home *** CD-ROM | disk | FTP | other *** search
/ Fresh Fish 9 / FreshFishVol9-CD2.bin / bbs / gnu / gdb-4.14-src.lha / gdb-4.14 / gdb / config / mips / tm-mips.h < prev    next >
Encoding:
C/C++ Source or Header  |  1995-01-18  |  18.1 KB  |  494 lines

  1. /* Definitions to make GDB run on a mips box under 4.3bsd.
  2.    Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
  3.    Free Software Foundation, Inc.
  4.    Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
  5.    and by Alessandro Forin (af@cs.cmu.edu) at CMU..
  6.  
  7. This file is part of GDB.
  8.  
  9. This program is free software; you can redistribute it and/or modify
  10. it under the terms of the GNU General Public License as published by
  11. the Free Software Foundation; either version 2 of the License, or
  12. (at your option) any later version.
  13.  
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17. GNU General Public License for more details.
  18.  
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the Free Software
  21. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
  22.  
  23. #include <bfd.h>
  24. #include "coff/sym.h"        /* Needed for PDR below.  */
  25. #include "coff/symconst.h"
  26.  
  27. #if !defined (TARGET_BYTE_ORDER)
  28. #define TARGET_BYTE_ORDER LITTLE_ENDIAN
  29. #endif
  30.  
  31. #if !defined (GDB_TARGET_IS_MIPS64)
  32. #define GDB_TARGET_IS_MIPS64 0
  33. #endif
  34.  
  35. /* Floating point is IEEE compliant */
  36. #define IEEE_FLOAT
  37.  
  38. /* Some MIPS boards are provided both with and without a floating
  39.    point coprocessor.  The MIPS R4650 chip has only single precision
  40.    floating point.  We provide a user settable variable to tell gdb
  41.    what type of floating point to use.  */
  42.  
  43. enum mips_fpu_type
  44. {
  45.   MIPS_FPU_DOUBLE,    /* Full double precision floating point.  */
  46.   MIPS_FPU_SINGLE,    /* Single precision floating point (R4650).  */
  47.   MIPS_FPU_NONE        /* No floating point.  */
  48. };
  49.  
  50. extern enum mips_fpu_type mips_fpu;
  51.  
  52. /* The name of the usual type of MIPS processor that is in the target
  53.    system.  */
  54.  
  55. #define DEFAULT_MIPS_TYPE "generic"
  56.  
  57. /* Offset from address of function to start of its code.
  58.    Zero on most machines.  */
  59.  
  60. #define FUNCTION_START_OFFSET 0
  61.  
  62. /* Advance PC across any function entry prologue instructions
  63.    to reach some "real" code.  */
  64.  
  65. #define SKIP_PROLOGUE(pc)    pc = mips_skip_prologue (pc, 0)
  66. extern CORE_ADDR mips_skip_prologue PARAMS ((CORE_ADDR addr, int lenient));
  67.  
  68. /* Return non-zero if PC points to an instruction which will cause a step
  69.    to execute both the instruction at PC and an instruction at PC+4.  */
  70. #define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
  71.  
  72. /* Immediately after a function call, return the saved pc.
  73.    Can't always go through the frames for this because on some machines
  74.    the new frame is not set up until the new function executes
  75.    some instructions.  */
  76.  
  77. #define SAVED_PC_AFTER_CALL(frame)    read_register(RA_REGNUM)
  78.  
  79. /* Are we currently handling a signal */
  80.  
  81. extern int in_sigtramp PARAMS ((CORE_ADDR, char *));
  82. #define IN_SIGTRAMP(pc, name)    in_sigtramp(pc, name)
  83.  
  84. /* Stack grows downward.  */
  85.  
  86. #define INNER_THAN <
  87.  
  88. #define BIG_ENDIAN 4321
  89. #if TARGET_BYTE_ORDER == BIG_ENDIAN
  90. #define BREAKPOINT {0, 0x5, 0, 0xd}
  91. #else
  92. #define BREAKPOINT {0xd, 0, 0x5, 0}
  93. #endif
  94.  
  95. /* Amount PC must be decremented by after a breakpoint.
  96.    This is often the number of bytes in BREAKPOINT
  97.    but not always.  */
  98.  
  99. #define DECR_PC_AFTER_BREAK 0
  100.  
  101. /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
  102.  
  103. #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
  104.  
  105. /* Say how long (ordinary) registers are.  This is a piece of bogosity
  106.    used in push_word and a few other places; REGISTER_RAW_SIZE is the
  107.    real way to know how big a register is.  */
  108.  
  109. #define REGISTER_SIZE 4
  110.  
  111. /* The size of a register.  This is predefined in tm-mips64.h.  We
  112.    can't use REGISTER_SIZE because that is used for various other
  113.    things.  */
  114.  
  115. #ifndef MIPS_REGSIZE
  116. #define MIPS_REGSIZE 4
  117. #endif
  118.  
  119. /* Number of machine registers */
  120.  
  121. #define NUM_REGS 90
  122.  
  123. /* Initializer for an array of names of registers.
  124.    There should be NUM_REGS strings in this initializer.  */
  125.  
  126. #define REGISTER_NAMES     \
  127.     {    "zero",    "at",    "v0",    "v1",    "a0",    "a1",    "a2",    "a3", \
  128.     "t0",    "t1",    "t2",    "t3",    "t4",    "t5",    "t6",    "t7", \
  129.     "s0",    "s1",    "s2",    "s3",    "s4",    "s5",    "s6",    "s7", \
  130.     "t8",    "t9",    "k0",    "k1",    "gp",    "sp",    "s8",    "ra", \
  131.     "sr",    "lo",    "hi",    "bad",    "cause","pc",    \
  132.     "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7", \
  133.     "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15", \
  134.     "f16",  "f17",  "f18",  "f19",  "f20",  "f21",  "f22",  "f23",\
  135.     "f24",  "f25",  "f26",  "f27",  "f28",  "f29",  "f30",  "f31",\
  136.     "fsr",  "fir",  "fp",    "", \
  137.     "",    "",    "",    "",    "",    "",    "",    "", \
  138.     "",    "",    "",    "",    "",    "",    "",    "", \
  139.     }
  140.  
  141. /* Register numbers of various important registers.
  142.    Note that some of these values are "real" register numbers,
  143.    and correspond to the general registers of the machine,
  144.    and some are "phony" register numbers which are too large
  145.    to be actual register numbers as far as the user is concerned
  146.    but do serve to get the desired values when passed to read_register.  */
  147.  
  148. #define ZERO_REGNUM 0        /* read-only register, always 0 */
  149. #define V0_REGNUM 2        /* Function integer return value */
  150. #define A0_REGNUM 4        /* Loc of first arg during a subr call */
  151. #define SP_REGNUM 29        /* Contains address of top of stack */
  152. #define RA_REGNUM 31        /* Contains return address value */
  153. #define PS_REGNUM 32        /* Contains processor status */
  154. #define HI_REGNUM 34            /* Multiple/divide temp */
  155. #define LO_REGNUM 33            /* ... */
  156. #define BADVADDR_REGNUM 35    /* bad vaddr for addressing exception */
  157. #define CAUSE_REGNUM 36        /* describes last exception */
  158. #define PC_REGNUM 37        /* Contains program counter */
  159. #define FP0_REGNUM 38           /* Floating point register 0 (single float) */
  160. #define FCRCS_REGNUM 70         /* FP control/status */
  161. #define FCRIR_REGNUM 71         /* FP implementation/revision */
  162. #define FP_REGNUM 72        /* Pseudo register that contains true address of executing stack frame */
  163. #define    FIRST_EMBED_REGNUM 74    /* First CP0 register for embedded use */
  164. #define    PRID_REGNUM 89        /* Processor ID */
  165. #define    LAST_EMBED_REGNUM 89    /* Last one */
  166.  
  167. /* Define DO_REGISTERS_INFO() to do machine-specific formatting
  168.    of register dumps. */
  169.  
  170. #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
  171.  
  172. /* Total amount of space needed to store our copies of the machine's
  173.    register state, the array `registers'.  */
  174.  
  175. #define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
  176.  
  177. /* Index within `registers' of the first byte of the space for
  178.    register N.  */
  179.  
  180. #define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
  181.  
  182. /* Number of bytes of storage in the actual machine representation
  183.    for register N.  On mips, all regs are the same size.  */
  184.  
  185. #define REGISTER_RAW_SIZE(N) MIPS_REGSIZE
  186.  
  187. /* Number of bytes of storage in the program's representation
  188.    for register N.  On mips, all regs are the same size.  */
  189.  
  190. #define REGISTER_VIRTUAL_SIZE(N) MIPS_REGSIZE
  191.  
  192. /* Largest value REGISTER_RAW_SIZE can have.  */
  193.  
  194. #define MAX_REGISTER_RAW_SIZE 8
  195.  
  196. /* Largest value REGISTER_VIRTUAL_SIZE can have.  */
  197.  
  198. #define MAX_REGISTER_VIRTUAL_SIZE 8
  199.  
  200. /* Return the GDB type object for the "standard" data type
  201.    of data in register N.  */
  202.  
  203. #ifndef REGISTER_VIRTUAL_TYPE
  204. #define REGISTER_VIRTUAL_TYPE(N) \
  205.     (((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32)  \
  206.      ? builtin_type_float : builtin_type_int)
  207. #endif
  208.  
  209. #if HOST_BYTE_ORDER == BIG_ENDIAN
  210. /* All mips targets store doubles in a register pair with the least
  211.    significant register in the lower numbered register.
  212.    If the host is big endian, double register values need conversion between
  213.    memory and register formats.  */
  214.  
  215. #define REGISTER_CONVERT_TO_TYPE(n, type, buffer)            \
  216.   do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 &&         \
  217.       TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
  218.         char __temp[4];                            \
  219.     memcpy (__temp, ((char *)(buffer))+4, 4);            \
  220.     memcpy (((char *)(buffer))+4, (buffer), 4);             \
  221.     memcpy (((char *)(buffer)), __temp, 4); }} while (0)
  222.  
  223. #define REGISTER_CONVERT_FROM_TYPE(n, type, buffer)            \
  224.   do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 &&            \
  225.       TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
  226.         char __temp[4];                            \
  227.     memcpy (__temp, ((char *)(buffer))+4, 4);            \
  228.     memcpy (((char *)(buffer))+4, (buffer), 4);             \
  229.     memcpy (((char *)(buffer)), __temp, 4); }} while (0)
  230. #endif
  231.  
  232. /* Store the address of the place in which to copy the structure the
  233.    subroutine will return.  Handled by mips_push_arguments.  */
  234.  
  235. #define STORE_STRUCT_RETURN(addr, sp)    /**/
  236.  
  237. /* Extract from an array REGBUF containing the (raw) register state
  238.    a function return value of type TYPE, and copy that, in virtual format,
  239.    into VALBUF.  XXX floats */
  240.  
  241. #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
  242.   mips_extract_return_value(TYPE, REGBUF, VALBUF)
  243.  
  244. /* Write into appropriate registers a function return value
  245.    of type TYPE, given in virtual format.  */
  246.  
  247. #define STORE_RETURN_VALUE(TYPE,VALBUF) \
  248.   mips_store_return_value(TYPE, VALBUF)
  249.  
  250. /* Extract from an array REGBUF containing the (raw) register state
  251.    the address in which a function should return its structure value,
  252.    as a CORE_ADDR (or an expression that can be used as one).  */
  253. /* The address is passed in a0 upon entry to the function, but when
  254.    the function exits, the compiler has copied the value to v0.  This
  255.    convention is specified by the System V ABI, so I think we can rely
  256.    on it.  */
  257.  
  258. #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
  259.   (extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
  260.             REGISTER_RAW_SIZE (V0_REGNUM)))
  261.  
  262. /* Structures are returned by ref in extra arg0 */
  263. #define USE_STRUCT_CONVENTION(gcc_p, type)    1
  264.  
  265.  
  266. /* Describe the pointer in each stack frame to the previous stack frame
  267.    (its caller).  */
  268.  
  269. /* FRAME_CHAIN takes a frame's nominal address
  270.    and produces the frame's chain-pointer. */
  271.  
  272. #define FRAME_CHAIN(thisframe) (CORE_ADDR) mips_frame_chain (thisframe)
  273.  
  274. /* Define other aspects of the stack frame.  */
  275.  
  276.  
  277. /* A macro that tells us whether the function invocation represented
  278.    by FI does not have a frame on the stack associated with it.  If it
  279.    does not, FRAMELESS is set to 1, else 0.  */
  280. /* We handle this differently for mips, and maybe we should not */
  281.  
  282. #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS)  {(FRAMELESS) = 0;}
  283.  
  284. /* Saved Pc.  */
  285.  
  286. #define FRAME_SAVED_PC(FRAME)    (mips_frame_saved_pc(FRAME))
  287.  
  288. #define FRAME_ARGS_ADDRESS(fi)    (fi)->frame
  289.  
  290. #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
  291.  
  292. /* Return number of args passed to a frame.
  293.    Can return -1, meaning no way to tell.  */
  294.  
  295. #define FRAME_NUM_ARGS(num, fi)    (num = mips_frame_num_args(fi))
  296.  
  297. /* Return number of bytes at start of arglist that are not really args.  */
  298.  
  299. #define FRAME_ARGS_SKIP 0
  300.  
  301. /* Put here the code to store, into a struct frame_saved_regs,
  302.    the addresses of the saved registers of frame described by FRAME_INFO.
  303.    This includes special registers such as pc and fp saved in special
  304.    ways in the stack frame.  sp is even more special:
  305.    the address we return for it IS the sp for the next frame.  */
  306.  
  307. #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
  308.   do { \
  309.     if ((frame_info)->saved_regs == NULL) \
  310.       mips_find_saved_regs (frame_info); \
  311.     (frame_saved_regs) = *(frame_info)->saved_regs; \
  312.     (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame; \
  313.   } while (0)
  314.  
  315.  
  316. /* Things needed for making the inferior call functions.  */
  317.  
  318. /* Stack has strict alignment. However, use PUSH_ARGUMENTS
  319.    to take care of it. */
  320. /*#define STACK_ALIGN(addr)    (((addr)+3)&~3)*/
  321.  
  322. #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
  323.     sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
  324.  
  325. /* Push an empty stack frame, to record the current PC, etc.  */
  326.  
  327. #define PUSH_DUMMY_FRAME     mips_push_dummy_frame()
  328.  
  329. /* Discard from the stack the innermost frame, restoring all registers.  */
  330.  
  331. #define POP_FRAME        mips_pop_frame()
  332.  
  333. #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
  334. #ifndef OP_LDFPR
  335. #define OP_LDFPR 061    /* lwc1 */
  336. #endif
  337. #ifndef OP_LDGPR
  338. #define OP_LDGPR 043    /* lw */
  339. #endif
  340. #define CALL_DUMMY_SIZE (16*4)
  341. #define Dest_Reg 2
  342. #define CALL_DUMMY {\
  343.  MK_OP(0,RA_REGNUM,0,8),    /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
  344.  0,                /* nop       #  ... to stop raw backtrace*/\
  345.  0x27bd0000,            /* addu    sp,?0 # Pseudo prologue */\
  346. /* Start here; reload FP regs, then GP regs: */\
  347.  MK_OP(OP_LDFPR,SP_REGNUM,12,0             ), /* l[wd]c1 $f12,0(sp) */\
  348.  MK_OP(OP_LDFPR,SP_REGNUM,13,  MIPS_REGSIZE), /* l[wd]c1 $f13,{4,8}(sp) */\
  349.  MK_OP(OP_LDFPR,SP_REGNUM,14,2*MIPS_REGSIZE), /* l[wd]c1 $f14,{8,16}(sp) */\
  350.  MK_OP(OP_LDFPR,SP_REGNUM,15,3*MIPS_REGSIZE), /* l[wd]c1 $f15,{12,24}(sp) */\
  351.  MK_OP(OP_LDGPR,SP_REGNUM, 4,0             ), /* l[wd] $r4,0(sp) */\
  352.  MK_OP(OP_LDGPR,SP_REGNUM, 5,  MIPS_REGSIZE), /* l[wd] $r5,{4,8}(sp) */\
  353.  MK_OP(OP_LDGPR,SP_REGNUM, 6,2*MIPS_REGSIZE), /* l[wd] $r6,{8,16}(sp) */\
  354.  MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
  355.  (017<<26)| (Dest_Reg << 16),    /* lui $r31,<target upper 16 bits>*/\
  356.  MK_OP(13,Dest_Reg,Dest_Reg,0),    /* ori $r31,$r31,<lower 16 bits>*/ \
  357.  (Dest_Reg<<21) | (31<<11) | 9,    /* jalr $r31 */\
  358.  MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
  359.  0x5000d,            /* bpt */\
  360. }
  361.  
  362. #define CALL_DUMMY_START_OFFSET 12
  363.  
  364. #define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (12 * 4))
  365.  
  366. /* Insert the specified number of args and function address
  367.    into a call sequence of the above form stored at DUMMYNAME.  */
  368.  
  369. /* For big endian mips machines we need to switch the order of the
  370.    words with a floating-point value (it was already coerced to a double
  371.    by mips_push_arguments).  */
  372. #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
  373.   do                                    \
  374.     {                                    \
  375.       store_unsigned_integer                        \
  376.     (dummyname + 11 * 4, 4,                        \
  377.      (extract_unsigned_integer (dummyname + 11 * 4, 4)        \
  378.       | (((fun) >> 16) & 0xffff)));                    \
  379.       store_unsigned_integer                        \
  380.     (dummyname + 12 * 4, 4,                        \
  381.      (extract_unsigned_integer (dummyname + 12 * 4, 4)        \
  382.       | ((fun) & 0xffff)));                        \
  383.       if (mips_fpu == MIPS_FPU_NONE)                    \
  384.     {                                \
  385.       store_unsigned_integer (dummyname + 3 * 4, 4,            \
  386.                   (unsigned LONGEST) 0);        \
  387.       store_unsigned_integer (dummyname + 4 * 4, 4,            \
  388.                   (unsigned LONGEST) 0);        \
  389.       store_unsigned_integer (dummyname + 5 * 4, 4,            \
  390.                   (unsigned LONGEST) 0);        \
  391.       store_unsigned_integer (dummyname + 6 * 4, 4,            \
  392.                   (unsigned LONGEST) 0);        \
  393.     }                                \
  394.       else if (mips_fpu == MIPS_FPU_SINGLE)                \
  395.     {                                \
  396.       /* This isn't right.  mips_push_arguments will call        \
  397.              value_arg_coerce, which will convert all float arguments    \
  398.              to doubles.  If the function prototype is float, though,    \
  399.              it will be expecting a float argument in a float        \
  400.              register.  */                        \
  401.       store_unsigned_integer (dummyname + 4 * 4, 4,            \
  402.                   (unsigned LONGEST) 0);        \
  403.       store_unsigned_integer (dummyname + 6 * 4, 4,            \
  404.                   (unsigned LONGEST) 0);        \
  405.     }                                \
  406.       else if (TARGET_BYTE_ORDER == BIG_ENDIAN                \
  407.            && ! GDB_TARGET_IS_MIPS64)                \
  408.     {                                \
  409.       if (nargs > 0                            \
  410.           && TYPE_CODE (VALUE_TYPE (args[0])) == TYPE_CODE_FLT)    \
  411.         {                                \
  412.           if (TYPE_LENGTH (VALUE_TYPE (args[0])) > 8)        \
  413.         error ("floating point value too large to pass to function");\
  414.           store_unsigned_integer                    \
  415.         (dummyname + 3 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 12, 4));\
  416.           store_unsigned_integer                    \
  417.         (dummyname + 4 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 13, 0));\
  418.         }                                \
  419.       if (nargs > 1                            \
  420.           && TYPE_CODE (VALUE_TYPE (args[1])) == TYPE_CODE_FLT)    \
  421.         {                                \
  422.           if (TYPE_LENGTH (VALUE_TYPE (args[1])) > 8)        \
  423.         error ("floating point value too large to pass to function");\
  424.           store_unsigned_integer                    \
  425.         (dummyname + 5 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 14, 12));\
  426.           store_unsigned_integer                    \
  427.         (dummyname + 6 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 15, 8));\
  428.         }                                \
  429.     }                                \
  430.     }                                    \
  431.   while (0)
  432.  
  433. /* There's a mess in stack frame creation.  See comments in blockframe.c
  434.    near reference to INIT_FRAME_PC_FIRST.  */
  435.  
  436. #define    INIT_FRAME_PC(fromleaf, prev) /* nada */
  437.  
  438. #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
  439.   (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
  440.           (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
  441.  
  442. /* Special symbol found in blocks associated with routines.  We can hang
  443.    mips_extra_func_info_t's off of this.  */
  444.  
  445. #define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
  446.  
  447. /* Specific information about a procedure.
  448.    This overlays the MIPS's PDR records, 
  449.    mipsread.c (ab)uses this to save memory */
  450.  
  451. typedef struct mips_extra_func_info {
  452.     long    numargs;    /* number of args to procedure (was iopt) */
  453.     PDR    pdr;        /* Procedure descriptor record */
  454. } *mips_extra_func_info_t;
  455.  
  456. #define EXTRA_FRAME_INFO \
  457.   mips_extra_func_info_t proc_desc; \
  458.   int num_args;\
  459.   struct frame_saved_regs *saved_regs;
  460.  
  461. #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
  462.  
  463. #define    PRINT_EXTRA_FRAME_INFO(fi) \
  464.   { \
  465.     if (fi && fi->proc_desc && fi->proc_desc->pdr.framereg < NUM_REGS) \
  466.       printf_filtered (" frame pointer is at %s+%d\n", \
  467.                        reg_names[fi->proc_desc->pdr.framereg], \
  468.                                  fi->proc_desc->pdr.frameoffset); \
  469.   }
  470.  
  471. /* It takes two values to specify a frame on the MIPS.
  472.  
  473.    In fact, the *PC* is the primary value that sets up a frame.  The
  474.    PC is looked up to see what function it's in; symbol information
  475.    from that function tells us which register is the frame pointer
  476.    base, and what offset from there is the "virtual frame pointer".
  477.    (This is usually an offset from SP.)  On most non-MIPS machines,
  478.    the primary value is the SP, and the PC, if needed, disambiguates
  479.    multiple functions with the same SP.  But on the MIPS we can't do
  480.    that since the PC is not stored in the same part of the frame every
  481.    time.  This does not seem to be a very clever way to set up frames,
  482.    but there is nothing we can do about that).  */
  483.  
  484. #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
  485. extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
  486.  
  487. /* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
  488.  
  489. #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
  490.  
  491. /* Convert a ecoff register number to a gdb REGNUM */
  492.  
  493. #define ECOFF_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)
  494.