- unsigned word;
- {
- return low_sign_extend (word & MASK_5, 5);
- }
-
- /* extract the immediate field from a break instruction */
-
- unsigned
- extract_5r_store (word)
- unsigned word;
- {
- return (word & MASK_5);
- }
-
- /* extract the immediate field from a {sr}sm instruction */
-
- unsigned
- extract_5R_store (word)
- unsigned word;
- {
- return (word >> 16 & MASK_5);
- }
-
- /* extract an 11 bit immediate field */
-
- int
- extract_11 (word)
- unsigned word;
- {
- return low_sign_extend (word & MASK_11, 11);
- }
-
- /* extract a 14 bit immediate field */
-
- int
- extract_14 (word)
- unsigned word;
- {
- return low_sign_extend (word & MASK_14, 14);
- }
-
- /* deposit a 14 bit constant in a word */
-
- unsigned
- deposit_14 (opnd, word)
- int opnd;
- unsigned word;
- {
- unsigned sign = (opnd < 0 ? 1 : 0);
-
- return word | ((unsigned)opnd << 1 & MASK_14) | sign;
- }
-
- /* extract a 21 bit constant */
-
- int
- extract_21 (word)
- unsigned word;
- {
- int val;
-
- word &= MASK_21;
- word <<= 11;
- val = GET_FIELD (word, 20, 20);
- val <<= 11;
- val |= GET_FIELD (word, 9, 19);
- val <<= 2;
- val |= GET_FIELD (word, 5, 6);
- val <<= 5;
- val |= GET_FIELD (word, 0, 4);
- val <<= 2;
- val |= GET_FIELD (word, 7, 8);
- return sign_extend (val, 21) << 11;
- }
-
- /* deposit a 21 bit constant in a word. Although 21 bit constants are
- usually the top 21 bits of a 32 bit constant, we assume that only
- the low 21 bits of opnd are relevant */
-
- unsigned
- deposit_21 (opnd, word)
- unsigned opnd, word;
- {
- unsigned val = 0;
-
- val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
- val <<= 2;
- val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
- val <<= 2;
- val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
- val <<= 11;
- val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
- val <<= 1;
- val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
- return word | val;
- }
-
- /* extract a 12 bit constant from branch instructions */
-
- int
- extract_12 (word)
- unsigned word;
- {
- return sign_extend (GET_FIELD (word, 19, 28) |
- GET_FIELD (word, 29, 29) << 10 |
- (word & 0x1) << 11, 12) << 2;
- }
-
- /* extract a 17 bit constant from branch instructions, returning the
- 19 bit signed value. */
-
- int
- extract_17 (word)
- unsigned word;
- {
- return sign_extend (GET_FIELD (word, 19, 28) |
- GET_FIELD (word, 29, 29) << 10 |
- GET_FIELD (word, 11, 15) << 11 |
- (word & 0x1) << 16, 17) << 2;
- }
-
-
- /* Compare the start address for two unwind entries returning 1 if
- the first address is larger than the second, -1 if the second is
- larger than the first, and zero if they are equal. */
-
- static int
- compare_unwind_entries (a, b)
- const struct unwind_table_entry *a;
- const struct unwind_table_entry *b;
- {
- if (a->region_start > b->region_start)
- return 1;
- else if (a->region_start < b->region_start)
- return -1;
- else
- return 0;
- }
-
- static void
- internalize_unwinds (objfile, table, section, entries, size, text_offset)
- struct objfile *objfile;
- struct unwind_table_entry *table;
- asection *section;
- unsigned int entries, size;
- CORE_ADDR text_offset;
- {
- /* We will read the unwind entries into temporary memory, then
- fill in the actual unwind table. */
- if (size > 0)
- {
- unsigned long tmp;
- unsigned i;
- char *buf = alloca (size);
-
- bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
-
- /* Now internalize the information being careful to handle host/target
- endian issues. */
- for (i = 0; i < entries; i++)
- {
- table[i].region_start = bfd_get_32 (objfile->obfd,
- (bfd_byte *)buf);
- table[i].region_start += text_offset;
- buf += 4;
- table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
- table[i].region_end += text_offset;
- buf += 4;
- tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
- buf += 4;
- table[i].Cannot_unwind = (tmp >> 31) & 0x1;
- table[i].Millicode = (tmp >> 30) & 0x1;
- table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
- table[i].Region_description = (tmp >> 27) & 0x3;
- table[i].reserved1 = (tmp >> 26) & 0x1;
- table[i].Entry_SR = (tmp >> 25) & 0x1;
- table[i].Entry_FR = (tmp >> 21) & 0xf;
- table[i].Entry_GR = (tmp >> 16) & 0x1f;
- table[i].Args_stored = (tmp >> 15) & 0x1;
- table[i].Variable_Frame = (tmp >> 14) & 0x1;
- table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
- table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
- table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
- table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
- table[i].Ada_Region = (tmp >> 9) & 0x1;
- table[i].reserved2 = (tmp >> 5) & 0xf;
- table[i].Save_SP = (tmp >> 4) & 0x1;
- table[i].Save_RP = (tmp >> 3) & 0x1;
- table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
- table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
- table[i].Cleanup_defined = tmp & 0x1;
- tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
- buf += 4;
- table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
- table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
- table[i].Large_frame = (tmp >> 29) & 0x1;
- table[i].reserved4 = (tmp >> 27) & 0x3;
- table[i].Total_frame_size = tmp & 0x7ffffff;
- }
- }
- }
-
- /* Read in the backtrace information stored in the `$UNWIND_START$' section of
- the object file. This info is used mainly by find_unwind_entry() to find
- out the stack frame size and frame pointer used by procedures. We put
- everything on the psymbol obstack in the objfile so that it automatically
- gets freed when the objfile is destroyed. */
-
- static void
- read_unwind_info (objfile)
- struct objfile *objfile;
- {
- asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
- unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
- unsigned index, unwind_entries, elf_unwind_entries;
- unsigned stub_entries, total_entries;
- CORE_ADDR text_offset;
- struct obj_unwind_info *ui;
-
- text_offset = ANOFFSET (objfile->section_offsets, 0);
- ui = obstack_alloc (&objfile->psymbol_obstack,
- sizeof (struct obj_unwind_info));
-
- ui->table = NULL;
- ui->cache = NULL;
- ui->last = -1;
-
- /* Get hooks to all unwind sections. Note there is no linker-stub unwind
- section in ELF at the moment. */
- unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
- elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
- stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
-
- /* Get sizes and unwind counts for all sections. */
- if (unwind_sec)
- {
- unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
- unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
- }
- else
- {
- unwind_size = 0;
- unwind_entries = 0;
- }
-
- if (elf_unwind_sec)
- {
- elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
- elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
- }
- else
- {
- elf_unwind_size = 0;
- elf_unwind_entries = 0;
- }
-
- if (stub_unwind_sec)
- {
- stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
- stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
- }
- else
- {
- stub_unwind_size = 0;
- stub_entries = 0;
- }
-
- /* Compute total number of unwind entries and their total size. */
- total_entries = unwind_entries + elf_unwind_entries + stub_entries;
- total_size = total_entries * sizeof (struct unwind_table_entry);
-
- /* Allocate memory for the unwind table. */
- ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
- ui->last = total_entries - 1;
-
- /* Internalize the standard unwind entries. */
- index = 0;
- internalize_unwinds (objfile, &ui->table[index], unwind_sec,
- unwind_entries, unwind_size, text_offset);
- index += unwind_entries;
- internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
- elf_unwind_entries, elf_unwind_size, text_offset);
- index += elf_unwind_entries;
-
- /* Now internalize the stub unwind entries. */
- if (stub_unwind_size > 0)
- {
- unsigned int i;
- char *buf = alloca (stub_unwind_size);
-
- /* Read in the stub unwind entries. */
- bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
- 0, stub_unwind_size);
-
- /* Now convert them into regular unwind entries. */
- for (i = 0; i < stub_entries; i++, index++)
- {
- /* Clear out the next unwind entry. */
- memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
-
- /* Convert offset & size into region_start and region_end.
- Stuff away the stub type into "reserved" fields. */
- ui->table[index].region_start = bfd_get_32 (objfile->obfd,
- (bfd_byte *) buf);
- ui->table[index].region_start += text_offset;
- buf += 4;
- ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
- (bfd_byte *) buf);
- buf += 2;
- ui->table[index].region_end
- = ui->table[index].region_start + 4 *
- (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
- buf += 2;
- }
-
- }
-
- /* Unwind table needs to be kept sorted. */
- qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
- compare_unwind_entries);
-
- /* Keep a pointer to the unwind information. */
- objfile->obj_private = (PTR) ui;
- }
-
- /* Lookup the unwind (stack backtrace) info for the given PC. We search all
- of the objfiles seeking the unwind table entry for this PC. Each objfile
- contains a sorted list of struct unwind_table_entry. Since we do a binary
- search of the unwind tables, we depend upon them to be sorted. */
-
- static struct unwind_table_entry *
- find_unwind_entry(pc)
- CORE_ADDR pc;
- {
- int first, middle, last;
- struct objfile *objfile;
-
- ALL_OBJFILES (objfile)
- {
- struct obj_unwind_info *ui;
-
- ui = OBJ_UNWIND_INFO (objfile);
-
- if (!ui)
- {
- read_unwind_info (objfile);
- ui = OBJ_UNWIND_INFO (objfile);
- }
-
- /* First, check the cache */
-
- if (ui->cache
- && pc >= ui->cache->region_start
- && pc <= ui->cache->region_end)
- return ui->cache;
-
- /* Not in the cache, do a binary search */
-
- first = 0;
- last = ui->last;
-
- while (first <= last)
- {
- middle = (first + last) / 2;
- if (pc >= ui->table[middle].region_start
- && pc <= ui->table[middle].region_end)
- {
- ui->cache = &ui->table[middle];
- return &ui->table[middle];
- }
-
- if (pc < ui->table[middle].region_start)
- last = middle - 1;
- else
- first = middle + 1;
- }
- } /* ALL_OBJFILES() */
- return NULL;
- }
-
- /* Return the adjustment necessary to make for addresses on the stack
- as presented by hpread.c.
-
- This is necessary because of the stack direction on the PA and the
- bizarre way in which someone (?) decided they wanted to handle
- frame pointerless code in GDB. */
- int
- hpread_adjust_stack_address (func_addr)
- CORE_ADDR func_addr;
- {
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (func_addr);
- if (!u)
- return 0;
- else
- return u->Total_frame_size << 3;
- }
-
- /* Called to determine if PC is in an interrupt handler of some
- kind. */
-
- static int
- pc_in_interrupt_handler (pc)
- CORE_ADDR pc;
- {
- struct unwind_table_entry *u;
- struct minimal_symbol *msym_us;
-
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
- its frame isn't a pure interrupt frame. Deal with this. */
- msym_us = lookup_minimal_symbol_by_pc (pc);
-
- return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
- }
-
- /* Called when no unwind descriptor was found for PC. Returns 1 if it
- appears that PC is in a linker stub. */
-
- static int
- pc_in_linker_stub (pc)
- CORE_ADDR pc;
- {
- int found_magic_instruction = 0;
- int i;
- char buf[4];
-
- /* If unable to read memory, assume pc is not in a linker stub. */
- if (target_read_memory (pc, buf, 4) != 0)
- return 0;
-
- /* We are looking for something like
-
- ; $$dyncall jams RP into this special spot in the frame (RP')
- ; before calling the "call stub"
- ldw -18(sp),rp
-
- ldsid (rp),r1 ; Get space associated with RP into r1
- mtsp r1,sp ; Move it into space register 0
- be,n 0(sr0),rp) ; back to your regularly scheduled program
- */
-
- /* Maximum known linker stub size is 4 instructions. Search forward
- from the given PC, then backward. */
- for (i = 0; i < 4; i++)
- {
- /* If we hit something with an unwind, stop searching this direction. */
-
- if (find_unwind_entry (pc + i * 4) != 0)
- break;
-
- /* Check for ldsid (rp),r1 which is the magic instruction for a
- return from a cross-space function call. */
- if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
- {
- found_magic_instruction = 1;
- break;
- }
- /* Add code to handle long call/branch and argument relocation stubs
- here. */
- }
-
- if (found_magic_instruction != 0)
- return 1;
-
- /* Now look backward. */
- for (i = 0; i < 4; i++)
- {
- /* If we hit something with an unwind, stop searching this direction. */
-
- if (find_unwind_entry (pc - i * 4) != 0)
- break;
-
- /* Check for ldsid (rp),r1 which is the magic instruction for a
- return from a cross-space function call. */
- if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
- {
- found_magic_instruction = 1;
- break;
- }
- /* Add code to handle long call/branch and argument relocation stubs
- here. */
- }
- return found_magic_instruction;
- }
-
- static int
- find_return_regnum(pc)
- CORE_ADDR pc;
- {
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- return RP_REGNUM;
-
- if (u->Millicode)
- return 31;
-
- return RP_REGNUM;
- }
-
- /* Return size of frame, or -1 if we should use a frame pointer. */
- int
- find_proc_framesize (pc)
- CORE_ADDR pc;
- {
- struct unwind_table_entry *u;
- struct minimal_symbol *msym_us;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- {
- if (pc_in_linker_stub (pc))
- /* Linker stubs have a zero size frame. */
- return 0;
- else
- return -1;
- }
-
- msym_us = lookup_minimal_symbol_by_pc (pc);
-
- /* If Save_SP is set, and we're not in an interrupt or signal caller,
- then we have a frame pointer. Use it. */
- if (u->Save_SP && !pc_in_interrupt_handler (pc)
- && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
- return -1;
-
- return u->Total_frame_size << 3;
- }
-
- /* Return offset from sp at which rp is saved, or 0 if not saved. */
- static int rp_saved PARAMS ((CORE_ADDR));
-
- static int
- rp_saved (pc)
- CORE_ADDR pc;
- {
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (pc);
-
- if (!u)
- {
- if (pc_in_linker_stub (pc))
- /* This is the so-called RP'. */
- return -24;
- else
- return 0;
- }
-
- if (u->Save_RP)
- return -20;
- else if (u->stub_type != 0)
- {
- switch (u->stub_type)
- {
- case EXPORT:
- case IMPORT:
- return -24;
- case PARAMETER_RELOCATION:
- return -8;
- default:
- return 0;
- }
- }
- else
- return 0;
- }
-
- int
- frameless_function_invocation (frame)
- struct frame_info *frame;
- {
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (frame->pc);
-
- if (u == 0)
- return 0;
-
- return (u->Total_frame_size == 0 && u->stub_type == 0);
- }
-
- CORE_ADDR
- saved_pc_after_call (frame)
- struct frame_info *frame;
- {
- int ret_regnum;
- CORE_ADDR pc;
- struct unwind_table_entry *u;
-
- ret_regnum = find_return_regnum (get_frame_pc (frame));
- pc = read_register (ret_regnum) & ~0x3;
-
- /* If PC is in a linker stub, then we need to dig the address
- the stub will return to out of the stack. */
- u = find_unwind_entry (pc);
- if (u && u->stub_type != 0)
- return frame_saved_pc (frame);
- else
- return pc;
- }
-
- CORE_ADDR
- frame_saved_pc (frame)
- struct frame_info *frame;
- {
- CORE_ADDR pc = get_frame_pc (frame);
- struct unwind_table_entry *u;
-
- /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
- at the base of the frame in an interrupt handler. Registers within
- are saved in the exact same order as GDB numbers registers. How
- convienent. */
- if (pc_in_interrupt_handler (pc))
- return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
-
- /* Deal with signal handler caller frames too. */
- if (frame->signal_handler_caller)
- {
- CORE_ADDR rp;
- FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
- return rp & ~0x3;
- }
-
- if (frameless_function_invocation (frame))
- {
- int ret_regnum;
-
- ret_regnum = find_return_regnum (pc);
-
- /* If the next frame is an interrupt frame or a signal
- handler caller, then we need to look in the saved
- register area to get the return pointer (the values
- in the registers may not correspond to anything useful). */
- if (frame->next
- && (frame->next->signal_handler_caller
- || pc_in_interrupt_handler (frame->next->pc)))
- {
- struct frame_saved_regs saved_regs;
-
- get_frame_saved_regs (frame->next, &saved_regs);
- if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
- {
- pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
-
- /* Syscalls are really two frames. The syscall stub itself
- with a return pointer in %rp and the kernel call with
- a return pointer in %r31. We return the %rp variant
- if %r31 is the same as frame->pc. */
- if (pc == frame->pc)
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else
- pc = read_register (ret_regnum) & ~0x3;
- }
- else
- {
- int rp_offset;
-
- restart:
- rp_offset = rp_saved (pc);
- /* Similar to code in frameless function case. If the next
- frame is a signal or interrupt handler, then dig the right
- information out of the saved register info. */
- if (rp_offset == 0
- && frame->next
- && (frame->next->signal_handler_caller
- || pc_in_interrupt_handler (frame->next->pc)))
- {
- struct frame_saved_regs saved_regs;
-
- get_frame_saved_regs (frame->next, &saved_regs);
- if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
- {
- pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
-
- /* Syscalls are really two frames. The syscall stub itself
- with a return pointer in %rp and the kernel call with
- a return pointer in %r31. We return the %rp variant
- if %r31 is the same as frame->pc. */
- if (pc == frame->pc)
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else
- pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
- }
- else if (rp_offset == 0)
- pc = read_register (RP_REGNUM) & ~0x3;
- else
- pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
- }
-
- /* If PC is inside a linker stub, then dig out the address the stub
- will return to. */
- u = find_unwind_entry (pc);
- if (u && u->stub_type != 0)
- goto restart;
-
- return pc;
- }
-
- /* We need to correct the PC and the FP for the outermost frame when we are
- in a system call. */
-
- void
- init_extra_frame_info (fromleaf, frame)
- int fromleaf;
- struct frame_info *frame;
- {
- int flags;
- int framesize;
-
- if (frame->next && !fromleaf)
- return;
-
- /* If the next frame represents a frameless function invocation
- then we have to do some adjustments that are normally done by
- FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
- if (fromleaf)
- {
- /* Find the framesize of *this* frame without peeking at the PC
- in the current frame structure (it isn't set yet). */
- framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
-
- /* Now adjust our base frame accordingly. If we have a frame pointer
- use it, else subtract the size of this frame from the current
- frame. (we always want frame->frame to point at the lowest address
- in the frame). */
- if (framesize == -1)
- frame->frame = read_register (FP_REGNUM);
- else
- frame->frame -= framesize;
- return;
- }
-
- flags = read_register (FLAGS_REGNUM);
- if (flags & 2) /* In system call? */
- frame->pc = read_register (31) & ~0x3;
-
- /* The outermost frame is always derived from PC-framesize
-
- One might think frameless innermost frames should have
- a frame->frame that is the same as the parent's frame->frame.
- That is wrong; frame->frame in that case should be the *high*
- address of the parent's frame. It's complicated as hell to
- explain, but the parent *always* creates some stack space for
- the child. So the child actually does have a frame of some
- sorts, and its base is the high address in its parent's frame. */
- framesize = find_proc_framesize(frame->pc);
- if (framesize == -1)
- frame->frame = read_register (FP_REGNUM);
- else
- frame->frame = read_register (SP_REGNUM) - framesize;
- }
-
- /* Given a GDB frame, determine the address of the calling function's frame.
- This will be used to create a new GDB frame struct, and then
- INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
-
- This may involve searching through prologues for several functions
- at boundaries where GCC calls HP C code, or where code which has
- a frame pointer calls code without a frame pointer. */
-
- CORE_ADDR
- frame_chain (frame)
- struct frame_info *frame;
- {
- int my_framesize, caller_framesize;
- struct unwind_table_entry *u;
- CORE_ADDR frame_base;
-
- /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
- are easy; at *sp we have a full save state strucutre which we can
- pull the old stack pointer from. Also see frame_saved_pc for
- code to dig a saved PC out of the save state structure. */
- if (pc_in_interrupt_handler (frame->pc))
- frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
- else if (frame->signal_handler_caller)
- {
- FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
- }
- else
- frame_base = frame->frame;
-
- /* Get frame sizes for the current frame and the frame of the
- caller. */
- my_framesize = find_proc_framesize (frame->pc);
- caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
-
- /* If caller does not have a frame pointer, then its frame
- can be found at current_frame - caller_framesize. */
- if (caller_framesize != -1)
- return frame_base - caller_framesize;
-
- /* Both caller and callee have frame pointers and are GCC compiled
- (SAVE_SP bit in unwind descriptor is on for both functions.
- The previous frame pointer is found at the top of the current frame. */
- if (caller_framesize == -1 && my_framesize == -1)
- return read_memory_integer (frame_base, 4);
-
- /* Caller has a frame pointer, but callee does not. This is a little
- more difficult as GCC and HP C lay out locals and callee register save
- areas very differently.
-
- The previous frame pointer could be in a register, or in one of
- several areas on the stack.
-
- Walk from the current frame to the innermost frame examining
- unwind descriptors to determine if %r3 ever gets saved into the
- stack. If so return whatever value got saved into the stack.
- If it was never saved in the stack, then the value in %r3 is still
- valid, so use it.
-
- We use information from unwind descriptors to determine if %r3
- is saved into the stack (Entry_GR field has this information). */
-
- while (frame)
- {
- u = find_unwind_entry (frame->pc);
-
- if (!u)
- {
- /* We could find this information by examining prologues. I don't
- think anyone has actually written any tools (not even "strip")
- which leave them out of an executable, so maybe this is a moot
- point. */
- warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
- return 0;
- }
-
- /* Entry_GR specifies the number of callee-saved general registers
- saved in the stack. It starts at %r3, so %r3 would be 1. */
- if (u->Entry_GR >= 1 || u->Save_SP
- || frame->signal_handler_caller
- || pc_in_interrupt_handler (frame->pc))
- break;
- else
- frame = frame->next;
- }
-
- if (frame)
- {
- /* We may have walked down the chain into a function with a frame
- pointer. */
- if (u->Save_SP
- && !frame->signal_handler_caller
- && !pc_in_interrupt_handler (frame->pc))
- return read_memory_integer (frame->frame, 4);
- /* %r3 was saved somewhere in the stack. Dig it out. */
- else
- {
- struct frame_saved_regs saved_regs;
-
- get_frame_saved_regs (frame, &saved_regs);
- return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
- }
- }
- else
- {
- /* The value in %r3 was never saved into the stack (thus %r3 still
- holds the value of the previous frame pointer). */
- return read_register (FP_REGNUM);
- }
- }
-
-
- /* To see if a frame chain is valid, see if the caller looks like it
- was compiled with gcc. */
-
- int
- frame_chain_valid (chain, thisframe)
- CORE_ADDR chain;
- struct frame_info *thisframe;
- {
- struct minimal_symbol *msym_us;
- struct minimal_symbol *msym_start;
- struct unwind_table_entry *u, *next_u = NULL;
- struct frame_info *next;
-
- if (!chain)
- return 0;
-
- u = find_unwind_entry (thisframe->pc);
-
- if (u == NULL)
- return 1;
-
- /* We can't just check that the same of msym_us is "_start", because
- someone idiotically decided that they were going to make a Ltext_end
- symbol with the same address. This Ltext_end symbol is totally
- indistinguishable (as nearly as I can tell) from the symbol for a function
- which is (legitimately, since it is in the user's namespace)
- named Ltext_end, so we can't just ignore it. */
- msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
- msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
- if (msym_us
- && msym_start
- && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
- return 0;
-
- next = get_next_frame (thisframe);
- if (next)
- next_u = find_unwind_entry (next->pc);
-
- /* If this frame does not save SP, has no stack, isn't a stub,
- and doesn't "call" an interrupt routine or signal handler caller,
- then its not valid. */
- if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
- || (thisframe->next && thisframe->next->signal_handler_caller)
- || (next_u && next_u->HP_UX_interrupt_marker))
- return 1;
-
- if (pc_in_linker_stub (thisframe->pc))
- return 1;
-
- return 0;
- }
-
- /*
- * These functions deal with saving and restoring register state
- * around a function call in the inferior. They keep the stack
- * double-word aligned; eventually, on an hp700, the stack will have
- * to be aligned to a 64-byte boundary.
- */
-
- void
- push_dummy_frame (inf_status)
- struct inferior_status *inf_status;
- {
- CORE_ADDR sp, pc, pcspace;
- register int regnum;
- int int_buffer;
- double freg_buffer;
-
- /* Oh, what a hack. If we're trying to perform an inferior call
- while the inferior is asleep, we have to make sure to clear
- the "in system call" bit in the flag register (the call will
- start after the syscall returns, so we're no longer in the system
- call!) This state is kept in "inf_status", change it there.
-
- We also need a number of horrid hacks to deal with lossage in the
- PC queue registers (apparently they're not valid when the in syscall
- bit is set). */
- pc = target_read_pc (inferior_pid);
- int_buffer = read_register (FLAGS_REGNUM);
- if (int_buffer & 0x2)
- {
- unsigned int sid;
- int_buffer &= ~0x2;
- memcpy (inf_status->registers, &int_buffer, 4);
- memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
- pc += 4;
- memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
- pc -= 4;
- sid = (pc >> 30) & 0x3;
- if (sid == 0)
- pcspace = read_register (SR4_REGNUM);
- else
- pcspace = read_register (SR4_REGNUM + 4 + sid);
- memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
- &pcspace, 4);
- memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
- &pcspace, 4);
- }
- else
- pcspace = read_register (PCSQ_HEAD_REGNUM);
-
- /* Space for "arguments"; the RP goes in here. */
- sp = read_register (SP_REGNUM) + 48;
- int_buffer = read_register (RP_REGNUM) | 0x3;
- write_memory (sp - 20, (char *)&int_buffer, 4);
-
- int_buffer = read_register (FP_REGNUM);
- write_memory (sp, (char *)&int_buffer, 4);
-
- write_register (FP_REGNUM, sp);
-
- sp += 8;
-
- for (regnum = 1; regnum < 32; regnum++)
- if (regnum != RP_REGNUM && regnum != FP_REGNUM)
- sp = push_word (sp, read_register (regnum));
-
- sp += 4;
-
- for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
- {
- read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
- sp = push_bytes (sp, (char *)&freg_buffer, 8);
- }
- sp = push_word (sp, read_register (IPSW_REGNUM));
- sp = push_word (sp, read_register (SAR_REGNUM));
- sp = push_word (sp, pc);
- sp = push_word (sp, pcspace);
- sp = push_word (sp, pc + 4);
- sp = push_word (sp, pcspace);
- write_register (SP_REGNUM, sp);
- }
-
- void
- find_dummy_frame_regs (frame, frame_saved_regs)
- struct frame_info *frame;
- struct frame_saved_regs *frame_saved_regs;
- {
- CORE_ADDR fp = frame->frame;
- int i;
-
- frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
- frame_saved_regs->regs[FP_REGNUM] = fp;
- frame_saved_regs->regs[1] = fp + 8;
-
- for (fp += 12, i = 3; i < 32; i++)
- {
- if (i != FP_REGNUM)
- {
- frame_saved_regs->regs[i] = fp;
- fp += 4;
- }
- }
-
- fp += 4;
- for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
- frame_saved_regs->regs[i] = fp;
-
- frame_saved_regs->regs[IPSW_REGNUM] = fp;
- frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
- frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
- frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
- frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
- frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
- }
-
- void
- hppa_pop_frame ()
- {
- register struct frame_info *frame = get_current_frame ();
- register CORE_ADDR fp, npc, target_pc;
- register int regnum;
- struct frame_saved_regs fsr;
- double freg_buffer;
-
- fp = FRAME_FP (frame);
- get_frame_saved_regs (frame, &fsr);
-
- #ifndef NO_PC_SPACE_QUEUE_RESTORE
- if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
- restore_pc_queue (&fsr);
- #endif
-
- for (regnum = 31; regnum > 0; regnum--)
- if (fsr.regs[regnum])
- write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
-
- for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
- if (fsr.regs[regnum])
- {
- read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
- write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
- }
-
- if (fsr.regs[IPSW_REGNUM])
- write_register (IPSW_REGNUM,
- read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
-
- if (fsr.regs[SAR_REGNUM])
- write_register (SAR_REGNUM,
- read_memory_integer (fsr.regs[SAR_REGNUM], 4));
-
- /* If the PC was explicitly saved, then just restore it. */
- if (fsr.regs[PCOQ_TAIL_REGNUM])
- {
- npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
- write_register (PCOQ_TAIL_REGNUM, npc);
- }
- /* Else use the value in %rp to set the new PC. */
- else
- {
- npc = read_register (RP_REGNUM);
- target_write_pc (npc, 0);
- }
-
- write_register (FP_REGNUM, read_memory_integer (fp, 4));
-
- if (fsr.regs[IPSW_REGNUM]) /* call dummy */
- write_register (SP_REGNUM, fp - 48);
- else
- write_register (SP_REGNUM, fp);
-
- /* The PC we just restored may be inside a return trampoline. If so
- we want to restart the inferior and run it through the trampoline.
-
- Do this by setting a momentary breakpoint at the location the
- trampoline returns to.
-
- Don't skip through the trampoline if we're popping a dummy frame. */
- target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
- if (target_pc && !fsr.regs[IPSW_REGNUM])
- {
- struct symtab_and_line sal;
- struct breakpoint *breakpoint;
- struct cleanup *old_chain;
-
- /* Set up our breakpoint. Set it to be silent as the MI code
- for "return_command" will print the frame we returned to. */
- sal = find_pc_line (target_pc, 0);
- sal.pc = target_pc;
- breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
- breakpoint->silent = 1;
-
- /* So we can clean things up. */
- old_chain = make_cleanup (delete_breakpoint, breakpoint);
-
- /* Start up the inferior. */
- proceed_to_finish = 1;
- proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
-
- /* Perform our cleanups. */
- do_cleanups (old_chain);
- }
- flush_cached_frames ();
- }
-
- /*
- * After returning to a dummy on the stack, restore the instruction
- * queue space registers. */
-
- static int
- restore_pc_queue (fsr)
- struct frame_saved_regs *fsr;
- {
- CORE_ADDR pc = read_pc ();
- CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
- struct target_waitstatus w;
- int insn_count;
-
- /* Advance past break instruction in the call dummy. */
- write_register (PCOQ_HEAD_REGNUM, pc + 4);
- write_register (PCOQ_TAIL_REGNUM, pc + 8);
-
- /*
- * HPUX doesn't let us set the space registers or the space
- * registers of the PC queue through ptrace. Boo, hiss.
- * Conveniently, the call dummy has this sequence of instructions
- * after the break:
- * mtsp r21, sr0
- * ble,n 0(sr0, r22)
- *
- * So, load up the registers and single step until we are in the
- * right place.
- */
-
- write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
- write_register (22, new_pc);
-
- for (insn_count = 0; insn_count < 3; insn_count++)
- {
- /* FIXME: What if the inferior gets a signal right now? Want to
- merge this into wait_for_inferior (as a special kind of
- watchpoint? By setting a breakpoint at the end? Is there
- any other choice? Is there *any* way to do this stuff with
- ptrace() or some equivalent?). */
- resume (1, 0);
- target_wait (inferior_pid, &w);
-
- if (w.kind == TARGET_WAITKIND_SIGNALLED)
- {
- stop_signal = w.value.sig;
- terminal_ours_for_output ();
- printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
- target_signal_to_name (stop_signal),
- target_signal_to_string (stop_signal));
- gdb_flush (gdb_stdout);
- return 0;
- }
- }
- target_terminal_ours ();
- target_fetch_registers (-1);
- return 1;
- }
-
- CORE_ADDR
- hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
- int nargs;
- value_ptr *args;
- CORE_ADDR sp;
- int struct_return;
- CORE_ADDR struct_addr;
- {
- /* array of arguments' offsets */
- int *offset = (int *)alloca(nargs * sizeof (int));
- int cum = 0;
- int i, alignment;
-
- for (i = 0; i < nargs; i++)
- {
- /* Coerce chars to int & float to double if necessary */
- args[i] = value_arg_coerce (args[i]);
-
- cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
-
- /* value must go at proper alignment. Assume alignment is a
- power of two.*/
- alignment = hppa_alignof (VALUE_TYPE (args[i]));
- if (cum % alignment)
- cum = (cum + alignment) & -alignment;
- offset[i] = -cum;
- }
- sp += max ((cum + 7) & -8, 16);
-
- for (i = 0; i < nargs; i++)
- write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
- TYPE_LENGTH (VALUE_TYPE (args[i])));
-
- if (struct_return)
- write_register (28, struct_addr);
- return sp + 32;
- }
-
- /*
- * Insert the specified number of args and function address
- * into a call sequence of the above form stored at DUMMYNAME.
- *
- * On the hppa we need to call the stack dummy through $$dyncall.
- * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
- * real_pc, which is the location where gdb should start up the
- * inferior to do the function call.
- */
-
- CORE_ADDR
- hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
- char *dummy;
- CORE_ADDR pc;
- CORE_ADDR fun;
- int nargs;
- value_ptr *args;
- struct type *type;
- int gcc_p;
- {
- CORE_ADDR dyncall_addr, sr4export_addr;
- struct minimal_symbol *msymbol;
- int flags = read_register (FLAGS_REGNUM);
- struct unwind_table_entry *u;
-
- msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (msymbol == NULL)
- error ("Can't find an address for $$dyncall trampoline");
-
- dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
-
- /* FUN could be a procedure label, in which case we have to get
- its real address and the value of its GOT/DP. */
- if (fun & 0x2)
- {
- /* Get the GOT/DP value for the target function. It's
- at *(fun+4). Note the call dummy is *NOT* allowed to
- trash %r19 before calling the target function. */
- write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
-
- /* Now get the real address for the function we are calling, it's
- at *fun. */
- fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
- }
- else
- {
-
- #ifndef GDB_TARGET_IS_PA_ELF
- /* FUN could be either an export stub, or the real address of a
- function in a shared library. We must call an import stub
- rather than the export stub or real function for lazy binding
- to work correctly. */
- if (som_solib_get_got_by_pc (fun))
- {
- struct objfile *objfile;
- struct minimal_symbol *funsymbol, *stub_symbol;
- CORE_ADDR newfun = 0;
-
- funsymbol = lookup_minimal_symbol_by_pc (fun);
- if (!funsymbol)
- error ("Unable to find minimal symbol for target fucntion.\n");
-
- /* Search all the object files for an import symbol with the
- right name. */
- ALL_OBJFILES (objfile)
- {
- stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
- NULL, objfile);
- /* Found a symbol with the right name. */
- if (stub_symbol)
- {
- struct unwind_table_entry *u;
- /* It must be a shared library trampoline. */
- if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
- continue;
-
- /* It must also be an import stub. */
- u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
- if (!u || u->stub_type != IMPORT)
- continue;
-
- /* OK. Looks like the correct import stub. */
- newfun = SYMBOL_VALUE (stub_symbol);
- fun = newfun;
- }
- }
- if (newfun == 0)
- write_register (19, som_solib_get_got_by_pc (fun));
- }
- #endif
- }
-
- /* If we are calling an import stub (eg calling into a dynamic library)
- then have sr4export call the magic __d_plt_call routine which is linked
- in from end.o. (You can't use _sr4export to call the import stub as
- the value in sp-24 will get fried and you end up returning to the
- wrong location. You can't call the import stub directly as the code
- to bind the PLT entry to a function can't return to a stack address.) */
- u = find_unwind_entry (fun);
- if (u && u->stub_type == IMPORT)
- {
- CORE_ADDR new_fun;
- msymbol = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
- if (msymbol == NULL)
- msymbol = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
-
- if (msymbol == NULL)
- error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
-
- /* This is where sr4export will jump to. */
- new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
-
- if (strcmp (SYMBOL_NAME (msymbol), "__d_plt_call"))
- write_register (22, fun);
- else
- {
- /* We have to store the address of the stub in __shlib_funcptr. */
- msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
- (struct objfile *)NULL);
- if (msymbol == NULL)
- error ("Can't find an address for __shlib_funcptr");
-
- target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
- }
- fun = new_fun;
- }
-
- /* We still need sr4export's address too. */
- msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (msymbol == NULL)
- error ("Can't find an address for _sr4export trampoline");
-
- sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
-
- store_unsigned_integer
- (&dummy[9*REGISTER_SIZE],
- REGISTER_SIZE,
- deposit_21 (fun >> 11,
- extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
- REGISTER_SIZE)));
- store_unsigned_integer
- (&dummy[10*REGISTER_SIZE],
- REGISTER_SIZE,
- deposit_14 (fun & MASK_11,
- extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
- REGISTER_SIZE)));
- store_unsigned_integer
- (&dummy[12*REGISTER_SIZE],
- REGISTER_SIZE,
- deposit_21 (sr4export_addr >> 11,
- extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
- REGISTER_SIZE)));
- store_unsigned_integer
- (&dummy[13*REGISTER_SIZE],
- REGISTER_SIZE,
- deposit_14 (sr4export_addr & MASK_11,
- extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
- REGISTER_SIZE)));
-
- write_register (22, pc);
-
- /* If we are in a syscall, then we should call the stack dummy
- directly. $$dyncall is not needed as the kernel sets up the
- space id registers properly based on the value in %r31. In
- fact calling $$dyncall will not work because the value in %r22
- will be clobbered on the syscall exit path.
-
- Similarly if the current PC is in a shared library. Note however,
- this scheme won't work if the shared library isn't mapped into
- the same space as the stack. */
- if (flags & 2)
- return pc;
- #ifndef GDB_TARGET_IS_PA_ELF
- else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
- return pc;
- #endif
- else
- return dyncall_addr;
-
- }
-
- /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
- bits. */
-
- CORE_ADDR
- target_read_pc (pid)
- int pid;
- {
- int flags = read_register (FLAGS_REGNUM);
-
- if (flags & 2) {
- return read_register (31) & ~0x3;
- }
- return read_register (PC_REGNUM) & ~0x3;
- }
-
- /* Write out the PC. If currently in a syscall, then also write the new
- PC value into %r31. */
-
- void
- target_write_pc (v, pid)
- CORE_ADDR v;
- int pid;
- {
- int flags = read_register (FLAGS_REGNUM);
-
- /* If in a syscall, then set %r31. Also make sure to get the
- privilege bits set correctly. */
- if (flags & 2)
- write_register (31, (long) (v | 0x3));
-
- write_register (PC_REGNUM, (long) v);
- write_register (NPC_REGNUM, (long) v + 4);
- }
-
- /* return the alignment of a type in bytes. Structures have the maximum
- alignment required by their fields. */
-
- static int
- hppa_alignof (arg)
- struct type *arg;
- {
- int max_align, align, i;
- switch (TYPE_CODE (arg))
- {
- case TYPE_CODE_PTR:
- case TYPE_CODE_INT:
- case TYPE_CODE_FLT:
- return TYPE_LENGTH (arg);
- case TYPE_CODE_ARRAY:
- return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- max_align = 2;
- for (i = 0; i < TYPE_NFIELDS (arg); i++)
- {
- /* Bit fields have no real alignment. */
- if (!TYPE_FIELD_BITPOS (arg, i))
- {
- align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
- max_align = max (max_align, align);
- }
- }
- return max_align;
- default:
- return 4;
- }
- }
-
- /* Print the register regnum, or all registers if regnum is -1 */
-
- void
- pa_do_registers_info (regnum, fpregs)
- int regnum;
- int fpregs;
- {
- char raw_regs [REGISTER_BYTES];
- int i;
-
- for (i = 0; i < NUM_REGS; i++)
- read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
- if (regnum == -1)
- pa_print_registers (raw_regs, regnum, fpregs);
- else if (regnum < FP0_REGNUM)
- printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
- REGISTER_BYTE (regnum)));
- else
- pa_print_fp_reg (regnum);
- }
-
- static void
- pa_print_registers (raw_regs, regnum, fpregs)
- char *raw_regs;
- int regnum;
- int fpregs;
- {
- int i,j;
- long val;
-
- for (i = 0; i < 18; i++)
- {
- for (j = 0; j < 4; j++)
- {
- val = *(int *)(raw_regs + REGISTER_BYTE (i+(j*18)));
- SWAP_TARGET_AND_HOST (&val, 4);
- printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
- }
- printf_unfiltered ("\n");
- }
-
- if (fpregs)
- for (i = 72; i < NUM_REGS; i++)
- pa_print_fp_reg (i);
- }
-
- static void
- pa_print_fp_reg (i)
- int i;
- {
- unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
- unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
-
- /* Get 32bits of data. */
- read_relative_register_raw_bytes (i, raw_buffer);
-
- /* Put it in the buffer. No conversions are ever necessary. */
- memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
-
- fputs_filtered (reg_names[i], gdb_stdout);
- print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
- fputs_filtered ("(single precision) ", gdb_stdout);
-
- val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
- 1, 0, Val_pretty_default);
- printf_filtered ("\n");
-
- /* If "i" is even, then this register can also be a double-precision
- FP register. Dump it out as such. */
- if ((i % 2) == 0)
- {
- /* Get the data in raw format for the 2nd half. */
- read_relative_register_raw_bytes (i + 1, raw_buffer);
-
- /* Copy it into the appropriate part of the virtual buffer. */
- memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
- REGISTER_RAW_SIZE (i));
-
- /* Dump it as a double. */
- fputs_filtered (reg_names[i], gdb_stdout);
- print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
- fputs_filtered ("(double precision) ", gdb_stdout);
-
- val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
- 1, 0, Val_pretty_default);
- printf_filtered ("\n");
- }
- }
-
- /* Return one if PC is in the call path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
- int
- in_solib_call_trampoline (pc, name)
- CORE_ADDR pc;
- char *name;
- {
- struct minimal_symbol *minsym;
- struct unwind_table_entry *u;
- static CORE_ADDR dyncall = 0;
- static CORE_ADDR sr4export = 0;
-
- /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
- new exec file */
-
- /* First see if PC is in one of the two C-library trampolines. */
- if (!dyncall)
- {
- minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (minsym)
- dyncall = SYMBOL_VALUE_ADDRESS (minsym);
- else
- dyncall = -1;
- }
-
- if (!sr4export)
- {
- minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (minsym)
- sr4export = SYMBOL_VALUE_ADDRESS (minsym);
- else
- sr4export = -1;
- }
-
- if (pc == dyncall || pc == sr4export)
- return 1;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- if (u->stub_type == 0)
- return 0;
-
- /* By definition a long-branch stub is a call stub. */
- if (u->stub_type == LONG_BRANCH)
- return 1;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_type == PARAMETER_RELOCATION
- || u->stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 1;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 0;
- }
-
- /* Should never happen. */
- warning ("Unable to find branch in parameter relocation stub.\n");
- return 0;
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0;
- }
-
- /* Return one if PC is in the return path of a trampoline, else return zero.
-
- Note we return one for *any* call trampoline (long-call, arg-reloc), not
- just shared library trampolines (import, export). */
-
- int
- in_solib_return_trampoline (pc, name)
- CORE_ADDR pc;
- char *name;
- {
- struct unwind_table_entry *u;
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub or it's just a long branch stub, then
- return zero. */
- if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
- return 0;
-
- /* The call and return path execute the same instructions within
- an IMPORT stub! So an IMPORT stub is both a call and return
- trampoline. */
- if (u->stub_type == IMPORT)
- return 1;
-
- /* Parameter relocation stubs always have a call path and may have a
- return path. */
- if (u->stub_type == PARAMETER_RELOCATION
- || u->stub_type == EXPORT)
- {
- CORE_ADDR addr;
-
- /* Search forward from the current PC until we hit a branch
- or the end of the stub. */
- for (addr = pc; addr <= u->region_end; addr += 4)
- {
- unsigned long insn;
-
- insn = read_memory_integer (addr, 4);
-
- /* Does it look like a bl? If so then it's the call path, if
- we find a bv or be first, then we're on the return path. */
- if ((insn & 0xfc00e000) == 0xe8000000)
- return 0;
- else if ((insn & 0xfc00e001) == 0xe800c000
- || (insn & 0xfc000000) == 0xe0000000)
- return 1;
- }
-
- /* Should never happen. */
- warning ("Unable to find branch in parameter relocation stub.\n");
- return 0;
- }
-
- /* Unknown stub type. For now, just return zero. */
- return 0;
-
- }
-
- /* Figure out if PC is in a trampoline, and if so find out where
- the trampoline will jump to. If not in a trampoline, return zero.
-
- Simple code examination probably is not a good idea since the code
- sequences in trampolines can also appear in user code.
-
- We use unwinds and information from the minimal symbol table to
- determine when we're in a trampoline. This won't work for ELF
- (yet) since it doesn't create stub unwind entries. Whether or
- not ELF will create stub unwinds or normal unwinds for linker
- stubs is still being debated.
-
- This should handle simple calls through dyncall or sr4export,
- long calls, argument relocation stubs, and dyncall/sr4export
- calling an argument relocation stub. It even handles some stubs
- used in dynamic executables. */
-
- CORE_ADDR
- skip_trampoline_code (pc, name)
- CORE_ADDR pc;
- char *name;
- {
- long orig_pc = pc;
- long prev_inst, curr_inst, loc;
- static CORE_ADDR dyncall = 0;
- static CORE_ADDR sr4export = 0;
- struct minimal_symbol *msym;
- struct unwind_table_entry *u;
-
- /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
- new exec file */
-
- if (!dyncall)
- {
- msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
- if (msym)
- dyncall = SYMBOL_VALUE_ADDRESS (msym);
- else
- dyncall = -1;
- }
-
- if (!sr4export)
- {
- msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
- if (msym)
- sr4export = SYMBOL_VALUE_ADDRESS (msym);
- else
- sr4export = -1;
- }
-
- /* Addresses passed to dyncall may *NOT* be the actual address
- of the function. So we may have to do something special. */
- if (pc == dyncall)
- {
- pc = (CORE_ADDR) read_register (22);
-
- /* If bit 30 (counting from the left) is on, then pc is the address of
- the PLT entry for this function, not the address of the function
- itself. Bit 31 has meaning too, but only for MPE. */
- if (pc & 0x2)
- pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
- }
- else if (pc == sr4export)
- pc = (CORE_ADDR) (read_register (22));
-
- /* Get the unwind descriptor corresponding to PC, return zero
- if no unwind was found. */
- u = find_unwind_entry (pc);
- if (!u)
- return 0;
-
- /* If this isn't a linker stub, then return now. */
- if (u->stub_type == 0)
- return orig_pc == pc ? 0 : pc & ~0x3;
-
- /* It's a stub. Search for a branch and figure out where it goes.
- Note we have to handle multi insn branch sequences like ldil;ble.
- Most (all?) other branches can be determined by examining the contents
- of certain registers and the stack. */
- loc = pc;
- curr_inst = 0;
- prev_inst = 0;
- while (1)
- {
- /* Make sure we haven't walked outside the range of this stub. */
- if (u != find_unwind_entry (loc))
- {
- warning ("Unable to find branch in linker stub");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- prev_inst = curr_inst;
- curr_inst = read_memory_integer (loc, 4);
-
- /* Does it look like a branch external using %r1? Then it's the
- branch from the stub to the actual function. */
- if ((curr_inst & 0xffe0e000) == 0xe0202000)
- {
- /* Yup. See if the previous instruction loaded
- a value into %r1. If so compute and return the jump address. */
- if ((prev_inst & 0xffe00000) == 0x20200000)
- return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
- else
- {
- warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* Does it look like a be 0(sr0,%r21)? That's the branch from an
- import stub to an export stub.
-
- It is impossible to determine the target of the branch via
- simple examination of instructions and/or data (consider
- that the address in the plabel may be the address of the
- bind-on-reference routine in the dynamic loader).
-
- So we have try an alternative approach.
-
- Get the name of the symbol at our current location; it should
- be a stub symbol with the same name as the symbol in the
- shared library.
-
- Then lookup a minimal symbol with the same name; we should
- get the minimal symbol for the target routine in the shared
- library as those take precedence of import/export stubs. */
- if (curr_inst == 0xe2a00000)
- {
- struct minimal_symbol *stubsym, *libsym;
-
- stubsym = lookup_minimal_symbol_by_pc (loc);
- if (stubsym == NULL)
- {
- warning ("Unable to find symbol for 0x%x", loc);
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
- if (libsym == NULL)
- {
- warning ("Unable to find library symbol for %s\n",
- SYMBOL_NAME (stubsym));
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
-
- return SYMBOL_VALUE (libsym);
- }
-
- /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
- branch from the stub to the actual function. */
- else if ((curr_inst & 0xffe0e000) == 0xe8400000
- || (curr_inst & 0xffe0e000) == 0xe8000000)
- return (loc + extract_17 (curr_inst) + 8) & ~0x3;
-
- /* Does it look like bv (rp)? Note this depends on the
- current stack pointer being the same as the stack
- pointer in the stub itself! This is a branch on from the
- stub back to the original caller. */
- else if ((curr_inst & 0xffe0e000) == 0xe840c000)
- {
- /* Yup. See if the previous instruction loaded
- rp from sp - 8. */
- if (prev_inst == 0x4bc23ff1)
- return (read_memory_integer
- (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
- else
- {
- warning ("Unable to find restore of %%rp before bv (%%rp).");
- return orig_pc == pc ? 0 : pc & ~0x3;
- }
- }
-
- /* What about be,n 0(sr0,%rp)? It's just another way we return to
- the original caller from the stub. Used in dynamic executables. */
- else if (curr_inst == 0xe0400002)
- {
- /* The value we jump to is sitting in sp - 24. But that's
- loaded several instructions before the be instruction.
- I guess we could check for the previous instruction being
- mtsp %r1,%sr0 if we want to do sanity checking. */
- return (read_memory_integer
- (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
- }
-
- /* Haven't found the branch yet, but we're still in the stub.
- Keep looking. */
- loc += 4;
- }
- }
-
- /* For the given instruction (INST), return any adjustment it makes
- to the stack pointer or zero for no adjustment.
-
- This only handles instructions commonly found in prologues. */
-
- static int
- prologue_inst_adjust_sp (inst)
- unsigned long inst;
- {
- /* This must persist across calls. */
- static int save_high21;
-
- /* The most common way to perform a stack adjustment ldo X(sp),sp */
- if ((inst & 0xffffc000) == 0x37de0000)
- return extract_14 (inst);
-
- /* stwm X,D(sp) */
- if ((inst & 0xffe00000) == 0x6fc00000)
- return extract_14 (inst);
-
- /* addil high21,%r1; ldo low11,(%r1),%r30)
- save high bits in save_high21 for later use. */
- if ((inst & 0xffe00000) == 0x28200000)
- {
- save_high21 = extract_21 (inst);
- return 0;
- }
-
- if ((inst & 0xffff0000) == 0x343e0000)
- return save_high21 + extract_14 (inst);
-
- /* fstws as used by the HP compilers. */
- if ((inst & 0xffffffe0) == 0x2fd01220)
- return extract_5_load (inst);
-
- /* No adjustment. */
- return 0;
- }
-
- /* Return nonzero if INST is a branch of some kind, else return zero. */
-
- static int
- is_branch (inst)
- unsigned long inst;
- {
- switch (inst >> 26)
- {
- case 0x20:
- case 0x21:
- case 0x22:
- case 0x23:
- case 0x28:
- case 0x29:
- case 0x2a:
- case 0x2b:
- case 0x30:
- case 0x31:
- case 0x32:
- case 0x33:
- case 0x38:
- case 0x39:
- case 0x3a:
- return 1;
-
- default:
- return 0;
- }
- }
-
- /* Return the register number for a GR which is saved by INST or
- zero it INST does not save a GR. */
-
- static int
- inst_saves_gr (inst)
- unsigned long inst;
- {
- /* Does it look like a stw? */
- if ((inst >> 26) == 0x1a)
- return extract_5R_store (inst);
-
- /* Does it look like a stwm? GCC & HPC may use this in prologues. */
- if ((inst >> 26) == 0x1b)
- return extract_5R_store (inst);
-
- /* Does it look like sth or stb? HPC versions 9.0 and later use these
- too. */
- if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
- return extract_5R_store (inst);
-
- return 0;
- }
-
- /* Return the register number for a FR which is saved by INST or
- zero it INST does not save a FR.
-
- Note we only care about full 64bit register stores (that's the only
- kind of stores the prologue will use).
-
- FIXME: What about argument stores with the HP compiler in ANSI mode? */
-
- static int
- inst_saves_fr (inst)
- unsigned long inst;
- {
- if ((inst & 0xfc00dfc0) == 0x2c001200)
- return extract_5r_store (inst);
- return 0;
- }
-
- /* Advance PC across any function entry prologue instructions
- to reach some "real" code.
-
- Use information in the unwind table to determine what exactly should
- be in the prologue. */
-
- CORE_ADDR
- skip_prologue (pc)
- CORE_ADDR pc;
- {
- char buf[4];
- unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
- unsigned long args_stored, status, i;
- struct unwind_table_entry *u;
-
- u = find_unwind_entry (pc);
- if (!u)
- return pc;
-
- /* If we are not at the beginning of a function, then return now. */
- if ((pc & ~0x3) != u->region_start)
- return pc;
-
- /* This is how much of a frame adjustment we need to account for. */
- stack_remaining = u->Total_frame_size << 3;
-
- /* Magic register saves we want to know about. */
- save_rp = u->Save_RP;
- save_sp = u->Save_SP;
-
- /* An indication that args may be stored into the stack. Unfortunately
- the HPUX compilers tend to set this in cases where no args were
- stored too!. */
- args_stored = u->Args_stored;
-
- /* Turn the Entry_GR field into a bitmask. */
- save_gr = 0;
- for (i = 3; i < u->Entry_GR + 3; i++)
- {
- /* Frame pointer gets saved into a special location. */
- if (u->Save_SP && i == FP_REGNUM)
- continue;
-
- save_gr |= (1 << i);
- }
-
- /* Turn the Entry_FR field into a bitmask too. */
- save_fr = 0;
- for (i = 12; i < u->Entry_FR + 12; i++)
- save_fr |= (1 << i);
-
- /* Loop until we find everything of interest or hit a branch.
-
- For unoptimized GCC code and for any HP CC code this will never ever
- examine any user instructions.
-
- For optimzied GCC code we're faced with problems. GCC will schedule
- its prologue and make prologue instructions available for delay slot
- filling. The end result is user code gets mixed in with the prologue
- and a prologue instruction may be in the delay slot of the first branch
- or call.
-
- Some unexpected things are expected with debugging optimized code, so
- we allow this routine to walk past user instructions in optimized
- GCC code. */
- while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
- || args_stored)
- {
- unsigned int reg_num;
- unsigned long old_stack_remaining, old_save_gr, old_save_fr;
- unsigned long old_save_rp, old_save_sp, next_inst;
-
- /* Save copies of all the triggers so we can compare them later
- (only for HPC). */
- old_save_gr = save_gr;
- old_save_fr = save_fr;
- old_save_rp = save_rp;
- old_save_sp = save_sp;
- old_stack_remaining = stack_remaining;
-
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return pc;
-
- /* Note the interesting effects of this instruction. */
- stack_remaining -= prologue_inst_adjust_sp (inst);
-
- /* There is only one instruction used for saving RP into the stack. */
- if (inst == 0x6bc23fd9)
- save_rp = 0;
-
- /* This is the only way we save SP into the stack. At this time
- the HP compilers never bother to save SP into the stack. */
- if ((inst & 0xffffc000) == 0x6fc10000)
- save_sp = 0;
-
- /* Account for general and floating-point register saves. */
- reg_num = inst_saves_gr (inst);
- save_gr &= ~(1 << reg_num);
-
- /* Ugh. Also account for argument stores into the stack.
- Unfortunately args_stored only tells us that some arguments
- where stored into the stack. Not how many or what kind!
-
- This is a kludge as on the HP compiler sets this bit and it
- never does prologue scheduling. So once we see one, skip past
- all of them. We have similar code for the fp arg stores below.
-
- FIXME. Can still die if we have a mix of GR and FR argument
- stores! */
- if (reg_num >= 23 && reg_num <= 26)
- {
- while (reg_num >= 23 && reg_num <= 26)
- {
- pc += 4;
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- reg_num = inst_saves_gr (inst);
- }
- args_stored = 0;
- continue;
- }
-
- reg_num = inst_saves_fr (inst);
- save_fr &= ~(1 << reg_num);
-
- status = target_read_memory (pc + 4, buf, 4);
- next_inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return pc;
-
- /* We've got to be read to handle the ldo before the fp register
- save. */
- if ((inst & 0xfc000000) == 0x34000000
- && inst_saves_fr (next_inst) >= 4
- && inst_saves_fr (next_inst) <= 7)
- {
- /* So we drop into the code below in a reasonable state. */
- reg_num = inst_saves_fr (next_inst);
- pc -= 4;
- }
-
- /* Ugh. Also account for argument stores into the stack.
- This is a kludge as on the HP compiler sets this bit and it
- never does prologue scheduling. So once we see one, skip past
- all of them. */
- if (reg_num >= 4 && reg_num <= 7)
- {
- while (reg_num >= 4 && reg_num <= 7)
- {
- pc += 8;
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- if ((inst & 0xfc000000) != 0x34000000)
- break;
- status = target_read_memory (pc + 4, buf, 4);
- next_inst = extract_unsigned_integer (buf, 4);
- if (status != 0)
- return pc;
- reg_num = inst_saves_fr (next_inst);
- }
- args_stored = 0;
- continue;
- }
-
- /* Quit if we hit any kind of branch. This can happen if a prologue
- instruction is in the delay slot of the first call/branch. */
- if (is_branch (inst))
- break;
-
- /* What a crock. The HP compilers set args_stored even if no
- arguments were stored into the stack (boo hiss). This could
- cause this code to then skip a bunch of user insns (up to the
- first branch).
-
- To combat this we try to identify when args_stored was bogusly
- set and clear it. We only do this when args_stored is nonzero,
- all other resources are accounted for, and nothing changed on
- this pass. */
- if (args_stored
- && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
- && old_save_gr == save_gr && old_save_fr == save_fr
- && old_save_rp == save_rp && old_save_sp == save_sp
- && old_stack_remaining == stack_remaining)
- break;
-
- /* Bump the PC. */
- pc += 4;
- }
-
- return pc;
- }
-
- /* Put here the code to store, into a struct frame_saved_regs,
- the addresses of the saved registers of frame described by FRAME_INFO.
- This includes special registers such as pc and fp saved in special
- ways in the stack frame. sp is even more special:
- the address we return for it IS the sp for the next frame. */
-
- void
- hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
- struct frame_info *frame_info;
- struct frame_saved_regs *frame_saved_regs;
- {
- CORE_ADDR pc;
- struct unwind_table_entry *u;
- unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
- int status, i, reg;
- char buf[4];
- int fp_loc = -1;
-
- /* Zero out everything. */
- memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
-
- /* Call dummy frames always look the same, so there's no need to
- examine the dummy code to determine locations of saved registers;
- instead, let find_dummy_frame_regs fill in the correct offsets
- for the saved registers. */
- if ((frame_info->pc >= frame_info->frame
- && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
- + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
- + 6 * 4)))
- find_dummy_frame_regs (frame_info, frame_saved_regs);
-
- /* Interrupt handlers are special too. They lay out the register
- state in the exact same order as the register numbers in GDB. */
- if (pc_in_interrupt_handler (frame_info->pc))
- {
- for (i = 0; i < NUM_REGS; i++)
- {
- /* SP is a little special. */
- if (i == SP_REGNUM)
- frame_saved_regs->regs[SP_REGNUM]
- = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
- else
- frame_saved_regs->regs[i] = frame_info->frame + i * 4;
- }
- return;
- }
-
- /* Handle signal handler callers. */
- if (frame_info->signal_handler_caller)
- {
- FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
- return;
- }
-
- /* Get the starting address of the function referred to by the PC
- saved in frame. */
- pc = get_pc_function_start (frame_info->pc);
-
- /* Yow! */
- u = find_unwind_entry (pc);
- if (!u)
- return;
-
- /* This is how much of a frame adjustment we need to account for. */
- stack_remaining = u->Total_frame_size << 3;
-
- /* Magic register saves we want to know about. */
- save_rp = u->Save_RP;
- save_sp = u->Save_SP;
-
- /* Turn the Entry_GR field into a bitmask. */
- save_gr = 0;
- for (i = 3; i < u->Entry_GR + 3; i++)
- {
- /* Frame pointer gets saved into a special location. */
- if (u->Save_SP && i == FP_REGNUM)
- continue;
-
- save_gr |= (1 << i);
- }
-
- /* Turn the Entry_FR field into a bitmask too. */
- save_fr = 0;
- for (i = 12; i < u->Entry_FR + 12; i++)
- save_fr |= (1 << i);
-
- /* The frame always represents the value of %sp at entry to the
- current function (and is thus equivalent to the "saved" stack
- pointer. */
- frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
-
- /* Loop until we find everything of interest or hit a branch.
-
- For unoptimized GCC code and for any HP CC code this will never ever
- examine any user instructions.
-
- For optimzied GCC code we're faced with problems. GCC will schedule
- its prologue and make prologue instructions available for delay slot
- filling. The end result is user code gets mixed in with the prologue
- and a prologue instruction may be in the delay slot of the first branch
- or call.
-
- Some unexpected things are expected with debugging optimized code, so
- we allow this routine to walk past user instructions in optimized
- GCC code. */
- while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
- {
- status = target_read_memory (pc, buf, 4);
- inst = extract_unsigned_integer (buf, 4);
-
- /* Yow! */
- if (status != 0)
- return;
-
- /* Note the interesting effects of this instruction. */
- stack_remaining -= prologue_inst_adjust_sp (inst);
-
- /* There is only one instruction used for saving RP into the stack. */
- if (inst == 0x6bc23fd9)
- {
- save_rp = 0;
- frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
- }
-
- /* Just note that we found the save of SP into the stack. The
- value for frame_saved_regs was computed above. */
- if ((inst & 0xffffc000) == 0x6fc10000)
- save_sp = 0;
-
- /* Account for general and floating-point register saves. */
- reg = inst_saves_gr (inst);
- if (reg >= 3 && reg <= 18
- && (!u->Save_SP || reg != FP_REGNUM))
- {
- save_gr &= ~(1 << reg);
-
- /* stwm with a positive displacement is a *post modify*. */
- if ((inst >> 26) == 0x1b
- && extract_14 (inst) >= 0)
- frame_saved_regs->regs[reg] = frame_info->frame;
- else
- {
- /* Handle code with and without frame pointers. */
- if (u->Save_SP)
- frame_saved_regs->regs[reg]
- = frame_info->frame + extract_14 (inst);
- else
- frame_saved_regs->regs[reg]
- = frame_info->frame + (u->Total_frame_size << 3)
- + extract_14 (inst);
- }
- }
-
-
- /* GCC handles callee saved FP regs a little differently.
-
- It emits an instruction to put the value of the start of
- the FP store area into %r1. It then uses fstds,ma with
- a basereg of %r1 for the stores.
-
- HP CC emits them at the current stack pointer modifying
- the stack pointer as it stores each register. */
-
- /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
- if ((inst & 0xffffc000) == 0x34610000
- || (inst & 0xffffc000) == 0x37c10000)
- fp_loc = extract_14 (inst);
-
- reg = inst_saves_fr (inst);
- if (reg >= 12 && reg <= 21)
- {
- /* Note +4 braindamage below is necessary because the FP status
- registers are internally 8 registers rather than the expected
- 4 registers. */
- save_fr &= ~(1 << reg);
- if (fp_loc == -1)
- {
- /* 1st HP CC FP register store. After this instruction
- we've set enough state that the GCC and HPCC code are
- both handled in the same manner. */
- frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
- fp_loc = 8;
- }
- else
- {
- frame_saved_regs->regs[reg + FP0_REGNUM + 4]
- = frame_info->frame + fp_loc;
- fp_loc += 8;
- }
- }
-
- /* Quit if we hit any kind of branch. This can happen if a prologue
- instruction is in the delay slot of the first call/branch. */
- if (is_branch (inst))
- break;
-
- /* Bump the PC. */
- pc += 4;
- }
- }
-
- #ifdef MAINTENANCE_CMDS
-
- static void
- unwind_command (exp, from_tty)
- char *exp;
- int from_tty;
- {
- CORE_ADDR address;
- union
- {
- int *foo;
- struct unwind_table_entry *u;
- } xxx;
-
- /* If we have an expression, evaluate it and use it as the address. */
-
- if (exp != 0 && *exp != 0)
- address = parse_and_eval_address (exp);
- else
- return;
-
- xxx.u = find_unwind_entry (address);
-
- if (!xxx.u)
- {
- printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
- return;
- }
-
- printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
- xxx.foo[3]);
- }
- #endif /* MAINTENANCE_CMDS */
-
- void
- _initialize_hppa_tdep ()
- {
- tm_print_insn = print_insn_hppa;
-
- #ifdef MAINTENANCE_CMDS
- add_cmd ("unwind", class_maintenance, unwind_command,
- "Print unwind table entry at given address.",
- &maintenanceprintlist);
- #endif /* MAINTENANCE_CMDS */
- }
-