home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-03-28 | 19.1 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| file
| data
| default
| |
100%
| xdgMime
| image/x-tga
| default
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 0d 00 0a 11 f4 20 3e 20 | 42 65 7a 69 65 72 46 69 |..... > |BezierFi|
|00000010| 74 0d 00 14 0d f4 20 20 | 20 56 31 2e 30 30 0d 00 |t..... | V1.00..|
|00000020| 1e 4d f4 20 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |.M. ----|--------|
|00000030| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000040| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000050| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000060| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 0d 00 28 4c f4 |--------|---..(L.|
|00000070| 20 54 68 69 73 20 70 72 | 6f 67 72 61 6d 20 67 65 | This pr|ogram ge|
|00000080| 6e 65 72 61 74 65 73 20 | 61 20 62 65 7a 69 65 72 |nerates |a bezier|
|00000090| 20 63 75 72 76 65 20 28 | 63 6f 6e 74 61 69 6e 69 | curve (|containi|
|000000a0| 6e 67 20 6f 6e 65 20 6f | 72 20 6d 6f 72 65 20 73 |ng one o|r more s|
|000000b0| 65 67 6d 65 6e 74 73 0d | 00 32 4d f4 20 61 73 20 |egments.|.2M. as |
|000000c0| 72 65 71 75 69 72 65 64 | 29 20 66 72 6f 6d 20 61 |required|) from a|
|000000d0| 20 75 73 65 72 2d 73 75 | 70 70 6c 69 65 64 20 66 | user-su|pplied f|
|000000e0| 75 6e 63 74 69 6f 6e 20 | 73 75 63 68 20 61 73 20 |unction |such as |
|000000f0| 79 20 3d 20 53 51 52 28 | 78 29 20 61 6e 64 20 6c |y = SQR(|x) and l|
|00000100| 6f 77 65 72 0d 00 3c 4b | f4 20 26 20 75 70 70 65 |ower..<K|. & uppe|
|00000110| 72 20 6c 69 6d 69 74 73 | 20 66 6f 72 20 78 2e 20 |r limits| for x. |
|00000120| 53 65 76 65 6e 74 65 65 | 6e 20 65 78 61 6d 70 6c |Seventee|n exampl|
|00000130| 65 73 20 28 73 65 6c 65 | 63 74 65 64 20 62 79 20 |es (sele|cted by |
|00000140| 74 68 65 20 61 72 67 75 | 6d 65 6e 74 20 74 6f 0d |the argu|ment to.|
|00000150| 00 46 4d f4 20 50 52 4f | 43 73 65 74 5f 75 70 5f |.FM. PRO|Cset_up_|
|00000160| 65 78 61 6d 70 6c 65 29 | 20 61 72 65 20 64 65 66 |example)| are def|
|00000170| 69 6e 65 64 20 62 65 6c | 6f 77 20 72 61 6e 67 69 |ined bel|ow rangi|
|00000180| 6e 67 20 66 72 6f 6d 20 | 76 65 72 79 20 73 69 6d |ng from |very sim|
|00000190| 70 6c 65 20 74 6f 20 71 | 75 69 74 65 0d 00 50 4e |ple to q|uite..PN|
|000001a0| f4 20 63 6f 6d 70 6c 65 | 78 20 63 75 72 76 65 73 |. comple|x curves|
|000001b0| 2e 20 49 6e 69 74 69 61 | 6c 6c 79 20 74 68 65 20 |. Initia|lly the |
|000001c0| 27 74 72 75 65 27 20 63 | 75 72 76 65 20 69 73 20 |'true' c|urve is |
|000001d0| 64 72 61 77 6e 20 69 6e | 20 67 72 65 65 6e 20 75 |drawn in| green u|
|000001e0| 73 69 6e 67 20 73 68 6f | 72 74 0d 00 5a 49 f4 20 |sing sho|rt..ZI. |
|000001f0| 73 74 72 61 69 67 68 74 | 2d 6c 69 6e 65 20 73 65 |straight|-line se|
|00000200| 67 6d 65 6e 74 73 20 77 | 69 74 68 20 65 6e 64 2d |gments w|ith end-|
|00000210| 70 6f 69 6e 74 73 20 63 | 61 6c 63 75 6c 61 74 65 |points c|alculate|
|00000220| 64 20 62 79 20 65 76 61 | 6c 75 61 74 69 6e 67 20 |d by eva|luating |
|00000230| 74 68 65 0d 00 64 4d f4 | 20 66 75 6e 63 74 69 6f |the..dM.| functio|
|00000240| 6e 20 61 74 20 73 74 65 | 70 73 20 62 65 74 77 65 |n at ste|ps betwe|
|00000250| 65 6e 20 78 6d 69 6e 20 | 61 6e 64 20 78 6d 61 78 |en xmin |and xmax|
|00000260| 2e 20 54 68 65 6e 20 74 | 68 65 20 62 65 7a 69 65 |. Then t|he bezie|
|00000270| 72 20 63 75 72 76 65 20 | 69 73 20 64 72 61 77 6e |r curve |is drawn|
|00000280| 0d 00 6e 44 f4 20 6f 6e | 20 74 6f 70 20 6f 66 20 |..nD. on| top of |
|00000290| 74 68 69 73 20 69 6e 20 | 72 65 64 20 28 6f 62 76 |this in |red (obv|
|000002a0| 69 6f 75 73 6c 79 20 74 | 68 65 79 20 73 68 6f 75 |iously t|hey shou|
|000002b0| 6c 64 20 62 65 20 73 75 | 70 65 72 69 6d 70 6f 73 |ld be su|perimpos|
|000002c0| 65 64 29 2e 0d 00 78 05 | f4 0d 00 82 4d f4 20 41 |ed)...x.|....M. A|
|000002d0| 20 62 72 69 65 66 20 65 | 78 70 6c 61 6e 61 74 69 | brief e|xplanati|
|000002e0| 6f 6e 20 6f 66 20 70 61 | 72 61 6d 65 74 65 72 73 |on of pa|rameters|
|000002f0| 20 65 74 63 20 61 70 70 | 65 61 72 73 20 62 65 66 | etc app|ears bef|
|00000300| 6f 72 65 20 65 61 63 68 | 20 70 72 6f 63 65 64 75 |ore each| procedu|
|00000310| 72 65 20 61 6e 64 0d 00 | 8c 1a f4 20 66 75 6e 63 |re and..|... func|
|00000320| 74 69 6f 6e 20 64 65 66 | 69 6e 69 74 69 6f 6e 2e |tion def|inition.|
|00000330| 0d 00 96 05 f4 0d 00 a0 | 3d f4 20 57 69 74 68 6f |........|=. Witho|
|00000340| 75 74 20 63 6f 6d 6d 65 | 6e 74 73 20 26 20 65 78 |ut comme|nts & ex|
|00000350| 61 6d 70 6c 65 73 20 69 | 74 27 73 20 6f 6e 6c 79 |amples i|t's only|
|00000360| 20 61 62 6f 75 74 20 34 | 2e 35 6b 62 20 6c 6f 6e | about 4|.5kb lon|
|00000370| 67 2e 0d 00 aa 4d f4 20 | 2d 2d 2d 2d 2d 2d 2d 2d |g....M. |--------|
|00000380| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000390| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000003a0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000003b0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 0d |--------|-------.|
|000003c0| 00 b4 1a f4 20 a9 20 4a | 61 6d 65 73 20 4d 63 51 |.... . J|ames McQ|
|000003d0| 75 65 65 6e 20 31 39 39 | 36 0d 00 be 4d f4 20 2d |ueen 199|6...M. -|
|000003e0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|000003f0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000400| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000410| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------|
|00000420| 2d 2d 2d 2d 2d 2d 0d 00 | c8 04 0d 00 d2 12 ee 20 |------..|....... |
|00000430| 85 20 f2 65 72 72 6f 72 | 20 3a 20 e0 0d 00 dc 04 |. .error| : .....|
|00000440| 0d 00 e6 22 de 20 64 66 | 5f 62 75 66 66 25 20 28 |...". df|_buff% (|
|00000450| 33 32 3c 3c 31 30 29 20 | 3a 20 66 70 6f 25 20 3d |32<<10) |: fpo% =|
|00000460| 20 30 0d 00 f0 04 0d 00 | fa 24 f4 20 41 63 74 75 | 0......|.$. Actu|
|00000470| 61 6c 20 70 6c 6f 74 20 | 61 72 65 61 20 73 69 7a |al plot |area siz|
|00000480| 65 20 28 69 6e 20 6d 6d | 29 2e 0d 01 04 04 0d 01 |e (in mm|).......|
|00000490| 0e 1c 61 78 6d 69 6e 20 | 3d 20 33 30 20 3a 20 61 |..axmin |= 30 : a|
|000004a0| 78 6d 61 78 20 3d 20 31 | 38 30 0d 01 18 1c 61 79 |xmax = 1|80....ay|
|000004b0| 6d 69 6e 20 3d 20 33 30 | 20 3a 20 61 79 6d 61 78 |min = 30| : aymax|
|000004c0| 20 3d 20 31 38 30 0d 01 | 22 04 0d 01 2c 48 f4 20 | = 180..|"...,H. |
|000004d0| 44 65 63 6c 61 72 65 20 | 67 6c 6f 62 61 6c 20 76 |Declare |global v|
|000004e0| 61 72 69 61 62 6c 65 73 | 20 61 6e 64 20 73 65 74 |ariables| and set|
|000004f0| 20 75 70 20 74 68 65 20 | 65 78 61 6d 70 6c 65 20 | up the |example |
|00000500| 28 65 78 61 6d 70 6c 65 | 73 20 31 2d 31 37 20 61 |(example|s 1-17 a|
|00000510| 72 65 0d 01 36 15 f4 20 | 64 65 66 69 6e 65 64 20 |re..6.. |defined |
|00000520| 62 65 6c 6f 77 29 2e 0d | 01 40 04 0d 01 4a 21 66 |below)..|.@...J!f|
|00000530| 75 6e 63 5f 78 6d 69 6e | 20 3d 20 30 20 3a 20 66 |unc_xmin| = 0 : f|
|00000540| 75 6e 63 5f 78 6d 61 78 | 20 3d 20 30 0d 01 54 33 |unc_xmax| = 0..T3|
|00000550| 66 75 6e 63 5f 79 6d 69 | 6e 20 3d 20 30 20 3a 20 |func_ymi|n = 0 : |
|00000560| 66 75 6e 63 5f 79 6d 61 | 78 20 3d 20 30 20 3a 20 |func_yma|x = 0 : |
|00000570| 66 75 6e 63 5f 79 6c 69 | 6d 69 74 20 3d 20 30 0d |func_yli|mit = 0.|
|00000580| 01 5e 1e 66 75 6e 63 74 | 69 6f 6e 24 20 3d 20 22 |.^.funct|ion$ = "|
|00000590| 22 20 3a 20 6e 73 65 67 | 25 20 3d 20 30 0d 01 68 |" : nseg|% = 0..h|
|000005a0| 04 0d 01 72 17 f2 73 65 | 74 5f 75 70 5f 65 78 61 |...r..se|t_up_exa|
|000005b0| 6d 70 6c 65 28 31 32 29 | 0d 01 7c 04 0d 01 86 15 |mple(12)|..|.....|
|000005c0| c8 99 20 22 48 6f 75 72 | 67 6c 61 73 73 5f 4f 6e |.. "Hour|glass_On|
|000005d0| 22 0d 01 90 4f c8 99 20 | 22 44 46 5f 49 6e 69 74 |"...O.. |"DF_Init|
|000005e0| 69 61 6c 69 73 65 46 69 | 6c 65 22 2c 20 31 2c 20 |ialiseFi|le", 1, |
|000005f0| 64 66 5f 62 75 66 66 25 | 2c 2c 28 33 32 3c 3c 31 |df_buff%|,,(32<<1|
|00000600| 30 29 2c 20 22 42 65 7a | 46 69 74 22 2c 20 26 35 |0), "Bez|Fit", &5|
|00000610| 30 31 2c 20 30 2c 20 34 | 20 b8 2c 2c 66 70 6f 25 |01, 0, 4| .,,fpo%|
|00000620| 0d 01 9a 04 0d 01 a4 2f | f4 20 3d 3d 3d 3d 3d 3d |......./|. ======|
|00000630| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000640| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000650| 3d 3d 3d 0d 01 ae 04 0d | 01 b8 3a f4 20 64 72 61 |===.....|..:. dra|
|00000660| 77 20 62 6f 78 20 61 72 | 6f 75 6e 64 20 70 6c 6f |w box ar|ound plo|
|00000670| 74 20 61 72 65 61 20 28 | 69 6e 20 67 72 65 79 29 |t area (|in grey)|
|00000680| 20 61 6e 64 20 61 64 64 | 20 61 20 6c 61 62 65 6c | and add| a label|
|00000690| 2e 0d 01 c2 04 0d 01 cc | 4b c8 99 20 22 44 46 5f |........|K.. "DF_|
|000006a0| 50 61 74 68 53 74 61 72 | 74 22 2c 20 31 2c 20 64 |PathStar|t", 1, d|
|000006b0| 66 5f 62 75 66 66 25 2c | 20 66 70 6f 25 2c 20 26 |f_buff%,| fpo%, &|
|000006c0| 44 44 44 44 44 44 30 30 | 2c 20 2d 31 2c 20 30 2c |DDDDDD00|, -1, 0,|
|000006d0| 20 30 2c 20 30 2c 20 30 | 20 b8 2c 2c 66 70 6f 25 | 0, 0, 0| .,,fpo%|
|000006e0| 0d 01 d6 3d c8 99 20 22 | 44 46 5f 50 61 74 68 4d |...=.. "|DF_PathM|
|000006f0| 6f 76 65 22 2c 20 31 2c | 20 64 66 5f 62 75 66 66 |ove", 1,| df_buff|
|00000700| 25 2c 20 66 70 6f 25 2c | 2c 61 78 6d 69 6e 2c 20 |%, fpo%,|,axmin, |
|00000710| 61 79 6d 69 6e 20 b8 2c | 2c 66 70 6f 25 0d 01 e0 |aymin .,|,fpo%...|
|00000720| 3d c8 99 20 22 44 46 5f | 50 61 74 68 44 72 61 77 |=.. "DF_|PathDraw|
|00000730| 22 2c 20 31 2c 20 64 66 | 5f 62 75 66 66 25 2c 20 |", 1, df|_buff%, |
|00000740| 66 70 6f 25 2c 2c 61 78 | 6d 61 78 2c 20 61 79 6d |fpo%,,ax|max, aym|
|00000750| 69 6e 20 b8 2c 2c 66 70 | 6f 25 0d 01 ea 3d c8 99 |in .,,fp|o%...=..|
|00000760| 20 22 44 46 5f 50 61 74 | 68 44 72 61 77 22 2c 20 | "DF_Pat|hDraw", |
|00000770| 31 2c 20 64 66 5f 62 75 | 66 66 25 2c 20 66 70 6f |1, df_bu|ff%, fpo|
|00000780| 25 2c 2c 61 78 6d 61 78 | 2c 20 61 79 6d 61 78 20 |%,,axmax|, aymax |
|00000790| b8 2c 2c 66 70 6f 25 0d | 01 f4 3d c8 99 20 22 44 |.,,fpo%.|..=.. "D|
|000007a0| 46 5f 50 61 74 68 44 72 | 61 77 22 2c 20 31 2c 20 |F_PathDr|aw", 1, |
|000007b0| 64 66 5f 62 75 66 66 25 | 2c 20 66 70 6f 25 2c 2c |df_buff%|, fpo%,,|
|000007c0| 61 78 6d 69 6e 2c 20 61 | 79 6d 61 78 20 b8 2c 2c |axmin, a|ymax .,,|
|000007d0| 66 70 6f 25 0d 01 fe 3d | c8 99 20 22 44 46 5f 50 |fpo%...=|.. "DF_P|
|000007e0| 61 74 68 44 72 61 77 22 | 2c 20 31 2c 20 64 66 5f |athDraw"|, 1, df_|
|000007f0| 62 75 66 66 25 2c 20 66 | 70 6f 25 2c 2c 61 78 6d |buff%, f|po%,,axm|
|00000800| 69 6e 2c 20 61 79 6d 69 | 6e 20 b8 2c 2c 66 70 6f |in, aymi|n .,,fpo|
|00000810| 25 0d 02 08 30 c8 99 20 | 22 44 46 5f 50 61 74 68 |%...0.. |"DF_Path|
|00000820| 43 6c 6f 73 65 22 2c 20 | 31 2c 20 64 66 5f 62 75 |Close", |1, df_bu|
|00000830| 66 66 25 2c 20 66 70 6f | 25 20 b8 2c 2c 66 70 6f |ff%, fpo|% .,,fpo|
|00000840| 25 0d 02 12 2e c8 99 20 | 22 44 46 5f 50 61 74 68 |%...... |"DF_Path|
|00000850| 45 6e 64 22 2c 20 35 2c | 20 64 66 5f 62 75 66 66 |End", 5,| df_buff|
|00000860| 25 2c 20 66 70 6f 25 20 | b8 2c 2c 66 70 6f 25 0d |%, fpo% |.,,fpo%.|
|00000870| 02 1c 04 0d 02 26 2f f2 | 70 75 74 5f 6c 61 62 65 |.....&/.|put_labe|
|00000880| 6c 28 66 75 6e 63 5f 78 | 6d 69 6e 2c 20 66 75 6e |l(func_x|min, fun|
|00000890| 63 5f 78 6d 61 78 2c 20 | 66 75 6e 63 74 69 6f 6e |c_xmax, |function|
|000008a0| 24 29 0d 02 30 04 0d 02 | 3a 2f f4 20 3d 3d 3d 3d |$)..0...|:/. ====|
|000008b0| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|000008c0| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|000008d0| 3d 3d 3d 3d 3d 0d 02 44 | 04 0d 02 4e 46 f4 20 44 |=====..D|...NF. D|
|000008e0| 72 61 77 20 74 68 65 20 | 27 74 72 75 65 27 20 63 |raw the |'true' c|
|000008f0| 75 72 76 65 20 69 6e 20 | 67 72 65 65 6e 20 75 73 |urve in |green us|
|00000900| 69 6e 67 20 6c 6f 74 73 | 20 6f 66 20 73 68 6f 72 |ing lots| of shor|
|00000910| 74 20 73 74 72 61 69 67 | 68 74 2d 6c 69 6e 65 0d |t straig|ht-line.|
|00000920| 02 58 0f f4 20 73 65 67 | 6d 65 6e 74 73 2e 0d 02 |.X.. seg|ments...|
|00000930| 62 04 0d 02 6c 4b c8 99 | 20 22 44 46 5f 50 61 74 |b...lK..| "DF_Pat|
|00000940| 68 53 74 61 72 74 22 2c | 20 31 2c 20 64 66 5f 62 |hStart",| 1, df_b|
|00000950| 75 66 66 25 2c 20 66 70 | 6f 25 2c 20 26 30 30 46 |uff%, fp|o%, &00F|
|00000960| 46 30 30 30 30 2c 20 2d | 31 2c 20 30 2c 20 30 2c |F0000, -|1, 0, 0,|
|00000970| 20 30 2c 20 30 20 b8 2c | 2c 66 70 6f 25 0d 02 76 | 0, 0 .,|,fpo%..v|
|00000980| 18 70 25 20 3d 20 64 66 | 5f 62 75 66 66 25 20 2b |.p% = df|_buff% +|
|00000990| 20 66 70 6f 25 0d 02 80 | 29 f2 74 72 75 65 5f 63 | fpo%...|).true_c|
|000009a0| 75 72 76 65 28 66 75 6e | 63 5f 78 6d 69 6e 2c 20 |urve(fun|c_xmin, |
|000009b0| 66 75 6e 63 5f 78 6d 61 | 78 2c 20 70 25 29 0d 02 |func_xma|x, p%)..|
|000009c0| 8a 18 66 70 6f 25 20 3d | 20 70 25 20 2d 20 64 66 |..fpo% =| p% - df|
|000009d0| 5f 62 75 66 66 25 0d 02 | 94 2e c8 99 20 22 44 46 |_buff%..|.... "DF|
|000009e0| 5f 50 61 74 68 45 6e 64 | 22 2c 20 35 2c 20 64 66 |_PathEnd|", 5, df|
|000009f0| 5f 62 75 66 66 25 2c 20 | 66 70 6f 25 20 b8 2c 2c |_buff%, |fpo% .,,|
|00000a00| 66 70 6f 25 0d 02 9e 04 | 0d 02 a8 2f f4 20 3d 3d |fpo%....|.../. ==|
|00000a10| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000a20| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000a30| 3d 3d 3d 3d 3d 3d 3d 0d | 02 b2 04 0d 02 bc 4a f4 |=======.|......J.|
|00000a40| 20 44 72 61 77 20 74 68 | 65 20 62 65 7a 69 65 72 | Draw th|e bezier|
|00000a50| 20 63 75 72 76 65 20 69 | 6e 20 72 65 64 2e 20 44 | curve i|n red. D|
|00000a60| 46 5f 50 61 74 68 45 6e | 64 20 69 73 20 63 61 6c |F_PathEn|d is cal|
|00000a70| 6c 65 64 20 77 69 74 68 | 20 52 30 20 62 69 74 20 |led with| R0 bit |
|00000a80| 32 20 73 65 74 0d 02 c6 | 45 f4 20 73 69 6e 63 65 |2 set...|E. since|
|00000a90| 20 74 68 65 20 63 6f 6e | 74 72 6f 6c 20 70 6f 69 | the con|trol poi|
|00000aa0| 6e 74 73 20 66 6f 72 20 | 74 68 65 20 62 65 7a 69 |nts for |the bezi|
|00000ab0| 65 72 20 63 75 72 76 65 | 20 68 61 76 65 20 61 6c |er curve| have al|
|00000ac0| 72 65 61 64 79 20 62 65 | 65 6e 0d 02 d0 44 f4 20 |ready be|en...D. |
|00000ad0| 63 61 6c 63 75 6c 61 74 | 65 64 20 28 69 2e 65 2e |calculat|ed (i.e.|
|00000ae0| 20 64 6f 6e 27 74 20 77 | 61 6e 74 20 74 68 65 20 | don't w|ant the |
|00000af0| 6d 6f 64 75 6c 65 20 74 | 6f 20 72 65 2d 63 61 6c |module t|o re-cal|
|00000b00| 63 75 6c 61 74 65 20 74 | 68 65 73 65 29 2e 0d 02 |culate t|hese)...|
|00000b10| da 04 0d 02 e4 4b c8 99 | 20 22 44 46 5f 50 61 74 |.....K..| "DF_Pat|
|00000b20| 68 53 74 61 72 74 22 2c | 20 31 2c 20 64 66 5f 62 |hStart",| 1, df_b|
|00000b30| 75 66 66 25 2c 20 66 70 | 6f 25 2c 20 26 30 30 30 |uff%, fp|o%, &000|
|00000b40| 30 46 46 30 30 2c 20 2d | 31 2c 20 30 2c 20 30 2c |0FF00, -|1, 0, 0,|
|00000b50| 20 30 2c 20 30 20 b8 2c | 2c 66 70 6f 25 0d 02 ee | 0, 0 .,|,fpo%...|
|00000b60| 18 70 25 20 3d 20 64 66 | 5f 62 75 66 66 25 20 2b |.p% = df|_buff% +|
|00000b70| 20 66 70 6f 25 0d 02 f8 | 0d 6e 73 65 67 25 20 3d | fpo%...|.nseg% =|
|00000b80| 20 30 0d 03 02 28 74 72 | 6d 73 20 3d 20 28 66 75 | 0...(tr|ms = (fu|
|00000b90| 6e 63 5f 79 6d 61 78 20 | 2d 20 66 75 6e 63 5f 79 |nc_ymax |- func_y|
|00000ba0| 6d 69 6e 29 20 2a 20 30 | 2e 30 0d 03 0c 29 78 73 |min) * 0|.0...)xs|
|00000bb0| 6d 69 6e 20 3d 20 28 66 | 75 6e 63 5f 78 6d 61 78 |min = (f|unc_xmax|
|00000bc0| 20 2d 20 66 75 6e 63 5f | 78 6d 69 6e 29 20 2a 20 | - func_|xmin) * |
|00000bd0| 30 2e 30 0d 03 16 43 f2 | 66 69 74 5f 62 65 7a 69 |0.0...C.|fit_bezi|
|00000be0| 65 72 5f 63 75 72 76 65 | 28 66 75 6e 63 5f 78 6d |er_curve|(func_xm|
|00000bf0| 69 6e 2c 20 66 75 6e 63 | 5f 78 6d 61 78 2c 20 6e |in, func|_xmax, n|
|00000c00| 73 65 67 25 2c 20 70 25 | 2c 20 74 72 6d 73 2c 20 |seg%, p%|, trms, |
|00000c10| 78 73 6d 69 6e 29 0d 03 | 20 18 66 70 6f 25 20 3d |xsmin)..| .fpo% =|
|00000c20| 20 70 25 20 2d 20 64 66 | 5f 62 75 66 66 25 0d 03 | p% - df|_buff%..|
|00000c30| 2a 2e c8 99 20 22 44 46 | 5f 50 61 74 68 45 6e 64 |*... "DF|_PathEnd|
|00000c40| 22 2c 20 35 2c 20 64 66 | 5f 62 75 66 66 25 2c 20 |", 5, df|_buff%, |
|00000c50| 66 70 6f 25 20 b8 2c 2c | 66 70 6f 25 0d 03 34 04 |fpo% .,,|fpo%..4.|
|00000c60| 0d 03 3e 2f f4 20 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |..>/. ==|========|
|00000c70| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000c80| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 0d |========|=======.|
|00000c90| 03 48 04 0d 03 52 24 f4 | 20 53 61 76 65 20 61 6e |.H...R$.| Save an|
|00000ca0| 64 20 64 69 73 70 6c 61 | 79 20 74 68 65 20 64 72 |d displa|y the dr|
|00000cb0| 61 77 66 69 6c 65 2e 0d | 03 5c 04 0d 03 66 58 c8 |awfile..|.\...fX.|
|00000cc0| 99 20 22 4f 53 5f 46 69 | 6c 65 22 2c 31 30 2c 22 |. "OS_Fi|le",10,"|
|00000cd0| 3c 44 55 42 64 65 6d 6f | 24 44 69 72 3e 2e 44 65 |<DUBdemo|$Dir>.De|
|00000ce0| 6d 6f 73 2e 44 72 61 77 | 46 69 6c 65 22 2c 26 41 |mos.Draw|File",&A|
|00000cf0| 46 46 2c 2c 28 64 66 5f | 62 75 66 66 25 2b 31 30 |FF,,(df_|buff%+10|
|00000d00| 32 34 29 2c 28 64 66 5f | 62 75 66 66 25 2b 66 70 |24),(df_|buff%+fp|
|00000d10| 6f 25 29 0d 03 70 18 c8 | 99 20 22 48 6f 75 72 67 |o%)..p..|. "Hourg|
|00000d20| 6c 61 73 73 5f 53 6d 61 | 73 68 22 0d 03 7a 2d 2a |lass_Sma|sh"..z-*|
|00000d30| 46 69 6c 65 72 5f 52 75 | 6e 20 22 3c 44 55 42 64 |Filer_Ru|n "<DUBd|
|00000d40| 65 6d 6f 24 44 69 72 3e | 2e 44 65 6d 6f 73 2e 44 |emo$Dir>|.Demos.D|
|00000d50| 72 61 77 46 69 6c 65 22 | 0d 03 84 04 0d 03 8e 05 |rawFile"|........|
|00000d60| e0 0d 03 98 04 0d 03 a2 | 04 0d 03 ac 0c dd 20 f2 |........|...... .|
|00000d70| 65 72 72 6f 72 0d 03 b6 | 1a 20 20 c8 99 20 22 48 |error...|. .. "H|
|00000d80| 6f 75 72 67 6c 61 73 73 | 5f 53 6d 61 73 68 22 0d |ourglass|_Smash".|
|00000d90| 03 c0 15 20 20 f6 20 3a | 20 f1 20 22 20 61 74 20 |... . :| . " at |
|00000da0| 22 3b 20 9e 0d 03 ca 05 | e1 0d 03 d4 04 0d 03 de |"; .....|........|
|00000db0| 04 0d 03 e8 4a f4 20 44 | 65 63 6c 61 72 65 20 74 |....J. D|eclare t|
|00000dc0| 68 65 20 66 75 6e 63 74 | 69 6f 6e 20 28 69 6e 20 |he funct|ion (in |
|00000dd0| 74 65 72 6d 73 20 6f 66 | 20 78 29 20 61 6e 64 20 |terms of| x) and |
|00000de0| 6c 6f 77 65 72 20 26 20 | 75 70 70 65 72 20 62 6f |lower & |upper bo|
|00000df0| 75 6e 64 73 20 66 6f 72 | 20 78 2e 0d 03 f2 4d f4 |unds for| x....M.|
|00000e00| 20 41 6c 73 6f 20 6f 62 | 74 61 69 6e 20 62 6f 75 | Also ob|tain bou|
|00000e10| 6e 64 73 20 66 6f 72 20 | 79 20 66 6f 72 20 73 63 |nds for |y for sc|
|00000e20| 61 6c 69 6e 67 20 74 6f | 20 74 68 65 20 70 6c 6f |aling to| the plo|
|00000e30| 74 20 61 72 65 61 20 64 | 65 66 69 6e 65 64 20 61 |t area d|efined a|
|00000e40| 74 20 74 6f 70 20 6f 66 | 0d 03 fc 4a f4 20 70 72 |t top of|...J. pr|
|00000e50| 6f 67 72 61 6d 20 28 61 | 78 6d 69 6e 2e 2e 2e 61 |ogram (a|xmin...a|
|00000e60| 79 6d 61 78 29 2e 20 54 | 68 65 20 62 6f 75 6e 64 |ymax). T|he bound|
|00000e70| 73 20 66 6f 72 20 79 20 | 63 61 6e 20 62 65 20 73 |s for y |can be s|
|00000e80| 65 74 20 6d 61 6e 75 61 | 6c 6c 79 20 6f 72 20 28 |et manua|lly or (|
|00000e90| 69 66 0d 04 06 4a f4 20 | 66 75 6e 63 5f 79 6d 69 |if...J. |func_ymi|
|00000ea0| 6e 20 3d 20 66 75 6e 63 | 5f 79 6d 61 78 29 20 77 |n = func|_ymax) w|
|00000eb0| 69 6c 6c 20 62 65 20 6f | 62 74 61 69 6e 65 64 20 |ill be o|btained |
|00000ec0| 61 74 20 74 68 65 20 65 | 6e 64 20 6f 66 20 74 68 |at the e|nd of th|
|00000ed0| 65 20 70 72 6f 63 65 64 | 75 72 65 2e 0d 04 10 05 |e proced|ure.....|
|00000ee0| f4 0d 04 1a 47 f4 20 45 | 78 61 6d 70 6c 65 73 20 |....G. E|xamples |
|00000ef0| 31 36 20 26 20 31 37 20 | 69 6e 76 6f 6c 76 65 20 |16 & 17 |involve |
|00000f00| 27 63 72 6f 70 70 65 64 | 27 20 66 75 6e 63 74 69 |'cropped|' functi|
|00000f10| 6f 6e 73 2c 20 6d 65 61 | 6e 69 6e 67 20 74 68 61 |ons, mea|ning tha|
|00000f20| 74 20 69 66 20 74 68 65 | 0d 04 24 4d f4 20 61 62 |t if the|..$M. ab|
|00000f30| 73 6f 6c 75 74 65 20 76 | 61 6c 75 65 20 67 65 6e |solute v|alue gen|
|00000f40| 65 72 61 74 65 64 20 62 | 79 20 74 68 65 20 66 75 |erated b|y the fu|
|00000f50| 6e 63 74 69 6f 6e 20 65 | 78 63 65 65 64 73 20 66 |nction e|xceeds f|
|00000f60| 75 6e 63 5f 79 6c 69 6d | 69 74 20 74 68 65 6e 20 |unc_ylim|it then |
|00000f70| 69 74 20 69 73 0d 04 2e | 48 f4 20 72 65 64 75 63 |it is...|H. reduc|
|00000f80| 65 64 20 74 6f 20 74 68 | 69 73 20 76 61 6c 75 65 |ed to th|is value|
|00000f90| 20 28 73 65 74 20 66 75 | 6e 63 5f 79 6c 69 6d 69 | (set fu|nc_ylimi|
|00000fa0| 74 20 3d 20 30 20 74 6f | 20 73 77 69 74 63 68 20 |t = 0 to| switch |
|00000fb0| 74 68 69 73 20 6f 66 66 | 2c 20 73 65 65 0d 04 38 |this off|, see..8|
|00000fc0| 1b f4 20 44 45 46 20 46 | 4e 75 73 65 72 5f 66 75 |.. DEF F|Nuser_fu|
|00000fd0| 6e 63 74 69 6f 6e 29 2e | 0d 04 42 04 0d 04 4c 1f |nction).|..B...L.|
|00000fe0| dd 20 f2 73 65 74 5f 75 | 70 5f 65 78 61 6d 70 6c |. .set_u|p_exampl|
|00000ff0| 65 28 65 78 61 6d 70 6c | 65 25 29 0d 04 56 0c 20 |e(exampl|e%)..V. |
|00001000| 20 ea 20 78 2c 20 79 0d | 04 60 35 20 20 66 75 6e | . x, y.|.`5 fun|
|00001010| 63 5f 79 6d 69 6e 20 3d | 20 30 20 3a 20 66 75 6e |c_ymin =| 0 : fun|
|00001020| 63 5f 79 6d 61 78 20 3d | 20 30 20 3a 20 66 75 6e |c_ymax =| 0 : fun|
|00001030| 63 5f 79 6c 69 6d 69 74 | 20 3d 20 30 0d 04 6a 13 |c_ylimit| = 0..j.|
|00001040| 20 20 c8 8e 20 65 78 61 | 6d 70 6c 65 25 20 ca 0d | .. exa|mple% ..|
|00001050| 04 74 2d 20 20 20 20 c9 | 20 20 31 3a 20 66 75 6e |.t- .| 1: fun|
|00001060| 63 5f 78 6d 69 6e 20 3d | 20 30 20 3a 20 66 75 6e |c_xmin =| 0 : fun|
|00001070| 63 5f 78 6d 61 78 20 3d | 20 20 39 30 0d 04 7e 30 |c_xmax =| 90..~0|
|00001080| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 66 75 6e | | fun|
|00001090| 63 74 69 6f 6e 24 20 3d | 20 22 53 49 4e 28 52 41 |ction$ =| "SIN(RA|
|000010a0| 44 28 78 29 29 20 2a 20 | 31 30 30 22 0d 04 88 04 |D(x)) * |100"....|
|000010b0| 0d 04 92 2f 20 20 20 20 | c9 20 20 32 3a 20 66 75 |.../ |. 2: fu|
|000010c0| 6e 63 5f 78 6d 69 6e 20 | 3d 2d 35 2e 30 20 3a 20 |nc_xmin |=-5.0 : |
|000010d0| 66 75 6e 63 5f 78 6d 61 | 78 20 3d 20 35 2e 30 0d |func_xma|x = 5.0.|
|000010e0| 04 9c 28 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |..( | |
|000010f0| 66 75 6e 63 74 69 6f 6e | 24 20 3d 20 22 28 28 78 |function|$ = "((x|
|00001100| 5e 33 29 2d 78 29 22 0d | 04 a6 04 0d 04 b0 2d 20 |^3)-x)".|......- |
|00001110| 20 20 20 c9 20 20 33 3a | 20 66 75 6e 63 5f 78 6d | . 3:| func_xm|
|00001120| 69 6e 20 3d 20 30 20 3a | 20 66 75 6e 63 5f 78 6d |in = 0 :| func_xm|
|00001130| 61 78 20 3d 20 20 39 30 | 0d 04 ba 3e 20 20 20 20 |ax = 90|...> |
|00001140| 20 20 20 20 20 20 20 20 | 20 66 75 6e 63 74 69 6f | | functio|
|00001150| 6e 24 20 3d 20 22 28 53 | 49 4e 28 52 41 44 28 78 |n$ = "(S|IN(RAD(x|
|00001160| 29 29 20 2b 20 43 4f 53 | 28 52 41 44 28 78 29 29 |)) + COS|(RAD(x))|
|00001170| 20 5e 20 32 29 22 0d 04 | c4 04 0d 04 ce 2d 20 20 | ^ 2)"..|.....- |
|00001180| 20 20 c9 20 20 34 3a 20 | 66 75 6e 63 5f 78 6d 69 | . 4: |func_xmi|
|00001190| 6e 20 3d 20 30 20 3a 20 | 66 75 6e 63 5f 78 6d 61 |n = 0 : |func_xma|
|000011a0| 78 20 3d 20 35 30 30 0d | 04 d8 2f 20 20 20 20 20 |x = 500.|../ |
|000011b0| 20 20 20 20 20 20 20 20 | 66 75 6e 63 74 69 6f 6e | |function|
|000011c0| 24 20 3d 20 22 28 78 20 | 2f 20 31 30 29 20 5e 20 |$ = "(x |/ 10) ^ |
|000011d0| 32 20 2b 20 78 22 0d 04 | e2 04 0d 04 ec 2d 20 20 |2 + x"..|.....- |
|000011e0| 20 20 c9 20 20 35 3a 20 | 66 75 6e 63 5f 78 6d 69 | . 5: |func_xmi|
|000011f0| 6e 20 3d 20 30 20 3a 20 | 66 75 6e 63 5f 78 6d 61 |n = 0 : |func_xma|
|00001200| 78 20 3d 20 32 30 30 0d | 04 f6 25 20 20 20 20 20 |x = 200.|..% |
|00001210| 20 20 20 20 20 20 20 20 | 66 75 6e 63 74 69 6f 6e | |function|
|00001220| 24 20 3d 20 22 53 51 52 | 28 78 29 22 0d 05 00 04 |$ = "SQR|(x)"....|
|00001230| 0d 05 0a 2d 20 20 20 20 | c9 20 20 36 3a 20 66 75 |...- |. 6: fu|
|00001240| 6e 63 5f 78 6d 69 6e 20 | 3d 20 30 20 3a 20 66 75 |nc_xmin |= 0 : fu|
|00001250| 6e 63 5f 78 6d 61 78 20 | 3d 20 31 30 30 0d 05 14 |nc_xmax |= 100...|
|00001260| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 66 75 | | fu|
|00001270| 6e 63 74 69 6f 6e 24 20 | 3d 20 22 78 22 0d 05 1e |nction$ |= "x"...|
|00001280| 04 0d 05 28 2d 20 20 20 | 20 c9 20 20 37 3a 20 66 |...(- | . 7: f|
|00001290| 75 6e 63 5f 78 6d 69 6e | 20 3d 20 32 35 20 3a 20 |unc_xmin| = 25 : |
|000012a0| 66 75 6e 63 5f 78 6d 61 | 78 20 3d 20 37 35 0d 05 |func_xma|x = 75..|
|000012b0| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 66 |2 | f|
|000012c0| 75 6e 63 74 69 6f 6e 24 | 20 3d 20 22 35 22 0d 05 |unction$| = "5"..|
|000012d0| 3c 04 0d 05 46 46 20 20 | 20 20 c9 20 20 38 3a 20 |<...FF | . 8: |
|000012e0| 66 75 6e 63 5f 78 6d 69 | 6e 20 3d 20 35 30 2a 28 |func_xmi|n = 50*(|
|000012f0| 31 2d b5 28 b2 28 34 35 | 29 29 29 20 3a 20 66 75 |1-.(.(45|))) : fu|
|00001300| 6e 63 5f 78 6d 61 78 20 | 3d 20 b5 28 b2 28 34 35 |nc_xmax |= .(.(45|
|00001310| 29 29 2a 35 30 2b 35 30 | 0d 05 50 37 20 20 20 20 |))*50+50|..P7 |
|00001320| 20 20 20 20 20 20 20 20 | 20 66 75 6e 63 74 69 6f | | functio|
|00001330| 6e 24 20 3d 20 22 53 51 | 52 28 32 35 30 30 20 2d |n$ = "SQ|R(2500 -|
|00001340| 20 28 28 35 30 2d 78 29 | 20 5e 20 32 29 29 22 0d | ((50-x)| ^ 2))".|
|00001350| 05 5a 04 0d 05 64 2d 20 | 20 20 20 c9 20 20 39 3a |.Z...d- | . 9:|
|00001360| 20 66 75 6e 63 5f 78 6d | 69 6e 20 3d 20 30 20 3a | func_xm|in = 0 :|
|00001370| 20 66 75 6e 63 5f 78 6d | 61 78 20 3d 20 31 30 30 | func_xm|ax = 100|
|00001380| 0d 05 6e 48 20 20 20 20 | 20 20 20 20 20 20 20 20 |..nH | |
|00001390| 20 66 75 6e 63 74 69 6f | 6e 24 20 3d 20 22 37 35 | functio|n$ = "75|
|000013a0| 20 2a 20 45 58 50 28 2d | 30 2e 31 35 20 2a 20 78 | * EXP(-|0.15 * x|
|000013b0| 29 20 2b 20 34 35 20 2a | 20 45 58 50 28 2d 30 2e |) + 45 *| EXP(-0.|
|000013c0| 30 33 20 2a 20 78 29 22 | 0d 05 78 04 0d 05 82 2d |03 * x)"|..x....-|
|000013d0| 20 20 20 20 c9 20 31 30 | 3a 20 66 75 6e 63 5f 78 | . 10|: func_x|
|000013e0| 6d 69 6e 20 3d 20 30 20 | 3a 20 66 75 6e 63 5f 78 |min = 0 |: func_x|
|000013f0| 6d 61 78 20 3d 20 33 36 | 30 0d 05 8c 56 20 20 20 |max = 36|0...V |
|00001400| 20 20 20 20 20 20 20 20 | 20 20 66 75 6e 63 74 69 | | functi|
|00001410| 6f 6e 24 20 3d 20 22 28 | 53 49 4e 28 52 41 44 28 |on$ = "(|SIN(RAD(|
|00001420| 78 29 29 20 2b 20 43 4f | 53 28 52 41 44 28 78 29 |x)) + CO|S(RAD(x)|
|00001430| 29 20 5e 20 32 29 20 2a | 20 31 30 30 20 2f 20 28 |) ^ 2) *| 100 / (|
|00001440| 53 51 52 28 78 29 20 2b | 20 33 31 2e 36 29 22 0d |SQR(x) +| 31.6)".|
|00001450| 05 96 04 0d 05 a0 2d 20 | 20 20 20 c9 20 31 31 3a |......- | . 11:|
|00001460| 20 66 75 6e 63 5f 78 6d | 69 6e 20 3d 20 30 20 3a | func_xm|in = 0 :|
|00001470| 20 66 75 6e 63 5f 78 6d | 61 78 20 3d 20 31 38 30 | func_xm|ax = 180|
|00001480| 0d 05 aa 2e 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00001490| 20 66 75 6e 63 74 69 6f | 6e 24 20 3d 20 22 53 49 | functio|n$ = "SI|
|000014a0| 4e 28 52 41 44 28 78 29 | 29 20 5e 20 34 22 0d 05 |N(RAD(x)|) ^ 4"..|
|000014b0| b4 04 0d 05 be 30 20 20 | 20 20 c9 20 31 32 3a 20 |.....0 | . 12: |
|000014c0| 66 75 6e 63 5f 78 6d 69 | 6e 20 3d 20 30 2e 30 20 |func_xmi|n = 0.0 |
|000014d0| 3a 20 66 75 6e 63 5f 78 | 6d 61 78 20 3d 20 38 39 |: func_x|max = 89|
|000014e0| 2e 35 0d 05 c8 2f 20 20 | 20 20 20 20 20 20 20 20 |.5.../ | |
|000014f0| 20 20 20 66 75 6e 63 74 | 69 6f 6e 24 20 3d 20 22 | funct|ion$ = "|
|00001500| 53 51 52 28 54 41 4e 28 | 52 41 44 28 78 29 29 29 |SQR(TAN(|RAD(x)))|
|00001510| 22 0d 05 d2 04 0d 05 dc | 30 20 20 20 20 c9 20 31 |".......|0 . 1|
|00001520| 33 3a 20 66 75 6e 63 5f | 78 6d 69 6e 20 3d 20 30 |3: func_|xmin = 0|
|00001530| 2e 31 20 3a 20 66 75 6e | 63 5f 78 6d 61 78 20 3d |.1 : fun|c_xmax =|
|00001540| 20 38 39 2e 35 0d 05 e6 | 30 20 20 20 20 20 20 20 | 89.5...|0 |
|00001550| 20 20 20 20 20 20 66 75 | 6e 63 74 69 6f 6e 24 20 | fu|nction$ |
|00001560| 3d 20 22 54 41 4e 28 52 | 41 44 28 78 29 29 20 5e |= "TAN(R|AD(x)) ^|
|00001570| 20 31 2e 30 22 0d 05 f0 | 04 0d 05 fa 30 20 20 20 | 1.0"...|....0 |
|00001580| 20 c9 20 31 34 3a 20 66 | 75 6e 63 5f 78 6d 69 6e | . 14: f|unc_xmin|
|00001590| 20 3d 20 30 2e 30 20 3a | 20 66 75 6e 63 5f 78 6d | = 0.0 :| func_xm|
|000015a0| 61 78 20 3d 20 38 39 2e | 35 0d 06 04 32 20 20 20 |ax = 89.|5...2 |
|000015b0| 20 20 20 20 20 20 20 20 | 20 20 66 75 6e 63 74 69 | | functi|
|000015c0| 6f 6e 24 20 3d 20 22 28 | 54 41 4e 28 52 41 44 28 |on$ = "(|TAN(RAD(|
|000015d0| 78 29 29 20 5e 20 33 2e | 30 29 22 0d 06 0e 04 0d |x)) ^ 3.|0)".....|
|000015e0| 06 18 2e 20 20 20 20 c9 | 20 31 35 3a 20 66 75 6e |... .| 15: fun|
|000015f0| 63 5f 78 6d 69 6e 20 3d | 20 30 20 3a 20 66 75 6e |c_xmin =| 0 : fun|
|00001600| 63 5f 78 6d 61 78 20 3d | 20 31 30 30 30 0d 06 22 |c_xmax =| 1000.."|
|00001610| 5a 20 20 20 20 20 20 20 | 20 20 20 20 20 20 66 75 |Z | fu|
|00001620| 6e 63 74 69 6f 6e 24 20 | 3d 20 22 28 53 49 4e 28 |nction$ |= "(SIN(|
|00001630| 52 41 44 28 78 29 29 20 | 5e 20 32 20 2d 20 43 4f |RAD(x)) |^ 2 - CO|
|00001640| 53 28 52 41 44 28 78 29 | 29 20 5e 20 33 29 20 2a |S(RAD(x)|) ^ 3) *|
|00001650| 20 31 30 30 20 2f 20 28 | 53 51 52 28 78 29 20 2b | 100 / (|SQR(x) +|
|00001660| 20 33 31 2e 36 29 22 0d | 06 2c 04 0d 06 36 2f 20 | 31.6)".|.,...6/ |
|00001670| 20 20 20 c9 20 31 36 3a | 20 66 75 6e 63 5f 78 6d | . 16:| func_xm|
|00001680| 69 6e 20 3d 20 30 2e 30 | 20 3a 20 66 75 6e 63 5f |in = 0.0| : func_|
|00001690| 78 6d 61 78 20 3d 20 31 | 30 30 0d 06 40 48 20 20 |xmax = 1|00..@H |
|000016a0| 20 20 20 20 20 20 20 20 | 20 20 20 66 75 6e 63 5f | | func_|
|000016b0| 79 6d 69 6e 20 3d 20 30 | 2e 30 20 3a 20 66 75 6e |ymin = 0|.0 : fun|
|000016c0| 63 5f 79 6d 61 78 20 3d | 20 38 30 30 30 20 3a 20 |c_ymax =| 8000 : |
|000016d0| 66 75 6e 63 5f 79 6c 69 | 6d 69 74 20 3d 20 38 30 |func_yli|mit = 80|
|000016e0| 30 30 0d 06 4a 24 20 20 | 20 20 20 20 20 20 20 20 |00..J$ | |
|000016f0| 20 20 20 66 75 6e 63 74 | 69 6f 6e 24 20 3d 20 22 | funct|ion$ = "|
|00001700| 78 20 5e 20 33 22 0d 06 | 54 04 0d 06 5e 30 20 20 |x ^ 3"..|T...^0 |
|00001710| 20 20 c9 20 31 37 3a 20 | 66 75 6e 63 5f 78 6d 69 | . 17: |func_xmi|
|00001720| 6e 20 3d 20 30 2e 30 20 | 3a 20 66 75 6e 63 5f 78 |n = 0.0 |: func_x|
|00001730| 6d 61 78 20 3d 20 20 31 | 38 30 0d 06 68 4c 20 20 |max = 1|80..hL |
|00001740| 20 20 20 20 20 20 20 20 | 20 20 20 66 75 6e 63 5f | | func_|
|00001750| 79 6d 69 6e 20 3d 20 2d | 31 30 30 30 2e 30 20 3a |ymin = -|1000.0 :|
|00001760| 20 66 75 6e 63 5f 79 6d | 61 78 20 3d 20 31 30 30 | func_ym|ax = 100|
|00001770| 30 20 3a 20 66 75 6e 63 | 5f 79 6c 69 6d 69 74 20 |0 : func|_ylimit |
|00001780| 3d 20 31 30 30 30 0d 06 | 72 2a 20 20 20 20 20 20 |= 1000..|r* |
|00001790| 20 20 20 20 20 20 20 66 | 75 6e 63 74 69 6f 6e 24 | f|unction$|
|000017a0| 20 3d 20 22 54 41 4e 28 | 52 41 44 28 78 29 29 22 | = "TAN(|RAD(x))"|
|000017b0| 0d 06 7c 04 0d 06 86 07 | 20 20 cb 0d 06 90 1f 20 |..|.....| ..... |
|000017c0| 20 e7 20 66 75 6e 63 5f | 79 6d 69 6e 20 3d 20 66 | . func_|ymin = f|
|000017d0| 75 6e 63 5f 79 6d 61 78 | 20 8c 0d 06 9a 33 20 20 |unc_ymax| ....3 |
|000017e0| 20 20 66 75 6e 63 5f 79 | 6d 69 6e 20 3d 20 31 2e | func_y|min = 1.|
|000017f0| 30 45 33 38 20 3a 20 66 | 75 6e 63 5f 79 6d 61 78 |0E38 : f|unc_ymax|
|00001800| 20 3d 20 2d 66 75 6e 63 | 5f 79 6d 69 6e 0d 06 a4 | = -func|_ymin...|
|00001810| 4b 20 20 20 20 e3 20 78 | 20 3d 20 66 75 6e 63 5f |K . x| = func_|
|00001820| 78 6d 69 6e 20 b8 20 66 | 75 6e 63 5f 78 6d 61 78 |xmin . f|unc_xmax|
|00001830| 20 2a 20 31 2e 30 30 31 | 20 88 20 28 66 75 6e 63 | * 1.001| . (func|
|00001840| 5f 78 6d 61 78 20 2d 20 | 66 75 6e 63 5f 78 6d 69 |_xmax - |func_xmi|
|00001850| 6e 29 20 2f 20 35 30 30 | 0d 06 ae 1f 20 20 20 20 |n) / 500|.... |
|00001860| 20 20 79 20 3d 20 a4 75 | 73 65 72 5f 66 75 6e 63 | y = .u|ser_func|
|00001870| 74 69 6f 6e 28 78 29 0d | 06 b8 29 20 20 20 20 20 |tion(x).|..) |
|00001880| 20 e7 20 79 20 3c 20 66 | 75 6e 63 5f 79 6d 69 6e | . y < f|unc_ymin|
|00001890| 20 8c 20 66 75 6e 63 5f | 79 6d 69 6e 20 3d 20 79 | . func_|ymin = y|
|000018a0| 0d 06 c2 29 20 20 20 20 | 20 20 e7 20 79 20 3e 20 |...) | . y > |
|000018b0| 66 75 6e 63 5f 79 6d 61 | 78 20 8c 20 66 75 6e 63 |func_yma|x . func|
|000018c0| 5f 79 6d 61 78 20 3d 20 | 79 0d 06 cc 09 20 20 20 |_ymax = |y.... |
|000018d0| 20 ed 0d 06 d6 21 20 20 | 20 20 e7 20 66 75 6e 63 | ....! | . func|
|000018e0| 5f 79 6d 69 6e 20 3d 20 | 66 75 6e 63 5f 79 6d 61 |_ymin = |func_yma|
|000018f0| 78 20 8c 0d 06 e0 29 20 | 20 20 20 20 20 66 75 6e |x ....) | fun|
|00001900| 63 5f 79 6d 69 6e 20 2d | 3d 20 31 20 3a 20 66 75 |c_ymin -|= 1 : fu|
|00001910| 6e 63 5f 79 6d 61 78 20 | 2b 3d 20 31 0d 06 ea 09 |nc_ymax |+= 1....|
|00001920| 20 20 20 20 cd 0d 06 f4 | 07 20 20 cd 0d 06 fe 05 | ....|. .....|
|00001930| e1 0d 07 08 04 0d 07 12 | 04 0d 07 1c 4d f4 20 44 |........|....M. D|
|00001940| 72 61 77 20 74 68 65 20 | 27 74 72 75 65 27 20 63 |raw the |'true' c|
|00001950| 75 72 76 65 20 75 73 69 | 6e 67 20 73 68 6f 72 74 |urve usi|ng short|
|00001960| 20 73 74 72 61 69 67 68 | 74 2d 6c 69 6e 65 20 73 | straigh|t-line s|
|00001970| 65 67 6d 65 6e 74 73 20 | 63 61 6c 63 75 6c 61 74 |egments |calculat|
|00001980| 65 64 20 66 6f 72 0d 07 | 26 49 f4 20 78 20 62 65 |ed for..|&I. x be|
|00001990| 74 77 65 65 6e 20 66 78 | 6d 69 6e 20 61 6e 64 20 |tween fx|min and |
|000019a0| 66 78 6d 61 78 2e 20 54 | 68 65 20 70 61 74 68 20 |fxmax. T|he path |
|000019b0| 64 61 74 61 20 69 73 20 | 77 72 69 74 74 65 6e 20 |data is |written |
|000019c0| 64 69 72 65 63 74 6c 79 | 20 74 6f 20 74 68 65 0d |directly| to the.|
|000019d0| 07 30 4d f4 20 64 72 61 | 77 66 69 6c 65 20 73 74 |.0M. dra|wfile st|
|000019e0| 61 72 74 69 6e 67 20 61 | 74 20 61 64 64 72 65 73 |arting a|t addres|
|000019f0| 73 20 70 25 20 77 68 69 | 63 68 20 69 73 20 69 6e |s p% whi|ch is in|
|00001a00| 63 72 65 6d 65 6e 74 65 | 64 20 61 73 20 61 70 70 |cremente|d as app|
|00001a10| 72 6f 70 72 69 61 74 65 | 20 61 6e 64 0d 07 3a 23 |ropriate| and..:#|
|00001a20| f4 20 72 65 74 75 72 6e | 65 64 20 74 6f 20 74 68 |. return|ed to th|
|00001a30| 65 20 6d 61 69 6e 20 70 | 72 6f 67 72 61 6d 2e 0d |e main p|rogram..|
|00001a40| 07 44 04 0d 07 4e 25 dd | 20 f2 74 72 75 65 5f 63 |.D...N%.| .true_c|
|00001a50| 75 72 76 65 28 66 78 6d | 69 6e 2c 20 66 78 6d 61 |urve(fxm|in, fxma|
|00001a60| 78 2c 20 f8 20 70 25 29 | 0d 07 58 13 20 20 ea 20 |x, . p%)|..X. . |
|00001a70| 6b 25 2c 20 78 2c 20 79 | 2c 20 72 0d 07 62 22 20 |k%, x, y|, r..b" |
|00001a80| 20 6b 25 20 3d 20 32 20 | 3a 20 72 20 3d 20 28 66 | k% = 2 |: r = (f|
|00001a90| 78 6d 61 78 20 2d 20 66 | 78 6d 69 6e 29 0d 07 6c |xmax - f|xmin)..l|
|00001aa0| 2b 20 20 e3 20 78 20 3d | 20 66 78 6d 69 6e 20 b8 |+ . x =| fxmin .|
|00001ab0| 20 66 78 6d 61 78 20 2a | 20 31 2e 30 30 31 20 88 | fxmax *| 1.001 .|
|00001ac0| 20 72 20 2f 20 35 30 30 | 0d 07 76 1d 20 20 20 20 | r / 500|..v. |
|00001ad0| 79 20 3d 20 a4 75 73 65 | 72 5f 66 75 6e 63 74 69 |y = .use|r_functi|
|00001ae0| 6f 6e 28 78 29 0d 07 80 | 19 20 20 20 20 21 70 25 |on(x)...|. !p%|
|00001af0| 20 3d 20 6b 25 20 3a 20 | 6b 25 20 3d 20 38 0d 07 | = k% : |k% = 8..|
|00001b00| 8a 19 20 20 20 20 70 25 | 21 34 20 3d 20 a4 78 73 |.. p%|!4 = .xs|
|00001b10| 63 61 6c 65 28 78 29 0d | 07 94 19 20 20 20 20 70 |cale(x).|... p|
|00001b20| 25 21 38 20 3d 20 a4 79 | 73 63 61 6c 65 28 79 29 |%!8 = .y|scale(y)|
|00001b30| 0d 07 9e 10 20 20 20 20 | 70 25 20 2b 3d 20 31 32 |.... |p% += 12|
|00001b40| 0d 07 a8 07 20 20 ed 0d | 07 b2 05 e1 0d 07 bc 04 |.... ..|........|
|00001b50| 0d 07 c6 04 0d 07 d0 27 | dd 20 f2 70 75 74 5f 6c |.......'|. .put_l|
|00001b60| 61 62 65 6c 28 78 6d 69 | 6e 2c 20 78 6d 61 78 2c |abel(xmi|n, xmax,|
|00001b70| 20 66 75 6e 63 74 69 6f | 6e 24 29 0d 07 da 26 20 | functio|n$)...& |
|00001b80| 20 ea 20 74 24 2c 20 70 | 25 2c 20 66 74 78 25 2c | . t$, p|%, ftx%,|
|00001b90| 20 74 78 31 25 2c 20 74 | 78 32 25 2c 20 74 79 31 | tx1%, t|x2%, ty1|
|00001ba0| 25 0d 07 e4 4c 20 20 74 | 24 20 3d 20 22 59 20 3d |%...L t|$ = "Y =|
|00001bb0| 20 22 20 2b 20 66 75 6e | 63 74 69 6f 6e 24 20 2b | " + fun|ction$ +|
|00001bc0| 20 22 20 20 28 78 20 3d | 20 22 20 2b 20 c3 28 78 | " (x =| " + .(x|
|00001bd0| 6d 69 6e 29 20 2b 20 22 | 20 74 6f 20 22 20 2b 20 |min) + "| to " + |
|00001be0| c3 28 78 6d 61 78 29 20 | 2b 20 22 29 22 0d 07 ee |.(xmax) |+ ")"...|
|00001bf0| 52 20 20 c8 99 20 22 44 | 46 5f 53 65 6c 65 63 74 |R .. "D|F_Select|
|00001c00| 46 6f 6e 74 22 2c 31 2c | 64 66 5f 62 75 66 66 25 |Font",1,|df_buff%|
|00001c10| 2c 2c 22 48 6f 6d 65 72 | 74 6f 6e 2e 4d 65 64 69 |,,"Homer|ton.Medi|
|00001c20| 75 6d 22 2c 28 31 34 3c | 3c 38 29 2c 28 31 34 3c |um",(14<|<8),(14<|
|00001c30| 3c 38 29 2c 30 2c 26 46 | 46 46 46 46 46 30 30 0d |<8),0,&F|FFFFF00.|
|00001c40| 07 f8 0f 20 20 70 25 20 | 3d 20 66 70 6f 25 0d 08 |... p% |= fpo%..|
|00001c50| 02 41 20 20 c8 99 20 22 | 44 46 5f 57 72 69 74 65 |.A .. "|DF_Write|
|00001c60| 54 65 78 74 22 2c 31 2c | 64 66 5f 62 75 66 66 25 |Text",1,|df_buff%|
|00001c70| 2c 66 70 6f 25 2c 74 24 | 2c 30 2c 30 2c 30 20 b8 |,fpo%,t$|,0,0,0 .|
|00001c80| 2c 2c 66 70 6f 25 2c 2c | 2c 2c 2c 66 74 78 25 0d |,,fpo%,,|,,,ftx%.|
|00001c90| 08 0c 10 20 20 70 25 20 | 2b 3d 20 66 74 78 25 0d |... p% |+= ftx%.|
|00001ca0| 08 16 37 20 20 c8 99 20 | 22 44 46 5f 50 72 65 76 |..7 .. |"DF_Prev|
|00001cb0| 4f 62 6a 42 42 6f 78 22 | 2c 31 2c 64 66 5f 62 75 |ObjBBox"|,1,df_bu|
|00001cc0| 66 66 25 20 b8 2c 2c 2c | 74 78 31 25 2c 74 79 31 |ff% .,,,|tx1%,ty1|
|00001cd0| 25 2c 74 78 32 25 0d 08 | 20 46 20 20 74 78 31 25 |%,tx2%..| F tx1%|
|00001ce0| 20 3d 20 a4 6d 6d 32 64 | 75 28 61 78 6d 69 6e 29 | = .mm2d|u(axmin)|
|00001cf0| 20 2b 20 a4 6d 6d 32 64 | 75 28 61 78 6d 61 78 2d | + .mm2d|u(axmax-|
|00001d00| 61 78 6d 69 6e 29 20 2f | 20 32 20 2d 20 28 74 78 |axmin) /| 2 - (tx|
|00001d10| 32 25 2d 74 78 31 25 29 | 20 2f 20 32 0d 08 2a 23 |2%-tx1%)| / 2..*#|
|00001d20| 20 20 74 79 31 25 20 3d | 20 a4 6d 6d 32 64 75 28 | ty1% =| .mm2du(|
|00001d30| 61 79 6d 61 78 2b 34 29 | 20 2d 20 74 79 31 25 0d |aymax+4)| - ty1%.|
|00001d40| 08 34 40 20 20 c8 99 20 | 22 44 46 5f 53 68 69 66 |.4@ .. |"DF_Shif|
|00001d50| 74 4f 62 6a 65 63 74 22 | 2c 31 2c 64 66 5f 62 75 |tObject"|,1,df_bu|
|00001d60| 66 66 25 2c 66 70 6f 25 | 2c 2c 70 25 2c 2c 74 78 |ff%,fpo%|,,p%,,tx|
|00001d70| 31 25 2c 74 79 31 25 20 | b8 2c 2c 66 70 6f 25 0d |1%,ty1% |.,,fpo%.|
|00001d80| 08 3e 05 e1 0d 08 48 04 | 0d 08 52 04 0d 08 5c 4b |.>....H.|..R...\K|
|00001d90| f4 20 43 72 65 61 74 65 | 20 74 68 65 20 62 65 7a |. Create| the bez|
|00001da0| 69 65 72 20 63 75 72 76 | 65 2e 20 78 6d 69 6e 20 |ier curv|e. xmin |
|00001db0| 26 20 78 6d 61 78 20 61 | 72 65 20 74 68 65 20 6c |& xmax a|re the l|
|00001dc0| 6f 77 65 72 20 26 20 75 | 70 70 65 72 20 62 6f 75 |ower & u|pper bou|
|00001dd0| 6e 64 73 20 66 6f 72 0d | 08 66 4c f4 20 78 2e 20 |nds for.|.fL. x. |
|00001de0| 6e 73 65 67 25 20 6d 75 | 73 74 20 62 65 20 7a 65 |nseg% mu|st be ze|
|00001df0| 72 6f 20 69 6e 69 74 69 | 61 6c 6c 79 3b 20 6f 6e |ro initi|ally; on|
|00001e00| 20 65 78 69 74 20 69 74 | 20 65 71 75 61 6c 73 20 | exit it| equals |
|00001e10| 74 68 65 20 6e 75 6d 62 | 65 72 20 6f 66 20 63 75 |the numb|er of cu|
|00001e20| 72 76 65 0d 08 70 4f f4 | 20 73 65 67 6d 65 6e 74 |rve..pO.| segment|
|00001e30| 73 20 75 73 65 64 20 28 | 73 6f 6d 65 20 6f 66 20 |s used (|some of |
|00001e40| 74 68 65 73 65 20 6d 61 | 79 20 61 63 74 75 61 6c |these ma|y actual|
|00001e50| 6c 79 20 62 65 20 73 74 | 72 61 69 67 68 74 20 6c |ly be st|raight l|
|00001e60| 69 6e 65 20 73 65 67 6d | 65 6e 74 73 20 2d 20 73 |ine segm|ents - s|
|00001e70| 65 65 0d 08 7a 4b f4 20 | 62 65 6c 6f 77 29 2e 20 |ee..zK. |below). |
|00001e80| 54 68 65 20 70 61 74 68 | 20 64 61 74 61 20 69 73 |The path| data is|
|00001e90| 20 77 72 69 74 74 65 6e | 20 64 69 72 65 63 74 6c | written| directl|
|00001ea0| 79 20 74 6f 20 74 68 65 | 20 64 72 61 77 66 69 6c |y to the| drawfil|
|00001eb0| 65 20 73 74 61 72 74 69 | 6e 67 20 61 74 0d 08 84 |e starti|ng at...|
|00001ec0| 4d f4 20 61 64 64 72 65 | 73 73 20 70 25 20 77 68 |M. addre|ss p% wh|
|00001ed0| 69 63 68 20 69 73 20 69 | 6e 63 72 65 6d 65 6e 74 |ich is i|ncrement|
|00001ee0| 65 64 20 61 73 20 61 70 | 70 72 6f 70 72 69 61 74 |ed as ap|propriat|
|00001ef0| 65 20 61 6e 64 20 72 65 | 74 75 72 6e 65 64 20 74 |e and re|turned t|
|00001f00| 6f 20 74 68 65 20 6d 61 | 69 6e 0d 08 8e 2c f4 20 |o the ma|in...,. |
|00001f10| 70 72 6f 67 72 61 6d 2e | 20 54 68 65 20 6f 74 68 |program.| The oth|
|00001f20| 65 72 20 74 77 6f 20 70 | 61 72 61 6d 65 74 65 72 |er two p|arameter|
|00001f30| 73 20 61 72 65 3b 0d 08 | 98 05 f4 0d 08 a2 4a f4 |s are;..|......J.|
|00001f40| 20 74 72 6d 73 20 73 68 | 6f 75 6c 64 20 62 65 20 | trms sh|ould be |
|00001f50| 7a 65 72 6f 3b 20 74 68 | 69 73 20 69 73 20 74 68 |zero; th|is is th|
|00001f60| 65 20 74 61 72 67 65 74 | 20 72 6f 6f 74 2d 6d 65 |e target| root-me|
|00001f70| 61 6e 2d 73 71 75 61 72 | 65 20 65 72 72 6f 72 20 |an-squar|e error |
|00001f80| 76 61 6c 75 65 0d 08 ac | 4c f4 20 77 68 69 63 68 |value...|L. which|
|00001f90| 20 74 68 65 20 70 72 6f | 63 65 64 75 72 65 20 77 | the pro|cedure w|
|00001fa0| 69 6c 6c 20 74 72 79 20 | 74 6f 20 6f 62 74 61 69 |ill try |to obtai|
|00001fb0| 6e 2e 20 54 68 65 20 72 | 6d 73 20 65 72 72 6f 72 |n. The r|ms error|
|00001fc0| 20 69 73 20 74 68 65 20 | 27 61 76 65 72 61 67 65 | is the |'average|
|00001fd0| 27 0d 08 b6 4c f4 20 64 | 65 76 69 61 74 69 6f 6e |'...L. d|eviation|
|00001fe0| 20 6f 66 20 74 68 65 20 | 66 69 74 74 65 64 20 28 | of the |fitted (|
|00001ff0| 62 65 7a 69 65 72 29 20 | 63 75 72 76 65 20 66 72 |bezier) |curve fr|
|00002000| 6f 6d 20 74 68 65 20 74 | 72 75 65 20 63 75 72 76 |om the t|rue curv|
|00002010| 65 20 28 64 65 66 69 6e | 65 64 20 62 79 0d 08 c0 |e (defin|ed by...|
|00002020| 4d f4 20 74 68 65 20 75 | 73 65 72 2d 73 75 70 70 |M. the u|ser-supp|
|00002030| 6c 69 65 64 20 66 75 6e | 63 74 69 6f 6e 29 2e 20 |lied fun|ction). |
|00002040| 57 69 74 68 20 74 72 6d | 73 20 3d 20 30 20 6f 6e |With trm|s = 0 on|
|00002050| 20 65 6e 74 72 79 2c 20 | 74 68 69 73 20 76 61 6c | entry, |this val|
|00002060| 75 65 20 62 65 63 6f 6d | 65 73 0d 08 ca 4c f4 20 |ue becom|es...L. |
|00002070| 31 2f 31 30 30 30 74 68 | 20 6f 66 20 74 68 65 20 |1/1000th| of the |
|00002080| 76 65 72 74 69 63 61 6c | 20 73 70 61 6e 20 28 79 |vertical| span (y|
|00002090| 6d 61 78 20 2d 20 79 6d | 69 6e 29 20 77 68 69 63 |max - ym|in) whic|
|000020a0| 68 20 69 73 20 61 64 65 | 71 75 61 74 65 20 66 6f |h is ade|quate fo|
|000020b0| 72 20 6d 6f 73 74 0d 08 | d4 4b f4 20 70 75 72 70 |r most..|.K. purp|
|000020c0| 6f 73 65 73 2e 20 41 20 | 73 6d 61 6c 6c 65 72 20 |oses. A |smaller |
|000020d0| 76 61 6c 75 65 20 28 65 | 2e 67 2e 20 31 2f 31 30 |value (e|.g. 1/10|
|000020e0| 2c 30 30 30 74 68 20 6f | 66 20 79 73 70 61 6e 29 |,000th o|f yspan)|
|000020f0| 20 77 69 6c 6c 20 67 69 | 76 65 20 61 20 6d 6f 72 | will gi|ve a mor|
|00002100| 65 0d 08 de 4b f4 20 61 | 63 63 75 72 61 74 65 20 |e...K. a|ccurate |
|00002110| 66 69 74 20 62 75 74 20 | 77 69 6c 6c 20 74 61 6b |fit but |will tak|
|00002120| 65 20 6c 6f 6e 67 65 72 | 20 61 6e 64 20 61 20 6c |e longer| and a l|
|00002130| 61 72 67 65 72 20 76 61 | 6c 75 65 20 28 65 2e 67 |arger va|lue (e.g|
|00002140| 2e 20 31 2f 31 30 30 74 | 68 20 6f 66 0d 08 e8 4a |. 1/100t|h of...J|
|00002150| f4 20 79 73 70 61 6e 29 | 20 77 69 6c 6c 20 67 69 |. yspan)| will gi|
|00002160| 76 65 20 61 20 66 61 73 | 74 65 72 20 62 75 74 20 |ve a fas|ter but |
|00002170| 6c 65 73 73 20 61 63 63 | 75 72 61 74 65 20 66 69 |less acc|urate fi|
|00002180| 74 2e 20 46 6f 72 20 65 | 78 61 6d 70 6c 65 20 31 |t. For e|xample 1|
|00002190| 35 2c 20 79 6f 75 0d 08 | f2 4c f4 20 63 6f 75 6c |5, you..|.L. coul|
|000021a0| 64 20 63 6f 6d 70 61 72 | 65 20 74 68 65 20 64 65 |d compar|e the de|
|000021b0| 66 61 75 6c 74 20 28 74 | 72 6d 73 20 3d 20 30 29 |fault (t|rms = 0)|
|000021c0| 20 77 69 74 68 20 74 72 | 6d 73 20 3d 20 30 2e 30 | with tr|ms = 0.0|
|000021d0| 30 30 31 20 2a 20 28 66 | 75 6e 63 5f 79 6d 61 78 |001 * (f|unc_ymax|
|000021e0| 20 2d 0d 08 fc 4d f4 20 | 66 75 6e 63 5f 79 6d 69 | -...M. |func_ymi|
|000021f0| 6e 29 2c 20 61 6c 74 68 | 6f 75 67 68 20 79 6f 75 |n), alth|ough you|
|00002200| 20 77 69 6c 6c 20 70 72 | 6f 62 61 62 6c 79 20 6e | will pr|obably n|
|00002210| 65 65 64 20 74 6f 20 69 | 6e 63 72 65 61 73 65 20 |eed to i|ncrease |
|00002220| 74 68 65 20 7a 6f 6f 6d | 20 66 61 63 74 6f 72 0d |the zoom| factor.|
|00002230| 09 06 4c f4 20 66 6f 72 | 20 74 68 65 20 21 44 72 |..L. for| the !Dr|
|00002240| 61 77 20 77 69 6e 64 6f | 77 20 74 6f 20 73 65 65 |aw windo|w to see|
|00002250| 20 61 6e 79 20 64 69 66 | 66 65 72 65 6e 63 65 20 | any dif|ference |
|00002260| 69 6e 20 74 68 65 20 63 | 75 72 76 65 73 20 28 6f |in the c|urves (o|
|00002270| 72 20 79 6f 75 20 63 6f | 75 6c 64 0d 09 10 37 f4 |r you co|uld...7.|
|00002280| 20 73 65 6c 65 63 74 2f | 65 64 69 74 20 74 68 65 | select/|edit the|
|00002290| 20 63 75 72 76 65 20 74 | 6f 20 73 65 65 20 74 68 | curve t|o see th|
|000022a0| 65 20 63 6f 6e 74 72 6f | 6c 20 70 6f 69 6e 74 73 |e contro|l points|
|000022b0| 29 2e 0d 09 1a 05 f4 0d | 09 24 4e f4 20 78 73 6d |).......|.$N. xsm|
|000022c0| 69 6e 20 69 73 20 74 68 | 65 20 6d 69 6e 69 6d 75 |in is th|e minimu|
|000022d0| 6d 20 78 2d 69 6e 74 65 | 72 76 61 6c 20 6f 76 65 |m x-inte|rval ove|
|000022e0| 72 20 77 68 69 63 68 20 | 74 68 65 20 70 72 6f 63 |r which |the proc|
|000022f0| 65 64 75 72 65 20 77 69 | 6c 6c 20 61 74 74 65 6d |edure wi|ll attem|
|00002300| 70 74 20 74 6f 0d 09 2e | 47 f4 20 66 69 74 20 61 |pt to...|G. fit a|
|00002310| 20 62 65 7a 69 65 72 20 | 63 75 72 76 65 20 73 65 | bezier |curve se|
|00002320| 67 6d 65 6e 74 2e 20 49 | 66 20 7a 65 72 6f 2c 20 |gment. I|f zero, |
|00002330| 74 68 69 73 20 62 65 63 | 6f 6d 65 73 20 31 2f 38 |this bec|omes 1/8|
|00002340| 30 30 30 74 68 20 6f 66 | 20 74 68 65 0d 09 38 4d |000th of| the..8M|
|00002350| f4 20 6f 72 69 67 69 6e | 61 6c 20 69 6e 74 65 72 |. origin|al inter|
|00002360| 76 61 6c 20 73 70 65 63 | 69 66 69 65 64 20 62 79 |val spec|ified by|
|00002370| 20 74 68 65 20 63 61 6c | 6c 69 6e 67 20 70 72 6f | the cal|ling pro|
|00002380| 67 72 61 6d 2e 20 53 69 | 6e 63 65 20 74 68 69 73 |gram. Si|nce this|
|00002390| 20 69 6e 74 65 72 76 61 | 6c 0d 09 42 4d f4 20 69 | interva|l..BM. i|
|000023a0| 73 20 72 65 63 75 72 73 | 69 76 65 6c 79 20 64 69 |s recurs|ively di|
|000023b0| 76 69 64 65 64 20 69 6e | 20 74 77 6f 2c 20 61 20 |vided in| two, a |
|000023c0| 64 69 66 66 69 63 75 6c | 74 20 66 75 6e 63 74 69 |difficul|t functi|
|000023d0| 6f 6e 20 6d 61 79 20 65 | 76 65 6e 74 75 61 6c 6c |on may e|ventuall|
|000023e0| 79 20 67 69 76 65 0d 09 | 4c 4e f4 20 72 69 73 65 |y give..|LN. rise|
|000023f0| 20 61 6e 20 78 2d 69 6e | 74 65 72 76 61 6c 20 77 | an x-in|terval w|
|00002400| 68 69 63 68 20 69 73 20 | 31 2f 38 31 39 32 6e 64 |hich is |1/8192nd|
|00002410| 20 6f 66 20 74 68 65 20 | 6f 72 69 67 69 6e 61 6c | of the |original|
|00002420| 2e 20 4f 6e 20 72 65 61 | 63 68 69 6e 67 20 73 75 |. On rea|ching su|
|00002430| 63 68 20 61 0d 09 56 4f | f4 20 73 6d 61 6c 6c 20 |ch a..VO|. small |
|00002440| 73 75 62 2d 64 69 76 69 | 73 69 6f 6e 20 6f 66 20 |sub-divi|sion of |
|00002450| 74 68 65 20 6f 72 69 67 | 69 6e 61 6c 20 78 2d 69 |the orig|inal x-i|
|00002460| 6e 74 65 76 61 6c 2c 20 | 6e 6f 20 61 74 74 65 6d |nteval, |no attem|
|00002470| 70 74 20 69 73 20 6d 61 | 64 65 20 74 6f 20 66 69 |pt is ma|de to fi|
|00002480| 74 20 61 0d 09 60 4b f4 | 20 62 65 7a 69 65 72 20 |t a..`K.| bezier |
|00002490| 63 75 72 76 65 20 73 65 | 67 6d 65 6e 74 20 61 6e |curve se|gment an|
|000024a0| 64 20 69 6e 73 74 65 61 | 64 20 61 20 73 74 72 61 |d instea|d a stra|
|000024b0| 69 67 68 74 20 6c 69 6e | 65 20 73 65 67 6d 65 6e |ight lin|e segmen|
|000024c0| 74 20 69 73 20 69 6e 73 | 65 72 74 65 64 2e 0d 09 |t is ins|erted...|
|000024d0| 6a 4e f4 20 41 70 61 72 | 74 20 66 72 6f 6d 20 70 |jN. Apar|t from p|
|000024e0| 72 65 76 65 6e 74 69 6e | 67 20 74 68 65 20 70 72 |reventin|g the pr|
|000024f0| 6f 63 65 64 75 72 65 20 | 63 72 65 61 74 69 6e 67 |ocedure |creating|
|00002500| 20 63 75 72 76 65 73 20 | 77 69 74 68 20 68 75 67 | curves |with hug|
|00002510| 65 20 6e 75 6d 62 65 72 | 73 20 6f 66 0d 09 74 4e |e number|s of..tN|
|00002520| f4 20 73 65 67 6d 65 6e | 74 73 2c 20 74 68 69 73 |. segmen|ts, this|
|00002530| 20 63 61 6e 20 62 65 20 | 71 75 69 74 65 20 75 73 | can be |quite us|
|00002540| 65 66 75 6c 20 2d 20 73 | 65 65 20 65 78 61 6d 70 |eful - s|ee examp|
|00002550| 6c 65 73 20 31 36 20 26 | 20 31 37 2e 20 46 6f 72 |les 16 &| 17. For|
|00002560| 20 64 69 66 66 69 63 75 | 6c 74 0d 09 7e 4c f4 20 | difficu|lt..~L. |
|00002570| 66 75 6e 63 74 69 6f 6e | 73 20 73 75 63 68 20 61 |function|s such a|
|00002580| 73 20 74 68 65 73 65 2c | 20 74 68 65 20 63 75 72 |s these,| the cur|
|00002590| 76 65 20 66 69 74 74 69 | 6e 67 20 70 72 6f 63 65 |ve fitti|ng proce|
|000025a0| 73 73 20 63 61 6e 20 62 | 65 20 73 70 65 65 64 65 |ss can b|e speede|
|000025b0| 64 20 75 70 20 61 0d 09 | 88 4b f4 20 6c 69 74 74 |d up a..|.K. litt|
|000025c0| 6c 65 20 62 79 20 73 65 | 74 74 69 6e 67 20 78 73 |le by se|tting xs|
|000025d0| 6d 69 6e 20 3d 20 31 2f | 34 30 30 30 74 68 20 6f |min = 1/|4000th o|
|000025e0| 72 20 31 2f 32 30 30 30 | 74 68 20 6f 72 20 31 2f |r 1/2000|th or 1/|
|000025f0| 31 30 30 30 74 68 20 65 | 74 63 20 6f 66 20 74 68 |1000th e|tc of th|
|00002600| 65 0d 09 92 48 f4 20 6f | 72 69 67 69 6e 61 6c 20 |e...H. o|riginal |
|00002610| 78 2d 69 6e 74 65 72 76 | 61 6c 2c 20 62 75 74 20 |x-interv|al, but |
|00002620| 74 68 69 73 20 77 69 6c | 6c 20 72 65 64 75 63 65 |this wil|l reduce|
|00002630| 20 74 68 65 20 61 63 63 | 75 72 61 63 79 20 6f 66 | the acc|uracy of|
|00002640| 20 74 68 65 20 66 69 74 | 2e 0d 09 9c 05 f4 0d 09 | the fit|........|
|00002650| a6 46 f4 20 46 6f 72 20 | 66 75 6e 63 74 69 6f 6e |.F. For |function|
|00002660| 73 20 77 69 74 68 20 72 | 61 70 69 64 20 63 68 61 |s with r|apid cha|
|00002670| 6e 67 65 73 20 69 6e 20 | 73 6c 6f 70 65 20 28 65 |nges in |slope (e|
|00002680| 2e 67 2e 20 79 20 3d 20 | 74 61 6e 28 78 29 29 2c |.g. y = |tan(x)),|
|00002690| 20 74 68 65 0d 09 b0 4d | f4 20 70 72 6f 63 65 64 | the...M|. proced|
|000026a0| 75 72 65 20 6d 61 79 20 | 66 61 69 6c 20 69 66 20 |ure may |fail if |
|000026b0| 74 68 65 20 76 65 72 74 | 69 63 61 6c 20 72 61 6e |the vert|ical ran|
|000026c0| 67 65 20 69 73 20 73 6d | 61 6c 6c 65 72 20 74 68 |ge is sm|aller th|
|000026d0| 61 6e 20 74 68 65 20 68 | 6f 72 69 7a 6f 6e 74 61 |an the h|orizonta|
|000026e0| 6c 0d 09 ba 4a f4 20 72 | 61 6e 67 65 3b 20 74 72 |l...J. r|ange; tr|
|000026f0| 79 20 79 20 3d 20 54 41 | 4e 28 52 41 44 28 78 29 |y y = TA|N(RAD(x)|
|00002700| 29 20 2f 20 31 30 30 30 | 20 66 6f 72 20 78 20 3d |) / 1000| for x =|
|00002710| 20 30 20 54 4f 20 38 39 | 2e 35 2e 20 54 68 65 20 | 0 TO 89|.5. The |
|00002720| 73 6f 6c 75 74 69 6f 6e | 20 69 73 0d 09 c4 4e f4 |solution| is...N.|
|00002730| 20 73 69 6d 70 6c 79 20 | 74 6f 20 73 63 61 6c 65 | simply |to scale|
|00002740| 20 75 70 20 74 68 65 20 | 79 20 76 61 6c 75 65 73 | up the |y values|
|00002750| 20 69 6e 20 44 45 46 20 | 46 4e 75 73 65 72 5f 66 | in DEF |FNuser_f|
|00002760| 75 6e 63 74 69 6f 6e 20 | 28 62 75 74 20 69 66 20 |unction |(but if |
|00002770| 74 68 65 20 63 75 72 76 | 65 0d 09 ce 4d f4 20 64 |the curv|e...M. d|
|00002780| 61 74 61 20 69 73 20 77 | 72 69 74 74 65 6e 20 64 |ata is w|ritten d|
|00002790| 69 72 65 63 74 6c 79 20 | 74 6f 20 74 68 65 20 64 |irectly |to the d|
|000027a0| 72 61 77 66 69 6c 65 20 | 79 6f 75 20 77 6f 75 6c |rawfile |you woul|
|000027b0| 64 20 6e 65 65 64 20 74 | 6f 20 72 65 76 65 72 73 |d need t|o revers|
|000027c0| 65 20 74 68 69 73 0d 09 | d8 25 f4 20 73 63 61 6c |e this..|.%. scal|
|000027d0| 69 6e 67 20 66 6f 72 20 | 74 68 65 20 79 2d 63 6f |ing for |the y-co|
|000027e0| 6f 72 64 69 6e 61 74 65 | 73 29 2e 0d 09 e2 05 f4 |ordinate|s)......|
|000027f0| 0d 09 ec 4c f4 20 49 6e | 69 74 69 61 6c 6c 79 20 |...L. In|itially |
|00002800| 74 68 65 20 78 2d 63 6f | 6f 72 64 73 20 6f 66 20 |the x-co|ords of |
|00002810| 74 68 65 20 69 6e 74 65 | 72 76 65 6e 69 6e 67 20 |the inte|rvening |
|00002820| 63 6f 6e 74 72 6f 6c 20 | 70 6f 69 6e 74 73 20 78 |control |points x|
|00002830| 31 20 61 6e 64 20 78 32 | 20 61 72 65 0d 09 f6 4b |1 and x2| are...K|
|00002840| f4 20 73 65 74 20 61 74 | 20 31 2f 33 72 64 20 61 |. set at| 1/3rd a|
|00002850| 6e 64 20 32 2f 33 72 64 | 73 20 6f 66 20 74 68 65 |nd 2/3rd|s of the|
|00002860| 20 64 69 73 74 61 6e 63 | 65 20 62 65 74 77 65 65 | distanc|e betwee|
|00002870| 6e 20 74 68 65 20 65 6e | 64 2d 70 6f 69 6e 74 73 |n the en|d-points|
|00002880| 20 78 30 20 61 6e 64 0d | 0a 00 49 f4 20 78 33 2e | x0 and.|..I. x3.|
|00002890| 20 54 68 65 20 63 6f 72 | 72 65 73 70 6f 6e 64 69 | The cor|respondi|
|000028a0| 6e 67 20 79 2d 63 6f 6f | 72 64 73 20 61 72 65 20 |ng y-coo|rds are |
|000028b0| 63 61 6c 63 75 6c 61 74 | 65 64 20 66 72 6f 6d 20 |calculat|ed from |
|000028c0| 74 68 65 20 73 6c 6f 70 | 65 20 6f 66 20 74 68 65 |the slop|e of the|
|000028d0| 0d 0a 0a 4e f4 20 75 73 | 65 72 2d 66 75 6e 63 74 |...N. us|er-funct|
|000028e0| 69 6f 6e 20 61 74 20 74 | 68 65 20 65 6e 64 2d 70 |ion at t|he end-p|
|000028f0| 6f 69 6e 74 73 20 28 73 | 6f 20 69 66 20 74 68 65 |oints (s|o if the|
|00002900| 20 66 75 6e 63 74 69 6f | 6e 20 69 73 20 6c 69 6e | functio|n is lin|
|00002910| 65 61 72 20 62 65 74 77 | 65 65 6e 20 78 30 0d 0a |ear betw|een x0..|
|00002920| 14 4b f4 20 61 6e 64 20 | 78 33 20 74 68 65 6e 20 |.K. and |x3 then |
|00002930| 74 68 65 20 63 6f 6e 74 | 72 6f 6c 20 70 6f 69 6e |the cont|rol poin|
|00002940| 74 73 20 61 72 65 20 61 | 6c 72 65 61 64 79 20 69 |ts are a|lready i|
|00002950| 6e 20 74 68 65 20 63 6f | 72 72 65 63 74 20 70 6f |n the co|rrect po|
|00002960| 73 69 74 69 6f 6e 73 29 | 2e 0d 0a 1e 4d f4 20 53 |sitions)|....M. S|
|00002970| 6c 6f 70 65 73 20 61 72 | 65 20 61 6c 73 6f 20 63 |lopes ar|e also c|
|00002980| 61 6c 63 75 6c 61 74 65 | 64 20 66 6f 72 20 78 31 |alculate|d for x1|
|00002990| 20 61 6e 64 20 78 32 3b | 20 69 66 20 61 6e 79 20 | and x2;| if any |
|000029a0| 73 6c 6f 70 65 20 69 73 | 20 3e 31 30 20 74 68 65 |slope is| >10 the|
|000029b0| 6e 20 31 30 20 78 0d 0a | 28 44 f4 20 76 61 6c 75 |n 10 x..|(D. valu|
|000029c0| 65 73 20 61 72 65 20 67 | 65 6e 65 72 61 74 65 64 |es are g|enerated|
|000029d0| 20 62 65 74 77 65 65 6e | 20 78 30 20 61 6e 64 20 | between| x0 and |
|000029e0| 78 33 2c 20 6f 74 68 65 | 72 77 69 73 65 20 35 20 |x3, othe|rwise 5 |
|000029f0| 76 61 6c 75 65 73 20 61 | 72 65 0d 0a 32 4a f4 20 |values a|re..2J. |
|00002a00| 67 65 6e 65 72 61 74 65 | 64 2e 20 46 6f 72 20 65 |generate|d. For e|
|00002a10| 61 63 68 2c 20 74 68 65 | 20 63 6f 72 72 65 73 70 |ach, the| corresp|
|00002a20| 6f 6e 64 69 6e 67 20 79 | 20 76 61 6c 75 65 20 69 |onding y| value i|
|00002a30| 73 20 6f 62 74 61 69 6e | 65 64 20 75 73 69 6e 67 |s obtain|ed using|
|00002a40| 20 74 68 65 0d 0a 3c 4d | f4 20 75 73 65 72 2d 66 | the..<M|. user-f|
|00002a50| 75 6e 63 74 69 6f 6e 2e | 20 41 20 6e 6f 6e 2d 6c |unction.| A non-l|
|00002a60| 69 6e 65 61 72 20 72 65 | 67 72 65 73 73 69 6f 6e |inear re|gression|
|00002a70| 20 6d 65 74 68 6f 64 20 | 69 73 20 74 68 65 6e 20 | method |is then |
|00002a80| 75 73 65 64 20 74 6f 20 | 61 64 6a 75 73 74 20 78 |used to |adjust x|
|00002a90| 31 0d 0a 46 47 f4 20 61 | 6e 64 20 78 32 20 73 6f |1..FG. a|nd x2 so|
|00002aa0| 20 74 68 61 74 20 74 68 | 65 20 62 65 7a 69 65 72 | that th|e bezier|
|00002ab0| 20 63 75 72 76 65 20 6d | 61 74 63 68 65 73 20 74 | curve m|atches t|
|00002ac0| 68 61 74 20 64 65 66 69 | 6e 65 64 20 62 79 20 74 |hat defi|ned by t|
|00002ad0| 68 65 20 75 73 65 72 2d | 0d 0a 50 4e f4 20 66 75 |he user-|..PN. fu|
|00002ae0| 6e 63 74 69 6f 6e 20 28 | 69 6e 20 78 28 29 20 61 |nction (|in x() a|
|00002af0| 6e 64 20 79 28 29 29 2e | 20 49 66 20 73 75 63 63 |nd y()).| If succ|
|00002b00| 65 73 73 66 75 6c 20 28 | 72 6d 73 20 3c 3d 20 74 |essful (|rms <= t|
|00002b10| 61 72 67 65 74 20 72 6d | 73 29 2c 20 74 68 65 20 |arget rm|s), the |
|00002b20| 62 65 7a 69 65 72 0d 0a | 5a 48 f4 20 63 6f 6f 72 |bezier..|ZH. coor|
|00002b30| 64 73 20 61 72 65 20 77 | 72 69 74 74 65 6e 20 74 |ds are w|ritten t|
|00002b40| 6f 20 74 68 65 20 64 72 | 61 77 66 69 6c 65 20 6f |o the dr|awfile o|
|00002b50| 74 68 65 72 77 69 73 65 | 20 74 68 65 20 69 6e 74 |therwise| the int|
|00002b60| 65 72 76 61 6c 20 78 30 | 2d 78 33 20 69 73 0d 0a |erval x0|-x3 is..|
|00002b70| 64 3e f4 20 64 69 76 69 | 64 65 64 20 69 6e 20 74 |d>. divi|ded in t|
|00002b80| 77 6f 20 61 6e 64 20 74 | 68 65 20 73 61 6d 65 20 |wo and t|he same |
|00002b90| 6d 65 74 68 6f 64 20 61 | 70 70 6c 69 65 64 20 74 |method a|pplied t|
|00002ba0| 6f 20 65 61 63 68 20 68 | 61 6c 66 2e 0d 0a 6e 04 |o each h|alf...n.|
|00002bb0| 0d 0a 78 3f dd 20 f2 66 | 69 74 5f 62 65 7a 69 65 |..x?. .f|it_bezie|
|00002bc0| 72 5f 63 75 72 76 65 28 | 78 6d 69 6e 2c 20 78 6d |r_curve(|xmin, xm|
|00002bd0| 61 78 2c 20 f8 20 6e 73 | 65 67 25 2c 20 f8 20 70 |ax, . ns|eg%, . p|
|00002be0| 25 2c 20 74 72 6d 73 2c | 20 78 73 6d 69 6e 29 0d |%, trms,| xsmin).|
|00002bf0| 0a 82 4a 20 20 ea 20 78 | 28 29 2c 20 79 28 29 2c |..J . x|(), y(),|
|00002c00| 20 62 63 70 28 29 2c 20 | 75 2c 20 74 2c 20 72 2c | bcp(), |u, t, r,|
|00002c10| 20 72 6d 73 2c 20 79 6d | 69 6e 2c 20 79 6d 61 78 | rms, ym|in, ymax|
|00002c20| 2c 20 69 25 2c 20 6e 25 | 2c 20 75 30 2c 20 75 73 |, i%, n%|, u0, us|
|00002c30| 2c 20 64 2c 20 76 2c 20 | 73 0d 0a 8c 10 20 20 de |, d, v, |s.... .|
|00002c40| 20 62 63 70 28 32 2c 33 | 29 0d 0a 96 30 20 20 e7 | bcp(2,3|)...0 .|
|00002c50| 20 78 73 6d 69 6e 20 3d | 20 30 20 8c 20 78 73 6d | xsmin =| 0 . xsm|
|00002c60| 69 6e 20 3d 20 28 78 6d | 61 78 20 2d 20 78 6d 69 |in = (xm|ax - xmi|
|00002c70| 6e 29 20 2f 20 38 30 30 | 30 0d 0a a0 26 20 20 72 |n) / 800|0...& r|
|00002c80| 20 3d 20 78 6d 61 78 20 | 2d 20 78 6d 69 6e 20 3a | = xmax |- xmin :|
|00002c90| 20 74 20 3d 20 72 20 2a | 20 30 2e 30 30 30 31 0d | t = r *| 0.0001.|
|00002ca0| 0a aa 13 20 20 e7 20 72 | 20 3c 20 78 73 6d 69 6e |... . r| < xsmin|
|00002cb0| 20 8c 0d 0a b4 15 20 20 | 20 20 e7 20 6e 73 65 67 | ..... | . nseg|
|00002cc0| 25 20 3d 20 30 20 8c 0d | 0a be 11 20 20 20 20 20 |% = 0 ..|... |
|00002cd0| 20 21 70 25 20 3d 20 32 | 0d 0a c8 1e 20 20 20 20 | !p% = 2|.... |
|00002ce0| 20 20 70 25 21 34 20 3d | 20 a4 78 73 63 61 6c 65 | p%!4 =| .xscale|
|00002cf0| 28 78 6d 69 6e 29 0d 0a | d2 2e 20 20 20 20 20 20 |(xmin)..|.. |
|00002d00| 70 25 21 38 20 3d 20 a4 | 79 73 63 61 6c 65 28 a4 |p%!8 = .|yscale(.|
|00002d10| 75 73 65 72 5f 66 75 6e | 63 74 69 6f 6e 28 78 6d |user_fun|ction(xm|
|00002d20| 69 6e 29 29 0d 0a dc 12 | 20 20 20 20 20 20 70 25 |in))....| p%|
|00002d30| 20 2b 3d 20 31 32 0d 0a | e6 09 20 20 20 20 cd 0d | += 12..|.. ..|
|00002d40| 0a f0 12 20 20 20 20 6e | 73 65 67 25 20 2b 3d 20 |... n|seg% += |
|00002d50| 31 0d 0a fa 0f 20 20 20 | 20 21 70 25 20 3d 20 38 |1.... | !p% = 8|
|00002d60| 0d 0b 04 1c 20 20 20 20 | 70 25 21 34 20 3d 20 a4 |.... |p%!4 = .|
|00002d70| 78 73 63 61 6c 65 28 78 | 6d 61 78 29 0d 0b 0e 2c |xscale(x|max)...,|
|00002d80| 20 20 20 20 70 25 21 38 | 20 3d 20 a4 79 73 63 61 | p%!8| = .ysca|
|00002d90| 6c 65 28 a4 75 73 65 72 | 5f 66 75 6e 63 74 69 6f |le(.user|_functio|
|00002da0| 6e 28 78 6d 61 78 29 29 | 0d 0b 18 10 20 20 20 20 |n(xmax))|.... |
|00002db0| 70 25 20 2b 3d 20 31 32 | 0d 0b 22 07 20 20 cc 0d |p% += 12|..". ..|
|00002dc0| 0b 2c 30 20 20 20 20 75 | 30 20 3d 20 30 2e 31 20 |.,0 u|0 = 0.1 |
|00002dd0| 3a 20 75 73 20 3d 20 30 | 2e 32 20 3a 20 6e 25 20 |: us = 0|.2 : n% |
|00002de0| 3d 20 35 20 3a 20 64 20 | 3d 20 30 2e 30 30 31 0d |= 5 : d |= 0.001.|
|00002df0| 0b 36 14 20 20 20 20 e3 | 20 69 25 20 3d 20 30 20 |.6. .| i% = 0 |
|00002e00| b8 20 33 0d 0b 40 1b 20 | 20 20 20 20 20 e7 20 69 |. 3..@. | . i|
|00002e10| 25 20 3e 20 32 20 8c 20 | 74 20 3d 20 2d 74 0d 0b |% > 2 . |t = -t..|
|00002e20| 4a 2b 20 20 20 20 20 20 | 75 20 3d 20 78 6d 69 6e |J+ |u = xmin|
|00002e30| 20 2b 20 69 25 20 2f 20 | 33 20 2a 20 28 78 6d 61 | + i% / |3 * (xma|
|00002e40| 78 20 2d 20 78 6d 69 6e | 29 0d 0b 54 17 20 20 20 |x - xmin|)..T. |
|00002e50| 20 20 20 62 63 70 28 30 | 2c 69 25 29 20 3d 20 75 | bcp(0|,i%) = u|
|00002e60| 0d 0b 5e 1f 20 20 20 20 | 20 20 76 20 3d 20 a4 75 |..^. | v = .u|
|00002e70| 73 65 72 5f 66 75 6e 63 | 74 69 6f 6e 28 75 29 0d |ser_func|tion(u).|
|00002e80| 0b 68 17 20 20 20 20 20 | 20 62 63 70 28 31 2c 69 |.h. | bcp(1,i|
|00002e90| 25 29 20 3d 20 76 0d 0b | 72 1f 20 20 20 20 20 20 |%) = v..|r. |
|00002ea0| e7 20 76 20 3c 20 79 6d | 69 6e 20 8c 20 79 6d 69 |. v < ym|in . ymi|
|00002eb0| 6e 20 3d 20 76 0d 0b 7c | 1f 20 20 20 20 20 20 e7 |n = v..||. .|
|00002ec0| 20 76 20 3e 20 79 6d 61 | 78 20 8c 20 79 6d 61 78 | v > yma|x . ymax|
|00002ed0| 20 3d 20 76 0d 0b 86 1d | 20 20 20 20 20 20 73 20 | = v....| s |
|00002ee0| 3d 20 a4 75 66 5f 73 6c | 6f 70 65 28 75 2c 20 74 |= .uf_sl|ope(u, t|
|00002ef0| 29 0d 0b 90 17 20 20 20 | 20 20 20 62 63 70 28 32 |).... | bcp(2|
|00002f00| 2c 69 25 29 20 3d 20 73 | 0d 0b 9a 43 20 20 20 20 |,i%) = s|...C |
|00002f10| 20 20 e7 20 94 28 73 29 | 20 3e 20 31 30 20 8c 20 | . .(s)| > 10 . |
|00002f20| 75 30 20 3d 20 30 2e 30 | 35 20 3a 20 75 73 20 3d |u0 = 0.0|5 : us =|
|00002f30| 20 30 2e 31 20 3a 20 6e | 25 20 3d 20 31 30 20 3a | 0.1 : n|% = 10 :|
|00002f40| 20 64 20 3d 20 30 2e 30 | 30 30 31 0d 0b a4 09 20 | d = 0.0|001.... |
|00002f50| 20 20 20 ed 0d 0b ae 16 | 20 20 20 20 de 20 78 28 | .....| . x(|
|00002f60| 6e 25 29 2c 20 79 28 6e | 25 29 0d 0b b8 17 20 20 |n%), y(n|%).... |
|00002f70| 20 20 69 25 20 3d 20 30 | 20 3a 20 75 20 3d 20 75 | i% = 0| : u = u|
|00002f80| 30 0d 0b c2 13 20 20 20 | 20 c8 95 20 75 20 3c 20 |0.... | .. u < |
|00002f90| 30 2e 39 39 0d 0b cc 24 | 20 20 20 20 20 20 69 25 |0.99...$| i%|
|00002fa0| 20 2b 3d 20 31 20 3a 20 | 74 20 3d 20 72 20 2a 20 | += 1 : |t = r * |
|00002fb0| 75 20 2b 20 78 6d 69 6e | 0d 0b d6 13 20 20 20 20 |u + xmin|.... |
|00002fc0| 20 20 78 28 69 25 29 20 | 3d 20 74 0d 0b e0 23 20 | x(i%) |= t...# |
|00002fd0| 20 20 20 20 20 79 28 69 | 25 29 20 3d 20 a4 75 73 | y(i|%) = .us|
|00002fe0| 65 72 5f 66 75 6e 63 74 | 69 6f 6e 28 74 29 0d 0b |er_funct|ion(t)..|
|00002ff0| ea 27 20 20 20 20 20 20 | e7 20 79 28 69 25 29 20 |.' |. y(i%) |
|00003000| 3e 20 79 6d 61 78 20 8c | 20 79 6d 61 78 20 3d 20 |> ymax .| ymax = |
|00003010| 79 28 69 25 29 0d 0b f4 | 27 20 20 20 20 20 20 e7 |y(i%)...|' .|
|00003020| 20 79 28 69 25 29 20 3c | 20 79 6d 69 6e 20 8c 20 | y(i%) <| ymin . |
|00003030| 79 6d 69 6e 20 3d 20 79 | 28 69 25 29 0d 0b fe 11 |ymin = y|(i%)....|
|00003040| 20 20 20 20 20 20 75 20 | 2b 3d 20 75 73 0d 0c 08 | u |+= us...|
|00003050| 09 20 20 20 20 ce 0d 0c | 12 14 20 20 20 20 e7 20 |. ...|.. . |
|00003060| 74 72 6d 73 20 3d 20 30 | 20 8c 0d 0c 1c 26 20 20 |trms = 0| ....& |
|00003070| 20 20 20 20 74 72 6d 73 | 20 3d 20 28 79 6d 61 78 | trms| = (ymax|
|00003080| 20 2d 20 79 6d 69 6e 29 | 20 2a 20 30 2e 30 30 31 | - ymin)| * 0.001|
|00003090| 0d 0c 26 16 20 20 20 20 | 20 20 e7 20 74 72 6d 73 |..&. | . trms|
|000030a0| 20 3d 20 30 20 8c 0d 0c | 30 3b 20 20 20 20 20 20 | = 0 ...|0; |
|000030b0| 20 20 e7 20 79 6d 69 6e | 20 3d 20 30 20 8c 20 74 | . ymin| = 0 . t|
|000030c0| 72 6d 73 20 3d 20 30 2e | 30 30 31 20 8b 20 74 72 |rms = 0.|001 . tr|
|000030d0| 6d 73 20 3d 20 79 6d 69 | 6e 20 2a 20 30 2e 30 30 |ms = ymi|n * 0.00|
|000030e0| 31 0d 0c 3a 0b 20 20 20 | 20 20 20 cd 0d 0c 44 09 |1..:. | ...D.|
|000030f0| 20 20 20 20 cd 0d 0c 4e | 31 20 20 20 20 f2 6e 6c | ...N|1 .nl|
|00003100| 72 32 70 28 6e 25 2c 20 | 78 28 29 2c 20 79 28 29 |r2p(n%, |x(), y()|
|00003110| 2c 20 62 63 70 28 29 2c | 20 74 72 6d 73 2c 20 72 |, bcp(),| trms, r|
|00003120| 6d 73 2c 20 64 29 0d 0c | 58 16 20 20 20 20 e7 20 |ms, d)..|X. . |
|00003130| 72 6d 73 20 3e 20 74 72 | 6d 73 20 8c 0d 0c 62 1c |rms > tr|ms ...b.|
|00003140| 20 20 20 20 20 20 75 20 | 3d 20 72 20 2a 20 30 2e | u |= r * 0.|
|00003150| 35 20 2b 20 78 6d 69 6e | 0d 0c 6c 3c 20 20 20 20 |5 + xmin|..l< |
|00003160| 20 20 f2 66 69 74 5f 62 | 65 7a 69 65 72 5f 63 75 | .fit_b|ezier_cu|
|00003170| 72 76 65 28 78 6d 69 6e | 2c 20 75 2c 20 6e 73 65 |rve(xmin|, u, nse|
|00003180| 67 25 2c 20 70 25 2c 20 | 74 72 6d 73 2c 20 78 73 |g%, p%, |trms, xs|
|00003190| 6d 69 6e 29 0d 0c 76 3c | 20 20 20 20 20 20 f2 66 |min)..v<| .f|
|000031a0| 69 74 5f 62 65 7a 69 65 | 72 5f 63 75 72 76 65 28 |it_bezie|r_curve(|
|000031b0| 75 2c 20 78 6d 61 78 2c | 20 6e 73 65 67 25 2c 20 |u, xmax,| nseg%, |
|000031c0| 70 25 2c 20 74 72 6d 73 | 2c 20 78 73 6d 69 6e 29 |p%, trms|, xsmin)|
|000031d0| 0d 0c 80 09 20 20 20 20 | cc 0d 0c 8a 17 20 20 20 |.... |..... |
|000031e0| 20 20 20 e7 20 6e 73 65 | 67 25 20 3d 20 30 20 8c | . nse|g% = 0 .|
|000031f0| 0d 0c 94 13 20 20 20 20 | 20 20 20 20 21 70 25 20 |.... | !p% |
|00003200| 3d 20 32 0d 0c 9e 24 20 | 20 20 20 20 20 20 20 70 |= 2...$ | p|
|00003210| 25 21 34 20 3d 20 a4 78 | 73 63 61 6c 65 28 62 63 |%!4 = .x|scale(bc|
|00003220| 70 28 30 2c 30 29 29 0d | 0c a8 24 20 20 20 20 20 |p(0,0)).|..$ |
|00003230| 20 20 20 70 25 21 38 20 | 3d 20 a4 79 73 63 61 6c | p%!8 |= .yscal|
|00003240| 65 28 62 63 70 28 31 2c | 30 29 29 0d 0c b2 14 20 |e(bcp(1,|0)).... |
|00003250| 20 20 20 20 20 20 20 70 | 25 20 2b 3d 20 31 32 0d | p|% += 12.|
|00003260| 0c bc 0b 20 20 20 20 20 | 20 cd 0d 0c c6 28 20 20 |... | ....( |
|00003270| 20 20 20 20 6e 73 65 67 | 25 20 2b 3d 20 31 20 3a | nseg|% += 1 :|
|00003280| 20 21 70 25 20 3d 20 36 | 20 3a 20 70 25 20 2b 3d | !p% = 6| : p% +=|
|00003290| 20 34 0d 0c d0 16 20 20 | 20 20 20 20 e3 20 69 25 | 4.... | . i%|
|000032a0| 20 3d 20 31 20 b8 20 33 | 0d 0c da 24 20 20 20 20 | = 1 . 3|...$ |
|000032b0| 20 20 20 20 21 70 25 20 | 3d 20 a4 78 73 63 61 6c | !p% |= .xscal|
|000032c0| 65 28 62 63 70 28 30 2c | 69 25 29 29 0d 0c e4 25 |e(bcp(0,|i%))...%|
|000032d0| 20 20 20 20 20 20 20 20 | 70 25 21 34 20 3d 20 a4 | |p%!4 = .|
|000032e0| 79 73 63 61 6c 65 28 62 | 63 70 28 31 2c 69 25 29 |yscale(b|cp(1,i%)|
|000032f0| 29 0d 0c ee 13 20 20 20 | 20 20 20 20 20 70 25 20 |).... | p% |
|00003300| 2b 3d 20 38 0d 0c f8 0b | 20 20 20 20 20 20 ed 0d |+= 8....| ..|
|00003310| 0d 02 09 20 20 20 20 cd | 0d 0d 0c 07 20 20 cd 0d |... .|.... ..|
|00003320| 0d 16 05 e1 0d 0d 20 04 | 0d 0d 2a 04 0d 0d 34 4a |...... .|..*...4J|
|00003330| f4 20 54 68 65 73 65 20 | 66 75 6e 63 74 69 6f 6e |. These |function|
|00003340| 73 20 63 6f 6e 76 65 72 | 74 20 78 20 26 20 79 20 |s conver|t x & y |
|00003350| 70 6c 6f 74 20 75 6e 69 | 74 73 20 74 6f 20 6d 6d |plot uni|ts to mm|
|00003360| 20 61 6e 64 20 6d 6d 20 | 74 6f 20 64 72 61 77 20 | and mm |to draw |
|00003370| 75 6e 69 74 73 2e 0d 0d | 3e 04 0d 0d 48 10 dd 20 |units...|>...H.. |
|00003380| a4 78 73 63 61 6c 65 28 | 78 29 0d 0d 52 53 3d 20 |.xscale(|x)..RS= |
|00003390| a4 6d 6d 32 64 75 28 28 | 28 78 20 2d 20 66 75 6e |.mm2du((|(x - fun|
|000033a0| 63 5f 78 6d 69 6e 29 20 | 2f 20 28 66 75 6e 63 5f |c_xmin) |/ (func_|
|000033b0| 78 6d 61 78 20 2d 20 66 | 75 6e 63 5f 78 6d 69 6e |xmax - f|unc_xmin|
|000033c0| 29 29 20 2a 20 28 61 78 | 6d 61 78 20 2d 20 61 78 |)) * (ax|max - ax|
|000033d0| 6d 69 6e 29 20 2b 20 61 | 78 6d 69 6e 29 0d 0d 5c |min) + a|xmin)..\|
|000033e0| 04 0d 0d 66 10 dd 20 a4 | 79 73 63 61 6c 65 28 79 |...f.. .|yscale(y|
|000033f0| 29 0d 0d 70 53 3d 20 a4 | 6d 6d 32 64 75 28 28 28 |)..pS= .|mm2du(((|
|00003400| 79 20 2d 20 66 75 6e 63 | 5f 79 6d 69 6e 29 20 2f |y - func|_ymin) /|
|00003410| 20 28 66 75 6e 63 5f 79 | 6d 61 78 20 2d 20 66 75 | (func_y|max - fu|
|00003420| 6e 63 5f 79 6d 69 6e 29 | 29 20 2a 20 28 61 79 6d |nc_ymin)|) * (aym|
|00003430| 61 78 20 2d 20 61 79 6d | 69 6e 29 20 2b 20 61 79 |ax - aym|in) + ay|
|00003440| 6d 69 6e 29 0d 0d 7a 04 | 0d 0d 84 0f dd 20 a4 6d |min)..z.|..... .m|
|00003450| 6d 32 64 75 28 76 29 0d | 0d 8e 19 3d 20 36 34 30 |m2du(v).|...= 640|
|00003460| 20 2a 20 37 32 20 2f 20 | 32 35 2e 34 20 2a 20 76 | * 72 / |25.4 * v|
|00003470| 0d 0d 98 04 0d 0d a2 04 | 0d 0d ac 2a f4 20 45 76 |........|...*. Ev|
|00003480| 61 6c 75 61 74 65 20 74 | 68 65 20 75 73 65 72 2d |aluate t|he user-|
|00003490| 73 75 70 70 6c 69 65 64 | 20 66 75 6e 63 74 69 6f |supplied| functio|
|000034a0| 6e 2e 0d 0d b6 04 0d 0d | c0 17 dd 20 a4 75 73 65 |n.......|... .use|
|000034b0| 72 5f 66 75 6e 63 74 69 | 6f 6e 28 78 29 0d 0d ca |r_functi|on(x)...|
|000034c0| 09 20 20 ea 20 79 0d 0d | d4 16 20 20 79 20 3d 20 |. . y..|.. y = |
|000034d0| a0 28 66 75 6e 63 74 69 | 6f 6e 24 29 0d 0d de 1a |.(functi|on$)....|
|000034e0| 20 20 e7 20 66 75 6e 63 | 5f 79 6c 69 6d 69 74 20 | . func|_ylimit |
|000034f0| 3c 3e 20 30 20 8c 0d 0d | e8 35 20 20 20 20 e7 20 |<> 0 ...|.5 . |
|00003500| 94 28 79 29 20 3e 20 66 | 75 6e 63 5f 79 6c 69 6d |.(y) > f|unc_ylim|
|00003510| 69 74 20 8c 20 79 20 3d | 20 b4 28 79 29 20 2a 20 |it . y =| .(y) * |
|00003520| 66 75 6e 63 5f 79 6c 69 | 6d 69 74 0d 0d f2 07 20 |func_yli|mit.... |
|00003530| 20 cd 0d 0d fc 07 3d 20 | 79 0d 0e 06 04 0d 0e 10 | .....= |y.......|
|00003540| 04 0d 0e 1a 4a f4 20 43 | 61 6c 63 75 6c 61 74 65 |....J. C|alculate|
|00003550| 20 74 68 65 20 73 6c 6f | 70 65 20 6f 66 20 74 68 | the slo|pe of th|
|00003560| 65 20 75 73 65 72 2d 73 | 75 70 70 6c 69 65 64 20 |e user-s|upplied |
|00003570| 66 75 6e 63 74 69 6f 6e | 20 61 74 20 78 20 75 73 |function| at x us|
|00003580| 69 6e 67 20 61 20 64 65 | 6c 74 61 0d 0e 24 3f f4 |ing a de|lta..$?.|
|00003590| 20 76 61 6c 75 65 20 64 | 20 28 63 6f 75 6c 64 20 | value d| (could |
|000035a0| 64 6f 20 74 68 69 73 20 | 61 6c 67 65 62 72 61 69 |do this |algebrai|
|000035b0| 63 61 6c 6c 79 20 66 6f | 72 20 73 6f 6d 65 20 66 |cally fo|r some f|
|000035c0| 75 6e 63 74 69 6f 6e 73 | 29 2e 0d 0e 2e 04 0d 0e |unctions|).......|
|000035d0| 38 15 dd 20 a4 75 66 5f | 73 6c 6f 70 65 28 78 2c |8.. .uf_|slope(x,|
|000035e0| 20 64 29 0d 0e 42 11 20 | 20 ea 20 79 31 2c 20 79 | d)..B. | . y1, y|
|000035f0| 32 2c 20 73 0d 0e 4c 1c | 20 20 79 31 20 3d 20 a4 |2, s..L.| y1 = .|
|00003600| 75 73 65 72 5f 66 75 6e | 63 74 69 6f 6e 28 78 29 |user_fun|ction(x)|
|00003610| 0d 0e 56 20 20 20 79 32 | 20 3d 20 a4 75 73 65 72 |..V y2| = .user|
|00003620| 5f 66 75 6e 63 74 69 6f | 6e 28 78 20 2b 20 64 29 |_functio|n(x + d)|
|00003630| 0d 0e 60 17 20 20 73 20 | 3d 20 28 79 32 20 2d 20 |..`. s |= (y2 - |
|00003640| 79 31 29 20 2f 20 64 0d | 0e 6a 07 3d 20 73 0d 0e |y1) / d.|.j.= s..|
|00003650| 74 04 0d 0e 7e 04 0d 0e | 88 4b f4 20 54 68 65 20 |t...~...|.K. The |
|00003660| 6e 6f 6e 2d 6c 69 6e 65 | 61 72 20 72 65 67 72 65 |non-line|ar regre|
|00003670| 73 73 69 6f 6e 20 73 74 | 65 70 2e 20 6e 63 25 20 |ssion st|ep. nc% |
|00003680| 76 61 6c 75 65 73 20 69 | 6e 20 78 28 29 20 61 72 |values i|n x() ar|
|00003690| 65 20 63 61 6c 63 75 6c | 61 74 65 64 20 6f 76 65 |e calcul|ated ove|
|000036a0| 72 0d 0e 92 4e f4 20 78 | 6d 69 6e 2d 78 6d 61 78 |r...N. x|min-xmax|
|000036b0| 20 61 6e 64 20 74 68 65 | 20 63 6f 72 72 65 73 70 | and the| corresp|
|000036c0| 6f 6e 64 69 6e 67 20 76 | 61 6c 75 65 73 20 69 6e |onding v|alues in|
|000036d0| 20 79 28 29 20 61 72 65 | 20 6f 62 74 61 69 6e 65 | y() are| obtaine|
|000036e0| 64 20 62 79 20 65 76 61 | 6c 75 61 74 69 6e 67 0d |d by eva|luating.|
|000036f0| 0e 9c 48 f4 20 74 68 65 | 20 75 73 65 72 2d 73 75 |..H. the| user-su|
|00003700| 70 70 6c 69 65 64 20 66 | 75 6e 63 74 69 6f 6e 2e |pplied f|unction.|
|00003710| 20 54 68 65 20 63 6f 6e | 74 72 6f 6c 20 70 6f 69 | The con|trol poi|
|00003720| 6e 74 73 20 6f 66 20 74 | 68 65 20 62 65 7a 69 65 |nts of t|he bezie|
|00003730| 72 20 63 75 72 76 65 0d | 0e a6 4c f4 20 73 65 67 |r curve.|..L. seg|
|00003740| 6d 65 6e 74 20 61 72 65 | 20 69 6e 20 62 63 70 28 |ment are| in bcp(|
|00003750| 29 3b 20 62 63 70 28 30 | 2c 31 2d 33 29 20 3d 20 |); bcp(0|,1-3) = |
|00003760| 78 20 63 6f 6f 72 64 73 | 2c 20 62 63 70 28 31 2c |x coords|, bcp(1,|
|00003770| 30 2d 33 29 20 3d 20 79 | 20 63 6f 6f 72 64 73 20 |0-3) = y| coords |
|00003780| 61 6e 64 0d 0e b0 4c f4 | 20 62 63 70 28 32 2c 30 |and...L.| bcp(2,0|
|00003790| 2d 33 29 20 3d 20 73 6c | 6f 70 65 73 2e 20 54 68 |-3) = sl|opes. Th|
|000037a0| 65 20 6f 62 6a 65 63 74 | 20 69 73 20 74 6f 20 61 |e object| is to a|
|000037b0| 6c 74 65 72 20 74 68 65 | 20 78 20 63 6f 6f 72 64 |lter the| x coord|
|000037c0| 73 20 6f 66 20 74 68 65 | 20 69 6e 74 65 72 2d 0d |s of the| inter-.|
|000037d0| 0e ba 4b f4 20 76 65 6e | 69 6e 67 20 63 6f 6e 74 |..K. ven|ing cont|
|000037e0| 72 6f 6c 20 70 6f 69 6e | 74 73 20 62 63 70 28 30 |rol poin|ts bcp(0|
|000037f0| 2c 31 29 20 61 6e 64 20 | 62 63 70 28 30 2c 32 29 |,1) and |bcp(0,2)|
|00003800| 20 74 6f 20 6d 61 74 63 | 68 20 74 68 65 20 62 65 | to matc|h the be|
|00003810| 7a 69 65 72 20 63 75 72 | 76 65 0d 0e c4 48 f4 20 |zier cur|ve...H. |
|00003820| 77 69 74 68 20 74 68 65 | 20 75 73 65 72 2d 64 65 |with the| user-de|
|00003830| 66 69 6e 65 64 20 63 75 | 72 76 65 2e 20 54 68 65 |fined cu|rve. The|
|00003840| 20 63 6f 72 72 65 73 70 | 6f 6e 64 69 6e 67 20 79 | corresp|onding y|
|00003850| 20 63 6f 6f 72 64 73 20 | 61 72 65 20 65 61 73 69 | coords |are easi|
|00003860| 6c 79 0d 0e ce 4e f4 20 | 63 61 6c 63 75 6c 61 74 |ly...N. |calculat|
|00003870| 65 64 20 66 72 6f 6d 20 | 74 68 65 20 78 20 76 61 |ed from |the x va|
|00003880| 6c 75 65 73 20 61 6e 64 | 20 74 68 65 20 73 6c 6f |lues and| the slo|
|00003890| 70 65 73 20 61 74 20 74 | 68 65 20 65 6e 64 2d 70 |pes at t|he end-p|
|000038a0| 6f 69 6e 74 73 2e 20 54 | 68 65 72 65 66 6f 72 65 |oints. T|herefore|
|000038b0| 0d 0e d8 4c f4 20 74 68 | 65 72 65 20 61 72 65 20 |...L. th|ere are |
|000038c0| 6f 6e 6c 79 20 74 77 6f | 20 70 61 72 61 6d 65 74 |only two| paramet|
|000038d0| 65 72 73 20 28 75 6e 6b | 6e 6f 77 6e 73 29 20 74 |ers (unk|nowns) t|
|000038e0| 6f 20 62 65 20 65 73 74 | 69 6d 61 74 65 64 2e 20 |o be est|imated. |
|000038f0| 41 20 6d 61 78 69 6d 75 | 6d 20 6f 66 0d 0e e2 48 |A maximu|m of...H|
|00003900| f4 20 31 30 20 69 74 65 | 72 61 74 69 6f 6e 73 20 |. 10 ite|rations |
|00003910| 61 72 65 20 61 6c 6c 6f | 77 65 64 20 6f 72 20 74 |are allo|wed or t|
|00003920| 68 65 20 70 72 6f 63 65 | 64 75 72 65 20 65 78 69 |he proce|dure exi|
|00003930| 74 73 20 69 66 20 69 74 | 20 73 75 63 63 65 65 64 |ts if it| succeed|
|00003940| 73 20 69 6e 0d 0e ec 48 | f4 20 67 65 74 74 69 6e |s in...H|. gettin|
|00003950| 67 20 74 68 65 20 72 6d | 73 20 65 72 72 6f 72 20 |g the rm|s error |
|00003960| 6c 65 73 73 20 74 68 61 | 6e 20 74 68 65 20 74 61 |less tha|n the ta|
|00003970| 72 67 65 74 20 76 61 6c | 75 65 2e 20 49 66 20 6e |rget val|ue. If n|
|00003980| 6f 74 2c 20 50 52 4f 43 | 66 69 74 5f 0d 0e f6 4b |ot, PROC|fit_...K|
|00003990| f4 20 62 65 7a 69 65 72 | 5f 63 75 72 76 65 20 64 |. bezier|_curve d|
|000039a0| 69 76 69 64 65 73 20 74 | 68 65 20 69 6e 74 65 72 |ivides t|he inter|
|000039b0| 76 61 6c 20 78 6d 69 6e | 2d 78 6d 61 78 20 69 6e |val xmin|-xmax in|
|000039c0| 20 74 77 6f 20 61 6e 64 | 20 70 72 6f 63 65 73 73 | two and| process|
|000039d0| 65 73 20 65 61 63 68 0d | 0f 00 16 f4 20 68 61 6c |es each.|.... hal|
|000039e0| 66 20 73 65 70 61 72 61 | 74 65 6c 79 2e 0d 0f 0a |f separa|tely....|
|000039f0| 05 f4 0d 0f 14 48 f4 20 | 54 68 69 73 20 69 73 20 |.....H. |This is |
|00003a00| 61 20 73 69 6d 70 6c 69 | 66 69 65 64 20 76 65 72 |a simpli|fied ver|
|00003a10| 73 69 6f 6e 20 66 6f 72 | 20 32 2d 70 61 72 61 6d |sion for| 2-param|
|00003a20| 65 74 65 72 20 63 75 72 | 76 65 20 66 69 74 74 69 |eter cur|ve fitti|
|00003a30| 6e 67 2e 20 41 20 6d 6f | 72 65 0d 0f 1e 4b f4 20 |ng. A mo|re...K. |
|00003a40| 67 65 6e 65 72 61 6c 20 | 76 65 72 73 69 6f 6e 20 |general |version |
|00003a50| 77 69 74 68 20 64 6f 63 | 75 6d 65 6e 74 61 74 69 |with doc|umentati|
|00003a60| 6f 6e 20 69 73 20 61 76 | 61 69 6c 61 62 6c 65 20 |on is av|ailable |
|00003a70| 61 73 20 61 20 73 65 70 | 61 72 61 74 65 20 70 72 |as a sep|arate pr|
|00003a80| 6f 67 72 61 6d 0d 0f 28 | 14 f4 20 28 27 4e 6f 6e |ogram..(|.. ('Non|
|00003a90| 4c 69 6e 52 65 67 27 29 | 2e 0d 0f 32 04 0d 0f 3c |LinReg')|...2...<|
|00003aa0| 32 dd 20 f2 6e 6c 72 32 | 70 28 6e 63 25 2c 20 78 |2. .nlr2|p(nc%, x|
|00003ab0| 28 29 2c 20 79 28 29 2c | 20 62 63 70 28 29 2c 20 |(), y(),| bcp(), |
|00003ac0| 74 72 6d 73 2c 20 f8 20 | 72 6d 73 2c 20 64 29 0d |trms, . |rms, d).|
|00003ad0| 0f 46 49 20 20 ea 20 61 | 28 29 2c 20 62 28 29 2c |.FI . a|(), b(),|
|00003ae0| 20 63 28 29 2c 20 67 28 | 29 2c 20 70 28 29 2c 20 | c(), g(|), p(), |
|00003af0| 70 31 28 29 2c 20 71 28 | 29 2c 20 72 28 29 2c 20 |p1(), q(|), r(), |
|00003b00| 73 28 29 2c 20 6b 25 2c | 20 72 73 73 30 2c 20 72 |s(), k%,| rss0, r|
|00003b10| 73 73 2c 20 65 72 72 25 | 0d 0f 50 4b 20 20 de 20 |ss, err%|..PK . |
|00003b20| 61 28 6e 63 25 2c 32 29 | 2c 20 62 28 32 2c 6e 63 |a(nc%,2)|, b(2,nc|
|00003b30| 25 29 2c 20 63 28 32 29 | 2c 20 67 28 32 29 2c 20 |%), c(2)|, g(2), |
|00003b40| 70 28 32 29 2c 20 70 31 | 28 32 29 2c 20 71 28 32 |p(2), p1|(2), q(2|
|00003b50| 2c 32 29 2c 20 72 28 6e | 63 25 29 2c 20 73 28 32 |,2), r(n|c%), s(2|
|00003b60| 2c 32 29 0d 0f 5a 27 20 | 20 70 28 31 29 20 3d 20 |,2)..Z' | p(1) = |
|00003b70| 62 63 70 28 30 2c 31 29 | 20 3a 20 70 28 32 29 20 |bcp(0,1)| : p(2) |
|00003b80| 3d 20 62 63 70 28 30 2c | 32 29 0d 0f 64 46 20 20 |= bcp(0,|2)..dF |
|00003b90| f2 6e 6c 72 32 70 5f 72 | 65 73 69 64 73 28 6e 63 |.nlr2p_r|esids(nc|
|00003ba0| 25 2c 20 78 28 29 2c 20 | 79 28 29 2c 20 72 28 29 |%, x(), |y(), r()|
|00003bb0| 2c 20 70 28 29 2c 20 72 | 73 73 2c 20 72 6d 73 2c |, p(), r|ss, rms,|
|00003bc0| 20 62 63 70 28 29 2c 20 | 74 72 6d 73 2c 20 64 29 | bcp(), |trms, d)|
|00003bd0| 0d 0f 6e 14 20 20 e7 20 | 72 6d 73 20 3e 20 74 72 |..n. . |rms > tr|
|00003be0| 6d 73 20 8c 0d 0f 78 12 | 20 20 20 20 72 73 73 30 |ms ...x.| rss0|
|00003bf0| 20 3d 20 72 73 73 0d 0f | 82 15 20 20 20 20 e3 20 | = rss..|.. . |
|00003c00| 6b 25 20 3d 20 31 20 b8 | 20 31 30 0d 0f 8c 4a 20 |k% = 1 .| 10...J |
|00003c10| 20 20 20 20 20 f2 6e 6c | 72 32 70 5f 64 65 72 69 | .nl|r2p_deri|
|00003c20| 76 73 28 6e 63 25 2c 20 | 78 28 29 2c 20 79 28 29 |vs(nc%, |x(), y()|
|00003c30| 2c 20 72 28 29 2c 20 70 | 28 29 2c 20 61 28 29 2c |, r(), p|(), a(),|
|00003c40| 20 62 28 29 2c 20 62 63 | 70 28 29 2c 20 74 72 6d | b(), bc|p(), trm|
|00003c50| 73 2c 20 64 29 0d 0f 96 | 17 20 20 20 20 20 20 67 |s, d)...|. g|
|00003c60| 28 29 20 3d 20 62 28 29 | 2e 72 28 29 0d 0f a0 17 |() = b()|.r()....|
|00003c70| 20 20 20 20 20 20 71 28 | 29 20 3d 20 62 28 29 2e | q(|) = b().|
|00003c80| 61 28 29 0d 0f aa 26 20 | 20 20 20 20 20 f2 6d 61 |a()...& | .ma|
|00003c90| 74 32 5f 69 6e 76 65 72 | 74 28 71 28 29 2c 20 73 |t2_inver|t(q(), s|
|00003ca0| 28 29 2c 20 65 72 72 25 | 29 0d 0f b4 12 20 20 20 |(), err%|).... |
|00003cb0| 20 20 20 e7 20 65 72 72 | 25 20 8c 0d 0f be 22 20 | . err|% ...." |
|00003cc0| 20 20 20 20 20 20 20 72 | 6d 73 20 3d 20 31 2e 30 | r|ms = 1.0|
|00003cd0| 45 33 38 20 3a 20 6b 25 | 20 3d 20 31 30 0d 0f c8 |E38 : k%| = 10...|
|00003ce0| 0b 20 20 20 20 20 20 cc | 0d 0f d2 16 20 20 20 20 |. .|.... |
|00003cf0| 20 20 20 20 70 31 28 29 | 20 3d 20 70 28 29 0d 0f | p1()| = p()..|
|00003d00| dc 19 20 20 20 20 20 20 | 20 20 63 28 29 20 3d 20 |.. | c() = |
|00003d10| 73 28 29 2e 67 28 29 0d | 0f e6 1c 20 20 20 20 20 |s().g().|... |
|00003d20| 20 20 20 70 28 29 20 3d | 20 70 31 28 29 20 2b 20 | p() =| p1() + |
|00003d30| 63 28 29 0d 0f f0 4c 20 | 20 20 20 20 20 20 20 f2 |c()...L | .|
|00003d40| 6e 6c 72 32 70 5f 72 65 | 73 69 64 73 28 6e 63 25 |nlr2p_re|sids(nc%|
|00003d50| 2c 20 78 28 29 2c 20 79 | 28 29 2c 20 72 28 29 2c |, x(), y|(), r(),|
|00003d60| 20 70 28 29 2c 20 72 73 | 73 2c 20 72 6d 73 2c 20 | p(), rs|s, rms, |
|00003d70| 62 63 70 28 29 2c 20 74 | 72 6d 73 2c 20 64 29 0d |bcp(), t|rms, d).|
|00003d80| 0f fa 46 20 20 20 20 20 | 20 20 20 e7 20 72 6d 73 |..F | . rms|
|00003d90| 20 3c 20 74 72 6d 73 20 | 20 84 20 72 73 73 20 3d | < trms | . rss =|
|00003da0| 20 30 20 84 20 94 28 72 | 73 73 30 20 2d 20 72 73 | 0 . .(r|ss0 - rs|
|00003db0| 73 29 20 3c 20 28 30 2e | 30 30 31 20 2a 20 72 73 |s) < (0.|001 * rs|
|00003dc0| 73 30 29 20 8c 0d 10 04 | 15 20 20 20 20 20 20 20 |s0) ....|. |
|00003dd0| 20 20 20 6b 25 20 3d 20 | 31 30 0d 10 0e 0d 20 20 | k% = |10.... |
|00003de0| 20 20 20 20 20 20 cd 0d | 10 18 23 20 20 20 20 20 | ..|..# |
|00003df0| 20 20 20 70 31 28 29 20 | 3d 20 70 28 29 20 3a 20 | p1() |= p() : |
|00003e00| 72 73 73 30 20 3d 20 72 | 73 73 0d 10 22 0b 20 20 |rss0 = r|ss..". |
|00003e10| 20 20 20 20 cd 0d 10 2c | 09 20 20 20 20 ed 0d 10 | ...,|. ...|
|00003e20| 36 07 20 20 cd 0d 10 40 | 05 e1 0d 10 4a 04 0d 10 |6. ...@|....J...|
|00003e30| 54 04 0d 10 5e 4c f4 20 | 43 61 6c 63 75 6c 61 74 |T...^L. |Calculat|
|00003e40| 65 20 74 68 65 20 72 65 | 73 69 64 75 61 6c 73 20 |e the re|siduals |
|00003e50| 28 64 69 66 66 65 72 65 | 6e 63 65 20 62 65 74 77 |(differe|nce betw|
|00003e60| 65 65 6e 20 79 2d 76 61 | 6c 75 65 20 66 72 6f 6d |een y-va|lue from|
|00003e70| 20 75 73 65 72 20 66 75 | 6e 63 74 69 6f 6e 0d 10 | user fu|nction..|
|00003e80| 68 4e f4 20 28 79 6f 62 | 73 65 72 76 65 64 29 20 |hN. (yob|served) |
|00003e90| 61 6e 64 20 79 2d 76 61 | 6c 75 65 20 66 72 6f 6d |and y-va|lue from|
|00003ea0| 20 62 65 7a 69 65 72 20 | 63 75 72 76 65 20 28 79 | bezier |curve (y|
|00003eb0| 70 72 65 64 69 63 74 65 | 64 29 29 2c 20 72 65 73 |predicte|d)), res|
|00003ec0| 69 64 75 61 6c 20 73 75 | 6d 20 6f 66 0d 10 72 1c |idual su|m of..r.|
|00003ed0| f4 20 73 71 75 61 72 65 | 73 20 61 6e 64 20 72 6d |. square|s and rm|
|00003ee0| 73 20 65 72 72 6f 72 2e | 0d 10 7c 04 0d 10 86 4a |s error.|..|....J|
|00003ef0| dd 20 f2 6e 6c 72 32 70 | 5f 72 65 73 69 64 73 28 |. .nlr2p|_resids(|
|00003f00| 6e 63 25 2c 20 78 28 29 | 2c 20 79 28 29 2c 20 72 |nc%, x()|, y(), r|
|00003f10| 28 29 2c 20 70 28 29 2c | 20 f8 20 72 73 73 2c 20 |(), p(),| . rss, |
|00003f20| f8 20 72 6d 73 2c 20 62 | 63 70 28 29 2c 20 74 72 |. rms, b|cp(), tr|
|00003f30| 6d 73 2c 20 64 29 0d 10 | 90 0a 20 20 ea 20 69 25 |ms, d)..|.. . i%|
|00003f40| 0d 10 9a 0d 20 20 72 73 | 73 20 3d 20 30 0d 10 a4 |.... rs|s = 0...|
|00003f50| 14 20 20 e3 20 69 25 20 | 3d 20 31 20 b8 20 6e 63 |. . i% |= 1 . nc|
|00003f60| 25 0d 10 ae 3d 20 20 20 | 20 72 28 69 25 29 20 3d |%...= | r(i%) =|
|00003f70| 20 79 28 69 25 29 20 2d | 20 a4 6e 6c 72 5f 66 75 | y(i%) -| .nlr_fu|
|00003f80| 6e 63 28 78 28 69 25 29 | 2c 20 70 28 29 2c 20 62 |nc(x(i%)|, p(), b|
|00003f90| 63 70 28 29 2c 20 74 72 | 6d 73 2c 20 64 29 0d 10 |cp(), tr|ms, d)..|
|00003fa0| b8 1e 20 20 20 20 72 73 | 73 20 2b 3d 20 28 72 28 |.. rs|s += (r(|
|00003fb0| 69 25 29 20 2a 20 72 28 | 69 25 29 29 0d 10 c2 07 |i%) * r(|i%))....|
|00003fc0| 20 20 ed 0d 10 cc 1e 20 | 20 72 6d 73 20 3d 20 b6 | ..... | rms = .|
|00003fd0| 28 72 73 73 20 2f 20 28 | 6e 63 25 20 2d 20 32 29 |(rss / (|nc% - 2)|
|00003fe0| 29 0d 10 d6 05 e1 0d 10 | e0 04 0d 10 ea 04 0d 10 |).......|........|
|00003ff0| f4 4e f4 20 43 61 6c 63 | 75 6c 61 74 65 20 70 61 |.N. Calc|ulate pa|
|00004000| 72 74 69 61 6c 20 64 65 | 72 69 76 61 74 69 76 65 |rtial de|rivative|
|00004010| 73 20 d2 79 70 72 65 64 | 69 63 74 65 64 2f d2 70 |s .ypred|icted/.p|
|00004020| 20 66 6f 72 20 70 28 31 | 29 20 61 6e 64 20 70 28 | for p(1|) and p(|
|00004030| 32 29 3b 20 70 28 31 29 | 20 61 6e 64 0d 10 fe 34 |2); p(1)| and...4|
|00004040| f4 20 70 28 32 29 20 3d | 20 78 20 63 6f 6f 72 64 |. p(2) =| x coord|
|00004050| 73 20 6f 66 20 69 6e 74 | 65 72 76 65 6e 69 6e 67 |s of int|ervening|
|00004060| 20 63 6f 6e 74 72 6f 6c | 20 70 6f 69 6e 74 73 2e | control| points.|
|00004070| 0d 11 08 04 0d 11 12 46 | dd 20 f2 6e 6c 72 32 70 |.......F|. .nlr2p|
|00004080| 5f 64 65 72 69 76 73 28 | 6e 63 25 2c 20 78 28 29 |_derivs(|nc%, x()|
|00004090| 2c 20 79 28 29 2c 20 72 | 28 29 2c 20 70 28 29 2c |, y(), r|(), p(),|
|000040a0| 20 61 28 29 2c 20 62 28 | 29 2c 20 62 63 70 28 29 | a(), b(|), bcp()|
|000040b0| 2c 20 74 72 6d 73 2c 20 | 64 29 0d 11 1c 1c 20 20 |, trms, |d).... |
|000040c0| ea 20 69 25 2c 20 6a 25 | 2c 20 66 31 2c 20 66 32 |. i%, j%|, f1, f2|
|000040d0| 2c 20 74 2c 20 7a 0d 11 | 26 10 20 20 7a 20 3d 20 |, t, z..|&. z = |
|000040e0| 31 2e 30 45 2d 35 0d 11 | 30 14 20 20 e3 20 69 25 |1.0E-5..|0. . i%|
|000040f0| 20 3d 20 31 20 b8 20 6e | 63 25 0d 11 3a 1a 20 20 | = 1 . n|c%..:. |
|00004100| 20 20 66 31 20 3d 20 79 | 28 69 25 29 20 2d 20 72 | f1 = y|(i%) - r|
|00004110| 28 69 25 29 0d 11 44 14 | 20 20 20 20 e3 20 6a 25 |(i%)..D.| . j%|
|00004120| 20 3d 20 31 20 b8 20 32 | 0d 11 4e 13 20 20 20 20 | = 1 . 2|..N. |
|00004130| 20 20 74 20 3d 20 70 28 | 6a 25 29 0d 11 58 21 20 | t = p(|j%)..X! |
|00004140| 20 20 20 20 20 70 28 6a | 25 29 20 3d 20 74 20 2a | p(j|%) = t *|
|00004150| 20 28 31 20 2b 20 7a 29 | 20 2b 20 7a 0d 11 62 34 | (1 + z)| + z..b4|
|00004160| 20 20 20 20 20 20 66 32 | 20 3d 20 a4 6e 6c 72 5f | f2| = .nlr_|
|00004170| 66 75 6e 63 28 78 28 69 | 25 29 2c 20 70 28 29 2c |func(x(i|%), p(),|
|00004180| 20 62 63 70 28 29 2c 20 | 74 72 6d 73 2c 20 64 29 | bcp(), |trms, d)|
|00004190| 0d 11 6c 13 20 20 20 20 | 20 20 70 28 6a 25 29 20 |..l. | p(j%) |
|000041a0| 3d 20 74 0d 11 76 25 20 | 20 20 20 20 20 74 20 3d |= t..v% | t =|
|000041b0| 20 28 66 32 20 2d 20 66 | 31 29 20 2f 20 28 74 20 | (f2 - f|1) / (t |
|000041c0| 2a 20 7a 20 2b 20 7a 29 | 0d 11 80 16 20 20 20 20 |* z + z)|.... |
|000041d0| 20 20 61 28 69 25 2c 6a | 25 29 20 3d 20 74 0d 11 | a(i%,j|%) = t..|
|000041e0| 8a 16 20 20 20 20 20 20 | 62 28 6a 25 2c 69 25 29 |.. |b(j%,i%)|
|000041f0| 20 3d 20 74 0d 11 94 09 | 20 20 20 20 ed 0d 11 9e | = t....| ....|
|00004200| 07 20 20 ed 0d 11 a8 05 | e1 0d 11 b2 04 0d 11 bc |. .....|........|
|00004210| 04 0d 11 c6 4a f4 20 54 | 68 65 20 66 75 6e 63 74 |....J. T|he funct|
|00004220| 69 6f 6e 20 66 6f 72 20 | 74 68 65 20 6e 6f 6e 2d |ion for |the non-|
|00004230| 6c 69 6e 65 61 72 20 72 | 65 67 72 65 73 73 69 6f |linear r|egressio|
|00004240| 6e 20 73 74 65 70 3b 20 | 63 61 6c 63 75 6c 61 74 |n step; |calculat|
|00004250| 65 20 79 20 66 6f 72 20 | 74 68 65 0d 11 d0 4e f4 |e y for |the...N.|
|00004260| 20 67 69 76 65 6e 20 76 | 61 6c 75 65 20 6f 66 20 | given v|alue of |
|00004270| 78 20 61 6e 64 20 74 68 | 65 20 63 75 72 72 65 6e |x and th|e curren|
|00004280| 74 20 63 6f 6e 74 72 6f | 6c 20 70 6f 69 6e 74 20 |t contro|l point |
|00004290| 63 6f 6f 72 64 69 6e 61 | 74 65 73 2e 20 54 68 65 |coordina|tes. The|
|000042a0| 20 79 20 63 6f 6f 72 64 | 73 0d 11 da 4d f4 20 6f | y coord|s...M. o|
|000042b0| 66 20 74 68 65 20 69 6e | 74 65 72 76 65 6e 69 6e |f the in|tervenin|
|000042c0| 67 20 63 6f 6e 74 72 6f | 6c 20 70 6f 69 6e 74 73 |g contro|l points|
|000042d0| 20 61 72 65 20 63 61 6c | 63 75 6c 61 74 65 64 20 | are cal|culated |
|000042e0| 66 72 6f 6d 20 74 68 65 | 20 78 20 63 6f 6f 72 64 |from the| x coord|
|000042f0| 73 20 70 28 31 29 0d 11 | e4 4d f4 20 61 6e 64 20 |s p(1)..|.M. and |
|00004300| 70 28 32 29 20 61 6e 64 | 20 74 68 65 20 73 6c 6f |p(2) and| the slo|
|00004310| 70 65 20 6f 66 20 74 68 | 65 20 75 73 65 72 2d 73 |pe of th|e user-s|
|00004320| 75 70 70 6c 69 65 64 20 | 66 75 6e 63 74 69 6f 6e |upplied |function|
|00004330| 20 61 74 20 74 68 65 20 | 65 6e 64 2d 70 6f 69 6e | at the |end-poin|
|00004340| 74 73 2e 0d 11 ee 04 0d | 11 f8 27 dd 20 a4 6e 6c |ts......|..'. .nl|
|00004350| 72 5f 66 75 6e 63 28 78 | 2c 20 70 28 29 2c 20 62 |r_func(x|, p(), b|
|00004360| 63 70 28 29 2c 20 74 72 | 6d 73 2c 20 64 29 0d 12 |cp(), tr|ms, d)..|
|00004370| 02 09 20 20 ea 20 79 0d | 12 0c 4a 20 20 62 63 70 |.. . y.|..J bcp|
|00004380| 28 30 2c 31 29 20 3d 20 | 70 28 31 29 20 3a 20 62 |(0,1) = |p(1) : b|
|00004390| 63 70 28 31 2c 31 29 20 | 3d 20 28 70 28 31 29 20 |cp(1,1) |= (p(1) |
|000043a0| 2d 20 62 63 70 28 30 2c | 30 29 29 20 2a 20 62 63 |- bcp(0,|0)) * bc|
|000043b0| 70 28 32 2c 30 29 20 2b | 20 62 63 70 28 31 2c 30 |p(2,0) +| bcp(1,0|
|000043c0| 29 0d 12 16 4a 20 20 62 | 63 70 28 30 2c 32 29 20 |)...J b|cp(0,2) |
|000043d0| 3d 20 70 28 32 29 20 3a | 20 62 63 70 28 31 2c 32 |= p(2) :| bcp(1,2|
|000043e0| 29 20 3d 20 28 70 28 32 | 29 20 2d 20 62 63 70 28 |) = (p(2|) - bcp(|
|000043f0| 30 2c 33 29 29 20 2a 20 | 62 63 70 28 32 2c 33 29 |0,3)) * |bcp(2,3)|
|00004400| 20 2b 20 62 63 70 28 31 | 2c 33 29 0d 12 20 2e 20 | + bcp(1|,3).. . |
|00004410| 20 f2 62 65 7a 5f 79 5f | 69 6e 74 65 72 70 6f 6c | .bez_y_|interpol|
|00004420| 61 74 65 28 78 2c 20 79 | 2c 20 62 63 70 28 29 2c |ate(x, y|, bcp(),|
|00004430| 20 74 72 6d 73 2c 20 64 | 29 0d 12 2a 07 3d 20 79 | trms, d|)..*.= y|
|00004440| 0d 12 34 04 0d 12 3e 04 | 0d 12 48 45 f4 20 54 68 |..4...>.|..HE. Th|
|00004450| 65 20 61 63 74 75 61 6c | 20 69 6e 74 65 72 70 6f |e actual| interpo|
|00004460| 6c 61 74 69 6f 6e 3b 20 | 63 61 6c 63 75 6c 61 74 |lation; |calculat|
|00004470| 65 20 79 20 66 6f 72 20 | 74 68 65 20 67 69 76 65 |e y for |the give|
|00004480| 6e 20 78 20 76 61 6c 75 | 65 20 61 6e 64 0d 12 52 |n x valu|e and..R|
|00004490| 4a f4 20 63 6f 6e 74 72 | 6f 6c 20 70 6f 69 6e 74 |J. contr|ol point|
|000044a0| 20 63 6f 6f 72 64 69 6e | 61 74 65 73 2e 20 46 6f | coordin|ates. Fo|
|000044b0| 72 20 61 20 62 69 63 75 | 62 69 63 20 73 70 6c 69 |r a bicu|bic spli|
|000044c0| 6e 65 20 73 65 67 6d 65 | 6e 74 20 77 69 74 68 20 |ne segme|nt with |
|000044d0| 63 6f 6e 74 72 6f 6c 0d | 12 5c 4b f4 20 70 6f 69 |control.|.\K. poi|
|000044e0| 6e 74 73 20 28 78 30 2c | 79 30 29 2c 20 28 78 31 |nts (x0,|y0), (x1|
|000044f0| 2c 79 31 29 2c 20 28 78 | 32 2c 79 32 29 20 61 6e |,y1), (x|2,y2) an|
|00004500| 64 20 28 78 33 2c 79 33 | 29 2c 20 74 68 65 20 78 |d (x3,y3|), the x|
|00004510| 20 61 6e 64 20 63 6f 72 | 72 65 73 70 6f 6e 64 69 | and cor|respondi|
|00004520| 6e 67 0d 12 66 42 f4 20 | 79 20 63 6f 6f 72 64 69 |ng..fB. |y coordi|
|00004530| 6e 61 74 65 20 6f 66 20 | 61 6e 79 20 70 6f 69 6e |nate of |any poin|
|00004540| 74 20 6f 6e 20 74 68 65 | 20 63 75 72 76 65 20 63 |t on the| curve c|
|00004550| 61 6e 20 62 65 20 63 61 | 6c 63 75 6c 61 74 65 64 |an be ca|lculated|
|00004560| 20 61 73 3a 0d 12 70 05 | f4 0d 12 7a 3b f4 20 78 | as:..p.|...z;. x|
|00004570| 20 3d 20 78 30 b7 28 31 | 2d 75 29 b3 20 2b 20 78 | = x0.(1|-u). + x|
|00004580| 31 b7 33 b7 75 b7 28 31 | 2d 75 29 b2 20 2b 20 78 |1.3.u.(1|-u). + x|
|00004590| 32 b7 33 b7 75 b2 b7 28 | 31 2d 75 29 20 2b 20 78 |2.3.u..(|1-u) + x|
|000045a0| 33 b7 75 b3 0d 12 84 3b | f4 20 79 20 3d 20 79 30 |3.u....;|. y = y0|
|000045b0| b7 28 31 2d 75 29 b3 20 | 2b 20 79 31 b7 33 b7 75 |.(1-u). |+ y1.3.u|
|000045c0| b7 28 31 2d 75 29 b2 20 | 2b 20 79 32 b7 33 b7 75 |.(1-u). |+ y2.3.u|
|000045d0| b2 b7 28 31 2d 75 29 20 | 2b 20 79 33 b7 75 b3 0d |..(1-u) |+ y3.u..|
|000045e0| 12 8e 05 f4 0d 12 98 4c | f4 20 77 68 65 72 65 20 |.......L|. where |
|000045f0| 75 20 76 61 72 69 65 73 | 20 66 72 6f 6d 20 30 20 |u varies| from 0 |
|00004600| 74 6f 20 31 20 6f 76 65 | 72 20 74 68 65 20 6c 65 |to 1 ove|r the le|
|00004610| 6e 67 74 68 20 6f 66 20 | 74 68 65 20 73 65 67 6d |ngth of |the segm|
|00004620| 65 6e 74 2e 20 55 73 69 | 6e 67 20 78 20 61 6e 64 |ent. Usi|ng x and|
|00004630| 0d 12 a2 48 f4 20 78 30 | 2d 78 33 2c 20 75 20 69 |...H. x0|-x3, u i|
|00004640| 73 20 6f 62 74 61 69 6e | 65 64 20 62 79 20 74 68 |s obtain|ed by th|
|00004650| 65 20 4e 65 77 74 6f 6e | 2d 52 61 70 68 73 6f 6e |e Newton|-Raphson|
|00004660| 20 6d 65 74 68 6f 64 20 | 61 6e 64 20 74 68 65 6e | method |and then|
|00004670| 20 75 73 65 64 20 74 6f | 0d 12 ac 12 f4 20 63 61 | used to|..... ca|
|00004680| 6c 63 75 6c 61 74 65 20 | 79 2e 0d 12 b6 04 0d 12 |lculate |y.......|
|00004690| c0 30 dd 20 f2 62 65 7a | 5f 79 5f 69 6e 74 65 72 |.0. .bez|_y_inter|
|000046a0| 70 6f 6c 61 74 65 28 78 | 2c 20 f8 20 79 2c 20 62 |polate(x|, . y, b|
|000046b0| 63 70 28 29 2c 20 74 72 | 6d 73 2c 20 64 29 0d 12 |cp(), tr|ms, d)..|
|000046c0| ca 23 20 20 ea 20 74 28 | 29 2c 20 75 2c 20 78 70 |.# . t(|), u, xp|
|000046d0| 31 2c 20 78 70 32 2c 20 | 7a 2c 20 69 25 2c 20 6e |1, xp2, |z, i%, n|
|000046e0| 25 0d 12 d4 0c 20 20 de | 20 74 28 33 29 0d 12 de |%.... .| t(3)...|
|000046f0| 11 20 20 e3 20 69 25 3d | 20 30 20 b8 20 33 0d 12 |. . i%=| 0 . 3..|
|00004700| e8 19 20 20 20 20 74 28 | 69 25 29 20 3d 20 62 63 |.. t(|i%) = bc|
|00004710| 70 28 30 2c 69 25 29 0d | 12 f2 07 20 20 ed 0d 12 |p(0,i%).|... ...|
|00004720| fc 0d 20 20 75 20 3d 20 | 30 2e 35 0d 13 06 07 20 |.. u = |0.5.... |
|00004730| 20 f5 0d 13 10 1f 20 20 | 20 20 78 70 31 20 3d 20 | ..... | xp1 = |
|00004740| a4 62 65 7a 5f 65 76 61 | 6c 28 74 28 29 2c 20 75 |.bez_eva|l(t(), u|
|00004750| 29 0d 13 1a 13 20 20 20 | 20 7a 20 3d 20 78 20 2d |).... | z = x -|
|00004760| 20 78 70 31 0d 13 24 23 | 20 20 20 20 78 70 32 20 | xp1..$#| xp2 |
|00004770| 3d 20 a4 62 65 7a 5f 65 | 76 61 6c 28 74 28 29 2c |= .bez_e|val(t(),|
|00004780| 20 75 20 2b 20 64 29 0d | 13 2e 16 20 20 20 20 e7 | u + d).|... .|
|00004790| 20 78 70 32 20 3c 3e 20 | 78 70 31 20 8c 0d 13 38 | xp2 <> |xp1 ...8|
|000047a0| 26 20 20 20 20 20 20 75 | 20 2b 3d 20 28 7a 20 2f |& u| += (z /|
|000047b0| 20 28 28 78 70 32 20 2d | 20 78 70 31 29 20 2f 20 | ((xp2 -| xp1) / |
|000047c0| 64 29 29 0d 13 42 09 20 | 20 20 20 cc 0d 13 4c 11 |d))..B. | ...L.|
|000047d0| 20 20 20 20 20 20 6e 25 | 20 3d 20 31 30 0d 13 56 | n%| = 10..V|
|000047e0| 09 20 20 20 20 cd 0d 13 | 60 0f 20 20 20 20 6e 25 |. ...|`. n%|
|000047f0| 20 2b 3d 20 31 0d 13 6a | 1d 20 20 fd 20 6e 25 20 | += 1..j|. . n% |
|00004800| 3e 20 31 30 20 84 20 94 | 28 7a 29 20 3c 20 74 72 |> 10 . .|(z) < tr|
|00004810| 6d 73 0d 13 74 12 20 20 | e3 20 69 25 20 3d 20 30 |ms..t. |. i% = 0|
|00004820| 20 b8 20 33 0d 13 7e 19 | 20 20 20 20 74 28 69 25 | . 3..~.| t(i%|
|00004830| 29 20 3d 20 62 63 70 28 | 31 2c 69 25 29 0d 13 88 |) = bcp(|1,i%)...|
|00004840| 07 20 20 ed 0d 13 92 1b | 20 20 79 20 3d 20 a4 62 |. .....| y = .b|
|00004850| 65 7a 5f 65 76 61 6c 28 | 74 28 29 2c 20 75 29 0d |ez_eval(|t(), u).|
|00004860| 13 9c 05 e1 0d 13 a6 04 | 0d 13 b0 04 0d 13 ba 17 |........|........|
|00004870| dd 20 a4 62 65 7a 5f 65 | 76 61 6c 28 74 28 29 2c |. .bez_e|val(t(),|
|00004880| 20 75 29 0d 13 c4 09 20 | 20 ea 20 78 0d 13 ce 1f | u).... | . x....|
|00004890| 20 20 78 20 20 3d 20 28 | 74 28 30 29 20 2a 20 28 | x = (|t(0) * (|
|000048a0| 31 20 2d 20 75 29 20 5e | 20 33 29 0d 13 d8 27 20 |1 - u) ^| 3)...' |
|000048b0| 20 78 20 2b 3d 20 28 74 | 28 31 29 20 2a 20 33 20 | x += (t|(1) * 3 |
|000048c0| 2a 20 75 20 2a 20 28 31 | 20 2d 20 75 29 20 5e 20 |* u * (1| - u) ^ |
|000048d0| 32 29 0d 13 e2 27 20 20 | 78 20 2b 3d 20 28 74 28 |2)...' |x += (t(|
|000048e0| 32 29 20 2a 20 33 20 2a | 20 75 20 5e 20 32 20 2a |2) * 3 *| u ^ 2 *|
|000048f0| 20 28 31 20 2d 20 75 29 | 29 0d 13 ec 19 20 20 78 | (1 - u)|).... x|
|00004900| 20 2b 3d 20 28 74 28 33 | 29 20 2a 20 75 20 5e 20 | += (t(3|) * u ^ |
|00004910| 33 29 0d 13 f6 07 3d 20 | 78 0d 14 00 04 0d 14 0a |3)....= |x.......|
|00004920| 04 0d 14 14 48 f4 20 4d | 61 74 72 69 78 20 69 6e |....H. M|atrix in|
|00004930| 76 65 72 73 69 6f 6e 20 | 70 72 6f 63 65 64 75 72 |version |procedur|
|00004940| 65 20 66 6f 72 20 74 68 | 65 20 6e 6f 6e 2d 6c 69 |e for th|e non-li|
|00004950| 6e 65 61 72 20 72 65 67 | 72 65 73 73 69 6f 6e 20 |near reg|ression |
|00004960| 73 74 65 70 2e 20 54 68 | 65 0d 14 1e 32 f4 20 69 |step. Th|e...2. i|
|00004970| 6e 76 65 72 73 65 20 6f | 66 20 32 78 32 20 6d 61 |nverse o|f 2x2 ma|
|00004980| 74 72 69 78 20 73 28 29 | 20 69 73 20 72 65 74 75 |trix s()| is retu|
|00004990| 72 6e 65 64 20 69 6e 20 | 72 28 29 0d 14 28 04 0d |rned in |r()..(..|
|000049a0| 14 32 24 dd 20 f2 6d 61 | 74 32 5f 69 6e 76 65 72 |.2$. .ma|t2_inver|
|000049b0| 74 28 73 28 29 2c 20 72 | 28 29 2c 20 f8 20 65 72 |t(s(), r|(), . er|
|000049c0| 72 25 29 0d 14 3c 1a 20 | 20 ea 20 61 28 29 2c 20 |r%)..<. | . a(), |
|000049d0| 69 25 2c 20 6a 25 2c 20 | 6b 25 2c 20 7a 0d 14 46 |i%, j%, |k%, z..F|
|000049e0| 0e 20 20 de 20 61 28 32 | 2c 32 29 0d 14 50 24 20 |. . a(2|,2)..P$ |
|000049f0| 20 61 28 29 20 3d 20 73 | 28 29 20 3a 20 72 28 29 | a() = s|() : r()|
|00004a00| 20 3d 20 30 20 3a 20 65 | 72 72 25 20 3d 20 a3 0d | = 0 : e|rr% = ..|
|00004a10| 14 5a 12 20 20 e3 20 69 | 25 20 3d 20 31 20 b8 20 |.Z. . i|% = 1 . |
|00004a20| 32 0d 14 64 14 20 20 20 | 20 72 28 69 25 2c 69 25 |2..d. | r(i%,i%|
|00004a30| 29 20 3d 20 31 0d 14 6e | 07 20 20 ed 0d 14 78 12 |) = 1..n|. ...x.|
|00004a40| 20 20 e3 20 6b 25 20 3d | 20 31 20 b8 20 32 0d 14 | . k% =| 1 . 2..|
|00004a50| 82 14 20 20 20 20 e3 20 | 69 25 20 3d 20 31 20 b8 |.. . |i% = 1 .|
|00004a60| 20 32 0d 14 8c 16 20 20 | 20 20 20 20 e7 20 69 25 | 2.... | . i%|
|00004a70| 20 3c 3e 20 6b 25 20 8c | 0d 14 96 1c 20 20 20 20 | <> k% .|.... |
|00004a80| 20 20 20 20 e7 20 61 28 | 6b 25 2c 6b 25 29 20 3d | . a(|k%,k%) =|
|00004a90| 20 30 20 8c 0d 14 a0 28 | 20 20 20 20 20 20 20 20 | 0 ....(| |
|00004aa0| 20 20 65 72 72 25 20 3d | 20 b9 20 3a 20 69 25 20 | err% =| . : i% |
|00004ab0| 3d 20 32 20 3a 20 6b 25 | 20 3d 20 32 0d 14 aa 0d |= 2 : k%| = 2....|
|00004ac0| 20 20 20 20 20 20 20 20 | cc 0d 14 b4 25 20 20 20 | |....% |
|00004ad0| 20 20 20 20 20 20 20 7a | 20 3d 20 61 28 69 25 2c | z| = a(i%,|
|00004ae0| 6b 25 29 20 2f 20 61 28 | 6b 25 2c 6b 25 29 0d 14 |k%) / a(|k%,k%)..|
|00004af0| be 1a 20 20 20 20 20 20 | 20 20 20 20 e3 20 6a 25 |.. | . j%|
|00004b00| 20 3d 20 31 20 b8 20 32 | 0d 14 c8 32 20 20 20 20 | = 1 . 2|...2 |
|00004b10| 20 20 20 20 20 20 20 20 | 61 28 69 25 2c 6a 25 29 | |a(i%,j%)|
|00004b20| 20 3d 20 61 28 69 25 2c | 6a 25 29 20 2d 20 61 28 | = a(i%,|j%) - a(|
|00004b30| 6b 25 2c 6a 25 29 20 2a | 20 7a 0d 14 d2 32 20 20 |k%,j%) *| z...2 |
|00004b40| 20 20 20 20 20 20 20 20 | 20 20 72 28 69 25 2c 6a | | r(i%,j|
|00004b50| 25 29 20 3d 20 72 28 69 | 25 2c 6a 25 29 20 2d 20 |%) = r(i|%,j%) - |
|00004b60| 72 28 6b 25 2c 6a 25 29 | 20 2a 20 7a 0d 14 dc 0f |r(k%,j%)| * z....|
|00004b70| 20 20 20 20 20 20 20 20 | 20 20 ed 0d 14 e6 0d 20 | | ..... |
|00004b80| 20 20 20 20 20 20 20 cd | 0d 14 f0 0b 20 20 20 20 | .|.... |
|00004b90| 20 20 cd 0d 14 fa 09 20 | 20 20 20 ed 0d 15 04 13 | ..... | .....|
|00004ba0| 20 20 20 20 e7 20 ac 28 | 65 72 72 25 29 20 8c 0d | . .(|err%) ..|
|00004bb0| 15 0e 16 20 20 20 20 20 | 20 7a 20 3d 20 61 28 6b |... | z = a(k|
|00004bc0| 25 2c 6b 25 29 0d 15 18 | 16 20 20 20 20 20 20 e3 |%,k%)...|. .|
|00004bd0| 20 6a 25 20 3d 20 31 20 | b8 20 32 0d 15 22 23 20 | j% = 1 |. 2.."# |
|00004be0| 20 20 20 20 20 20 20 61 | 28 6b 25 2c 6a 25 29 20 | a|(k%,j%) |
|00004bf0| 3d 20 61 28 6b 25 2c 6a | 25 29 20 2f 20 7a 0d 15 |= a(k%,j|%) / z..|
|00004c00| 2c 23 20 20 20 20 20 20 | 20 20 72 28 6b 25 2c 6a |,# | r(k%,j|
|00004c10| 25 29 20 3d 20 72 28 6b | 25 2c 6a 25 29 20 2f 20 |%) = r(k|%,j%) / |
|00004c20| 7a 0d 15 36 0b 20 20 20 | 20 20 20 ed 0d 15 40 09 |z..6. | ...@.|
|00004c30| 20 20 20 20 cd 0d 15 4a | 07 20 20 ed 0d 15 54 05 | ...J|. ...T.|
|00004c40| e1 0d ff | |... | |
+--------+-------------------------+-------------------------+--------+--------+