home *** CD-ROM | disk | FTP | other *** search
/ Computer Shopper 125 / Computer Shopper CD-ROM Issue 125 (1998-07)(Dennis Publishing).iso / EuroMath / MathDemo / DataBase / treeView.map < prev   
Unknown  |  1997-05-15  |  24.9 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
66% dexvert Envision (image/envision) ext Supported
1% dexvert ACT! contact Map (other/actContactMapV30) ext Unsupported
1% dexvert Advanced Strategic Command Map (other/advancedStrategicCommandMap) ext Unsupported
1% dexvert Alien Trilogy Map (other/alienTrilogyMap) ext Unsupported
1% dexvert Dark Reign Map (other/darkReignMap) ext Unsupported
1% dexvert Furcadia Map (other/furcadiaMap) ext Unsupported
1% dexvert Hex Workshop Char Map File (other/hexWorkshopCharMapFile) ext Unsupported
1% dexvert MapInfo MapBasic map data (other/mapInfoMapBasicMapData) ext Unsupported
1% dexvert Neophyte: The Spirit Master Map data (other/neophyteTheSpiritMasterMapData) ext Unsupported
1% dexvert NoX Map (other/noxMap) ext Unsupported
1% dexvert SpellForce 2 game data archive (other/spellForce2GameDataArchive) ext Unsupported
1% dexvert 3by5 Index (other/threeByFiveIndex) ext Unsupported
1% dexvert Wreckin Crew level Map (other/wreckinCrewLevelMap) ext Unsupported
1% dexvert Amberstar game data (other/amberstarGameData) ext Unsupported
1% dexvert DeathTrack Map (other/deathTrackMap) ext Unsupported
1% dexvert Duke Nukem 3D Map/level (other/dukeNukem3DMapLevel) ext Unsupported
1% dexvert Electronic Arts interactive sequence (other/electronicArtsInteractiveSequence) ext Unsupported
1% dexvert Empire Deluxe Map (other/empireDeluxeMap) ext Unsupported
1% dexvert Empire: Wargame of the Century Map (other/empireWargameOfTheCenturyMap) ext Unsupported
1% dexvert Orda: Severnyi Veter Map (other/ordaSevernyiVeterMap) ext Unsupported
1% dexvert Transland Map (other/translandMap) ext Unsupported
100% file data default



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 82 00 9c 01 5c 00 d8 00 | 52 03 f1 02 10 00 30 40 |....\...|R.....0@|
|00000010| 31 40 30 40 4d 41 54 48 | 53 20 4d 45 4e 55 03 00 |1@0@MATH|S MENU..|
|00000020| 0c 00 31 40 31 40 30 40 | 4e 75 6d 62 65 72 1f 00 |..1@1@0@|Number..|
|00000030| 19 00 32 40 31 40 34 40 | 77 6f 72 6b 69 6e 67 20 |..2@1@4@|working |
|00000040| 77 69 74 68 20 6e 75 6d | 62 65 72 07 00 12 00 33 |with num|ber....3|
|00000050| 40 31 40 38 40 62 61 73 | 69 63 20 6e 75 6d 62 65 |@1@8@bas|ic numbe|
|00000060| 72 04 00 14 00 34 40 33 | 40 31 34 37 40 70 6c 61 |r....4@3|@147@pla|
|00000070| 63 65 20 76 61 6c 75 65 | 73 04 00 14 00 34 40 32 |ce value|s....4@2|
|00000080| 40 31 34 38 40 70 6c 61 | 63 65 20 76 61 6c 75 65 |@148@pla|ce value|
|00000090| 73 04 00 14 00 34 40 32 | 40 34 34 37 40 70 6c 61 |s....4@2|@447@pla|
|000000a0| 63 65 20 76 61 6c 75 65 | 73 04 00 24 00 34 40 33 |ce value|s..$.4@3|
|000000b0| 40 31 34 39 40 74 68 65 | 20 6e 65 61 72 65 73 74 |@149@the| nearest|
|000000c0| 20 31 30 30 30 2c 20 31 | 30 30 2c 20 31 30 2c 20 | 1000, 1|00, 10, |
|000000d0| 31 04 00 21 00 34 40 32 | 40 31 35 30 40 74 68 65 |1..!.4@2|@150@the|
|000000e0| 20 6e 65 61 72 65 73 74 | 20 31 30 30 30 2c 31 30 | nearest| 1000,10|
|000000f0| 30 2c 31 30 2c 31 04 00 | 21 00 34 40 32 40 34 34 |0,10,1..|!.4@2@44|
|00000100| 38 40 74 68 65 20 6e 65 | 61 72 65 73 74 20 31 30 |8@the ne|arest 10|
|00000110| 30 30 2c 31 30 30 2c 31 | 30 2c 31 04 00 39 00 34 |00,100,1|0,1..9.4|
|00000120| 40 33 40 31 35 31 40 61 | 64 64 69 74 69 6f 6e 2c |@3@151@a|ddition,|
|00000130| 20 73 75 62 74 72 61 63 | 74 69 6f 6e 2c 20 6d 75 | subtrac|tion, mu|
|00000140| 6c 74 69 70 6c 69 63 61 | 74 69 6f 6e 20 26 26 20 |ltiplica|tion && |
|00000150| 64 69 76 69 73 69 6f 6e | 04 00 39 00 34 40 32 40 |division|..9.4@2@|
|00000160| 31 35 32 40 61 64 64 69 | 74 69 6f 6e 2c 20 73 75 |152@addi|tion, su|
|00000170| 62 74 72 61 63 74 69 6f | 6e 2c 20 6d 75 6c 74 69 |btractio|n, multi|
|00000180| 70 6c 69 63 61 74 69 6f | 6e 20 26 26 20 64 69 76 |plicatio|n && div|
|00000190| 69 73 69 6f 6e 04 00 39 | 00 34 40 32 40 34 34 39 |ision..9|.4@2@449|
|000001a0| 40 61 64 64 69 74 69 6f | 6e 2c 20 73 75 62 74 72 |@additio|n, subtr|
|000001b0| 61 63 74 69 6f 6e 2c 20 | 6d 75 6c 74 69 70 6c 69 |action, |multipli|
|000001c0| 63 61 74 69 6f 6e 20 26 | 26 20 64 69 76 69 73 69 |cation &|& divisi|
|000001d0| 6f 6e 04 00 1a 00 33 40 | 31 40 39 40 66 61 63 74 |on....3@|1@9@fact|
|000001e0| 6f 72 73 20 26 26 20 6d | 75 6c 74 69 70 6c 65 73 |ors && m|ultiples|
|000001f0| 07 00 0f 00 34 40 33 40 | 31 36 30 40 66 61 63 74 |....4@3@|160@fact|
|00000200| 6f 72 73 04 00 0f 00 34 | 40 32 40 31 36 31 40 66 |ors....4|@2@161@f|
|00000210| 61 63 74 6f 72 73 04 00 | 0f 00 34 40 32 40 34 35 |actors..|..4@2@45|
|00000220| 30 40 66 61 63 74 6f 72 | 73 04 00 1d 00 34 40 33 |0@factor|s....4@3|
|00000230| 40 31 35 34 40 68 69 67 | 68 65 73 74 20 63 6f 6d |@154@hig|hest com|
|00000240| 6d 6f 6e 20 66 61 63 74 | 6f 72 03 00 1d 00 34 40 |mon fact|or....4@|
|00000250| 32 40 31 35 35 40 68 69 | 67 68 65 73 74 20 63 6f |2@155@hi|ghest co|
|00000260| 6d 6d 6f 6e 20 66 61 63 | 74 6f 72 03 00 1d 00 34 |mmon fac|tor....4|
|00000270| 40 32 40 34 35 31 40 68 | 69 67 68 65 73 74 20 63 |@2@451@h|ighest c|
|00000280| 6f 6d 6d 6f 6e 20 66 61 | 63 74 6f 72 03 00 11 00 |ommon fa|ctor....|
|00000290| 34 40 33 40 31 35 36 40 | 6d 75 6c 74 69 70 6c 65 |4@3@156@|multiple|
|000002a0| 73 04 00 11 00 34 40 32 | 40 31 35 37 40 6d 75 6c |s....4@2|@157@mul|
|000002b0| 74 69 70 6c 65 73 04 00 | 11 00 34 40 32 40 34 35 |tiples..|..4@2@45|
|000002c0| 32 40 6d 75 6c 74 69 70 | 6c 65 73 04 00 1e 00 34 |2@multip|les....4|
|000002d0| 40 33 40 31 35 38 40 6c | 6f 77 65 73 74 20 63 6f |@3@158@l|owest co|
|000002e0| 6d 6d 6f 6e 20 6d 75 6c | 74 69 70 6c 65 03 00 1e |mmon mul|tiple...|
|000002f0| 00 34 40 32 40 31 35 39 | 40 6c 6f 77 65 73 74 20 |.4@2@159|@lowest |
|00000300| 63 6f 6d 6d 6f 6e 20 6d | 75 6c 74 69 70 6c 65 03 |common m|ultiple.|
|00000310| 00 1e 00 34 40 32 40 34 | 35 33 40 6c 6f 77 65 73 |...4@2@4|53@lowes|
|00000320| 74 20 63 6f 6d 6d 6f 6e | 20 6d 75 6c 74 69 70 6c |t common| multipl|
|00000330| 65 03 00 0d 00 33 40 31 | 40 31 30 40 70 72 69 6d |e....3@1|@10@prim|
|00000340| 65 73 07 00 1e 00 34 40 | 33 40 31 36 33 40 70 72 |es....4@|3@163@pr|
|00000350| 69 6d 65 20 6e 75 6d 62 | 65 72 73 20 2d 20 62 61 |ime numb|ers - ba|
|00000360| 73 69 63 73 04 00 1e 00 | 34 40 32 40 31 36 34 40 |sics....|4@2@164@|
|00000370| 70 72 69 6d 65 20 6e 75 | 6d 62 65 72 73 20 2d 20 |prime nu|mbers - |
|00000380| 62 61 73 69 63 73 04 00 | 1e 00 34 40 32 40 36 31 |basics..|..4@2@61|
|00000390| 33 40 70 72 69 6d 65 20 | 6e 75 6d 62 65 72 73 20 |3@prime |numbers |
|000003a0| 2d 20 62 61 73 69 63 73 | 04 00 15 00 34 40 33 40 |- basics|....4@3@|
|000003b0| 31 36 35 40 70 72 69 6d | 65 20 6e 75 6d 62 65 72 |165@prim|e number|
|000003c0| 73 07 00 15 00 34 40 32 | 40 31 36 36 40 70 72 69 |s....4@2|@166@pri|
|000003d0| 6d 65 20 6e 75 6d 62 65 | 72 73 07 00 15 00 34 40 |me numbe|rs....4@|
|000003e0| 32 40 36 31 34 40 70 72 | 69 6d 65 20 6e 75 6d 62 |2@614@pr|ime numb|
|000003f0| 65 72 73 07 00 15 00 34 | 40 33 40 31 36 37 40 70 |ers....4|@3@167@p|
|00000400| 72 69 6d 65 20 66 61 63 | 74 6f 72 73 03 00 15 00 |rime fac|tors....|
|00000410| 34 40 32 40 31 36 38 40 | 70 72 69 6d 65 20 66 61 |4@2@168@|prime fa|
|00000420| 63 74 6f 72 73 03 00 15 | 00 34 40 32 40 36 31 35 |ctors...|.4@2@615|
|00000430| 40 70 72 69 6d 65 20 66 | 61 63 74 6f 72 73 03 00 |@prime f|actors..|
|00000440| 17 00 33 40 31 40 31 31 | 40 64 69 72 65 63 74 65 |..3@1@11|@directe|
|00000450| 64 20 6e 75 6d 62 65 72 | 73 07 00 18 00 34 40 33 |d number|s....4@3|
|00000460| 40 32 32 37 40 64 69 72 | 65 63 74 65 64 20 6e 75 |@227@dir|ected nu|
|00000470| 6d 62 65 72 73 04 00 18 | 00 34 40 32 40 31 32 32 |mbers...|.4@2@122|
|00000480| 40 64 69 72 65 63 74 65 | 64 20 6e 75 6d 62 65 72 |@directe|d number|
|00000490| 73 04 00 18 00 34 40 32 | 40 31 32 31 40 64 69 72 |s....4@2|@121@dir|
|000004a0| 65 63 74 65 64 20 6e 75 | 6d 62 65 72 73 04 00 2b |ected nu|mbers..+|
|000004b0| 00 34 40 33 40 35 37 36 | 40 64 69 72 65 63 74 65 |.4@3@576|@directe|
|000004c0| 64 20 6e 75 6d 62 65 72 | 73 20 26 26 20 74 68 65 |d number|s && the|
|000004d0| 20 6e 75 6d 62 65 72 20 | 6c 69 6e 65 03 00 2b 00 | number |line..+.|
|000004e0| 34 40 32 40 35 37 37 40 | 64 69 72 65 63 74 65 64 |4@2@577@|directed|
|000004f0| 20 6e 75 6d 62 65 72 73 | 20 26 26 20 74 68 65 20 | numbers| && the |
|00000500| 6e 75 6d 62 65 72 20 6c | 69 6e 65 03 00 2b 00 34 |number l|ine..+.4|
|00000510| 40 32 40 35 37 38 40 64 | 69 72 65 63 74 65 64 20 |@2@578@d|irected |
|00000520| 6e 75 6d 62 65 72 73 20 | 26 26 20 74 68 65 20 6e |numbers |&& the n|
|00000530| 75 6d 62 65 72 20 6c 69 | 6e 65 03 00 2e 00 34 40 |umber li|ne....4@|
|00000540| 33 40 35 37 39 40 61 64 | 64 69 6e 67 20 26 26 20 |3@579@ad|ding && |
|00000550| 73 75 62 74 72 61 63 74 | 69 6e 67 20 64 69 72 65 |subtract|ing dire|
|00000560| 63 74 65 64 20 6e 75 6d | 62 65 72 73 03 00 2e 00 |cted num|bers....|
|00000570| 34 40 32 40 35 38 30 40 | 61 64 64 69 6e 67 20 26 |4@2@580@|adding &|
|00000580| 26 20 73 75 62 74 72 61 | 63 74 69 6e 67 20 64 69 |& subtra|cting di|
|00000590| 72 65 63 74 65 64 20 6e | 75 6d 62 65 72 73 03 00 |rected n|umbers..|
|000005a0| 2e 00 34 40 32 40 35 38 | 31 40 61 64 64 69 6e 67 |..4@2@58|1@adding|
|000005b0| 20 26 26 20 73 75 62 74 | 72 61 63 74 69 6e 67 20 | && subt|racting |
|000005c0| 64 69 72 65 63 74 65 64 | 20 6e 75 6d 62 65 72 73 |directed| numbers|
|000005d0| 03 00 30 00 34 40 33 40 | 35 35 31 40 6d 75 6c 74 |..0.4@3@|551@mult|
|000005e0| 69 70 6c 79 69 6e 67 20 | 26 26 20 64 69 76 69 64 |iplying |&& divid|
|000005f0| 69 6e 67 20 64 69 72 65 | 63 74 65 64 20 6e 75 6d |ing dire|cted num|
|00000600| 62 65 72 73 03 00 2f 00 | 34 40 32 40 36 30 38 40 |bers../.|4@2@608@|
|00000610| 6d 75 6c 74 69 70 6c 79 | 69 6e 67 20 26 26 64 69 |multiply|ing &&di|
|00000620| 76 69 64 69 6e 67 20 64 | 69 72 65 63 74 65 64 20 |viding d|irected |
|00000630| 6e 75 6d 62 65 72 73 03 | 00 2f 00 34 40 32 40 36 |numbers.|./.4@2@6|
|00000640| 30 39 40 6d 75 6c 74 69 | 70 6c 79 69 6e 67 20 26 |09@multi|plying &|
|00000650| 26 64 69 76 69 64 69 6e | 67 20 64 69 72 65 63 74 |&dividin|g direct|
|00000660| 65 64 20 6e 75 6d 62 65 | 72 73 03 00 1a 00 32 40 |ed numbe|rs....2@|
|00000670| 31 40 35 40 6e 75 6d 62 | 65 72 20 72 65 6c 61 74 |1@5@numb|er relat|
|00000680| 69 6f 6e 73 68 69 70 73 | 1f 00 0f 00 33 40 31 40 |ionships|....3@1@|
|00000690| 31 34 40 64 65 63 69 6d | 61 6c 73 07 00 1c 00 34 |14@decim|als....4|
|000006a0| 40 33 40 31 32 35 40 64 | 65 63 69 6d 61 6c 20 70 |@3@125@d|ecimal p|
|000006b0| 6c 61 63 65 20 76 61 6c | 75 65 73 04 00 1c 00 34 |lace val|ues....4|
|000006c0| 40 32 40 31 32 34 40 64 | 65 63 69 6d 61 6c 20 70 |@2@124@d|ecimal p|
|000006d0| 6c 61 63 65 20 76 61 6c | 75 65 73 04 00 1c 00 34 |lace val|ues....4|
|000006e0| 40 32 40 34 35 37 40 64 | 65 63 69 6d 61 6c 20 70 |@2@457@d|ecimal p|
|000006f0| 6c 61 63 65 20 76 61 6c | 75 65 73 04 00 1e 00 34 |lace val|ues....4|
|00000700| 40 33 40 31 32 33 40 d7 | 20 26 26 20 f7 20 62 79 |@3@123@.| && . by|
|00000710| 20 70 6f 77 65 72 73 20 | 6f 66 20 31 30 06 00 1e | powers |of 10...|
|00000720| 00 34 40 32 40 31 32 36 | 40 d7 20 26 26 20 f7 20 |.4@2@126|@. && . |
|00000730| 62 79 20 70 6f 77 65 72 | 73 20 6f 66 20 31 30 06 |by power|s of 10.|
|00000740| 00 1e 00 34 40 32 40 34 | 35 36 40 d7 20 26 26 20 |...4@2@4|56@. && |
|00000750| f7 20 62 79 20 70 6f 77 | 65 72 73 20 6f 66 20 31 |. by pow|ers of 1|
|00000760| 30 06 00 28 00 34 40 33 | 40 31 34 33 40 6d 75 6c |0..(.4@3|@143@mul|
|00000770| 74 69 70 6c 79 69 6e 67 | 20 26 26 20 64 69 76 69 |tiplying| && divi|
|00000780| 64 69 6e 67 20 64 65 63 | 69 6d 61 6c 73 03 00 28 |ding dec|imals..(|
|00000790| 00 34 40 32 40 31 31 39 | 40 6d 75 6c 74 69 70 6c |.4@2@119|@multipl|
|000007a0| 79 69 6e 67 20 26 26 20 | 64 69 76 69 64 69 6e 67 |ying && |dividing|
|000007b0| 20 64 65 63 69 6d 61 6c | 73 03 00 28 00 34 40 32 | decimal|s..(.4@2|
|000007c0| 40 34 35 34 40 6d 75 6c | 74 69 70 6c 79 69 6e 67 |@454@mul|tiplying|
|000007d0| 20 26 26 20 64 69 76 69 | 64 69 6e 67 20 64 65 63 | && divi|ding dec|
|000007e0| 69 6d 61 6c 73 03 00 10 | 00 33 40 31 40 31 35 40 |imals...|.3@1@15@|
|000007f0| 66 72 61 63 74 69 6f 6e | 73 06 00 11 00 34 40 33 |fraction|s....4@3|
|00000800| 40 32 30 32 40 66 72 61 | 63 74 69 6f 6e 73 04 00 |@202@fra|ctions..|
|00000810| 11 00 34 40 32 40 32 31 | 33 40 66 72 61 63 74 69 |..4@2@21|3@fracti|
|00000820| 6f 6e 73 04 00 11 00 34 | 40 32 40 34 37 30 40 66 |ons....4|@2@470@f|
|00000830| 72 61 63 74 69 6f 6e 73 | 04 00 1a 00 34 40 33 40 |ractions|....4@3@|
|00000840| 32 30 33 40 69 6d 70 72 | 6f 70 65 72 20 66 72 61 |203@impr|oper fra|
|00000850| 63 74 69 6f 6e 73 06 00 | 1a 00 34 40 32 40 32 31 |ctions..|..4@2@21|
|00000860| 34 40 69 6d 70 72 6f 70 | 65 72 20 66 72 61 63 74 |4@improp|er fract|
|00000870| 69 6f 6e 73 06 00 1a 00 | 34 40 32 40 34 37 31 40 |ions....|4@2@471@|
|00000880| 69 6d 70 72 6f 70 65 72 | 20 66 72 61 63 74 69 6f |improper| fractio|
|00000890| 6e 73 06 00 1c 00 34 40 | 33 40 32 30 34 40 65 71 |ns....4@|3@204@eq|
|000008a0| 75 69 76 61 6c 65 6e 74 | 20 66 72 61 63 74 69 6f |uivalent| fractio|
|000008b0| 6e 73 06 00 1c 00 34 40 | 32 40 32 31 35 40 65 71 |ns....4@|2@215@eq|
|000008c0| 75 69 76 61 6c 65 6e 74 | 20 66 72 61 63 74 69 6f |uivalent| fractio|
|000008d0| 6e 73 06 00 1c 00 34 40 | 32 40 34 37 32 40 65 71 |ns....4@|2@472@eq|
|000008e0| 75 69 76 61 6c 65 6e 74 | 20 66 72 61 63 74 69 6f |uivalent| fractio|
|000008f0| 6e 73 06 00 27 00 34 40 | 33 40 32 30 35 40 61 64 |ns..'.4@|3@205@ad|
|00000900| 64 69 6e 67 20 26 26 20 | 73 75 62 74 72 61 63 74 |ding && |subtract|
|00000910| 69 6e 67 20 66 72 61 63 | 74 69 6f 6e 73 04 00 27 |ing frac|tions..'|
|00000920| 00 34 40 32 40 32 31 36 | 40 61 64 64 69 6e 67 20 |.4@2@216|@adding |
|00000930| 26 26 20 73 75 62 74 72 | 61 63 74 69 6e 67 20 66 |&& subtr|acting f|
|00000940| 72 61 63 74 69 6f 6e 73 | 04 00 27 00 34 40 32 40 |ractions|..'.4@2@|
|00000950| 34 37 33 40 61 64 64 69 | 6e 67 20 26 26 20 73 75 |473@addi|ng && su|
|00000960| 62 74 72 61 63 74 69 6e | 67 20 66 72 61 63 74 69 |btractin|g fracti|
|00000970| 6f 6e 73 04 00 1d 00 34 | 40 33 40 32 30 36 40 6d |ons....4|@3@206@m|
|00000980| 75 6c 74 69 70 6c 79 69 | 6e 67 20 66 72 61 63 74 |ultiplyi|ng fract|
|00000990| 69 6f 6e 73 02 00 1d 00 | 34 40 32 40 32 31 37 40 |ions....|4@2@217@|
|000009a0| 6d 75 6c 74 69 70 6c 79 | 69 6e 67 20 66 72 61 63 |multiply|ing frac|
|000009b0| 74 69 6f 6e 73 02 00 1d | 00 34 40 32 40 34 37 34 |tions...|.4@2@474|
|000009c0| 40 6d 75 6c 74 69 70 6c | 79 69 6e 67 20 66 72 61 |@multipl|ying fra|
|000009d0| 63 74 69 6f 6e 73 02 00 | 1a 00 34 40 33 40 32 30 |ctions..|..4@3@20|
|000009e0| 37 40 64 69 76 69 64 69 | 6e 67 20 66 72 61 63 74 |7@dividi|ng fract|
|000009f0| 69 6f 6e 73 02 00 1a 00 | 34 40 32 40 32 31 38 40 |ions....|4@2@218@|
|00000a00| 64 69 76 69 64 69 6e 67 | 20 66 72 61 63 74 69 6f |dividing| fractio|
|00000a10| 6e 73 02 00 1a 00 34 40 | 32 40 34 37 35 40 64 69 |ns....4@|2@475@di|
|00000a20| 76 69 64 69 6e 67 20 66 | 72 61 63 74 69 6f 6e 73 |viding f|ractions|
|00000a30| 02 00 12 00 33 40 31 40 | 31 36 40 70 65 72 63 65 |....3@1@|16@perce|
|00000a40| 6e 74 61 67 65 73 07 00 | 13 00 34 40 33 40 32 30 |ntages..|..4@3@20|
|00000a50| 38 40 70 65 72 63 65 6e | 74 61 67 65 73 04 00 13 |8@percen|tages...|
|00000a60| 00 34 40 32 40 32 31 39 | 40 70 65 72 63 65 6e 74 |.4@2@219|@percent|
|00000a70| 61 67 65 73 04 00 13 00 | 34 40 32 40 34 36 31 40 |ages....|4@2@461@|
|00000a80| 70 65 72 63 65 6e 74 61 | 67 65 73 04 00 2a 00 34 |percenta|ges..*.4|
|00000a90| 40 33 40 32 30 39 40 64 | 65 63 69 6d 61 6c 73 2c |@3@209@d|ecimals,|
|00000aa0| 20 66 72 61 63 74 69 6f | 6e 73 20 26 26 20 70 65 | fractio|ns && pe|
|00000ab0| 72 63 65 6e 74 61 67 65 | 73 07 00 2c 00 34 40 32 |rcentage|s..,.4@2|
|00000ac0| 40 32 32 30 40 64 65 63 | 69 6d 61 6c 73 2c 20 66 |@220@dec|imals, f|
|00000ad0| 72 61 63 74 69 6f 6e 73 | 20 26 26 20 70 65 72 63 |ractions| && perc|
|00000ae0| 65 6e 74 61 67 65 73 20 | 46 04 00 2c 00 34 40 32 |entages |F..,.4@2|
|00000af0| 40 34 35 38 40 64 65 63 | 69 6d 61 6c 73 2c 20 66 |@458@dec|imals, f|
|00000b00| 72 61 63 74 69 6f 6e 73 | 20 26 26 20 70 65 72 63 |ractions| && perc|
|00000b10| 65 6e 74 61 67 65 73 20 | 46 04 00 30 00 34 40 32 |entages |F..0.4@2|
|00000b20| 40 32 33 37 40 64 65 63 | 69 6d 61 6c 73 2c 20 66 |@237@dec|imals, f|
|00000b30| 72 61 63 74 69 6f 6e 73 | 20 26 26 20 70 65 72 63 |ractions| && perc|
|00000b40| 65 6e 74 61 67 65 73 20 | 49 20 26 20 48 03 00 30 |entages |I & H..0|
|00000b50| 00 34 40 32 40 34 35 39 | 40 64 65 63 69 6d 61 6c |.4@2@459|@decimal|
|00000b60| 73 2c 20 66 72 61 63 74 | 69 6f 6e 73 20 26 26 20 |s, fract|ions && |
|00000b70| 70 65 72 63 65 6e 74 61 | 67 65 73 20 49 20 26 20 |percenta|ges I & |
|00000b80| 48 03 00 19 00 34 40 33 | 40 32 33 33 40 70 65 72 |H....4@3|@233@per|
|00000b90| 63 65 6e 74 61 67 65 20 | 63 68 61 6e 67 65 07 00 |centage |change..|
|00000ba0| 19 00 34 40 32 40 32 33 | 32 40 70 65 72 63 65 6e |..4@2@23|2@percen|
|00000bb0| 74 61 67 65 20 63 68 61 | 6e 67 65 07 00 19 00 34 |tage cha|nge....4|
|00000bc0| 40 32 40 34 36 30 40 70 | 65 72 63 65 6e 74 61 67 |@2@460@p|ercentag|
|00000bd0| 65 20 63 68 61 6e 67 65 | 07 00 0d 00 33 40 31 40 |e change|....3@1@|
|00000be0| 31 37 40 72 61 74 69 6f | 73 07 00 0e 00 34 40 33 |17@ratio|s....4@3|
|00000bf0| 40 31 31 38 40 72 61 74 | 69 6f 73 07 00 0e 00 34 |@118@rat|ios....4|
|00000c00| 40 32 40 31 31 36 40 72 | 61 74 69 6f 73 07 00 0e |@2@116@r|atios...|
|00000c10| 00 34 40 32 40 35 34 37 | 40 72 61 74 69 6f 73 07 |.4@2@547|@ratios.|
|00000c20| 00 1a 00 34 40 33 40 31 | 31 37 40 73 69 6d 70 6c |...4@3@1|17@simpl|
|00000c30| 69 66 79 69 6e 67 20 72 | 61 74 69 6f 73 07 00 1a |ifying r|atios...|
|00000c40| 00 34 40 32 40 32 32 31 | 40 73 69 6d 70 6c 69 66 |.4@2@221|@simplif|
|00000c50| 79 69 6e 67 20 72 61 74 | 69 6f 73 07 00 1a 00 34 |ying rat|ios....4|
|00000c60| 40 32 40 32 33 34 40 73 | 69 6d 70 6c 69 66 79 69 |@2@234@s|implifyi|
|00000c70| 6e 67 20 72 61 74 69 6f | 73 07 00 28 00 34 40 33 |ng ratio|s..(.4@3|
|00000c80| 40 35 34 38 40 63 68 61 | 6e 67 69 6e 67 20 76 61 |@548@cha|nging va|
|00000c90| 6c 75 65 73 20 62 79 20 | 61 20 67 69 76 65 6e 20 |lues by |a given |
|00000ca0| 72 61 74 69 6f 07 00 28 | 00 34 40 32 40 35 34 39 |ratio..(|.4@2@549|
|00000cb0| 40 63 68 61 6e 67 69 6e | 67 20 76 61 6c 75 65 73 |@changin|g values|
|00000cc0| 20 62 79 20 61 20 67 69 | 76 65 6e 20 72 61 74 69 | by a gi|ven rati|
|00000cd0| 6f 07 00 28 00 34 40 32 | 40 35 35 30 40 63 68 61 |o..(.4@2|@550@cha|
|00000ce0| 6e 67 69 6e 67 20 76 61 | 6c 75 65 73 20 62 79 20 |nging va|lues by |
|00000cf0| 61 20 67 69 76 65 6e 20 | 72 61 74 69 6f 07 00 27 |a given |ratio..'|
|00000d00| 00 34 40 33 40 36 31 30 | 40 72 61 74 69 6f 73 20 |.4@3@610|@ratios |
|00000d10| 77 69 74 68 20 6d 6f 72 | 65 20 74 68 61 6e 20 74 |with mor|e than t|
|00000d20| 77 6f 20 70 61 72 74 73 | 03 00 27 00 34 40 32 40 |wo parts|..'.4@2@|
|00000d30| 35 35 32 40 72 61 74 69 | 6f 73 20 77 69 74 68 20 |552@rati|os with |
|00000d40| 6d 6f 72 65 20 74 68 61 | 6e 20 74 77 6f 20 70 61 |more tha|n two pa|
|00000d50| 72 74 73 03 00 27 00 34 | 40 32 40 35 35 33 40 72 |rts..'.4|@2@553@r|
|00000d60| 61 74 69 6f 73 20 77 69 | 74 68 20 6d 6f 72 65 20 |atios wi|th more |
|00000d70| 74 68 61 6e 20 74 77 6f | 20 70 61 72 74 73 03 00 |than two| parts..|
|00000d80| 16 00 33 40 31 40 31 38 | 40 70 72 6f 70 6f 72 74 |..3@1@18|@proport|
|00000d90| 69 6f 6e 61 6c 69 74 79 | 03 00 1e 00 34 40 33 40 |ionality|....4@3@|
|00000da0| 32 31 30 40 64 69 72 65 | 63 74 20 70 72 6f 70 6f |210@dire|ct propo|
|00000db0| 72 74 69 6f 6e 61 6c 69 | 74 79 03 00 1e 00 34 40 |rtionali|ty....4@|
|00000dc0| 32 40 32 32 32 40 64 69 | 72 65 63 74 20 70 72 6f |2@222@di|rect pro|
|00000dd0| 70 6f 72 74 69 6f 6e 61 | 6c 69 74 79 03 00 1e 00 |portiona|lity....|
|00000de0| 34 40 32 40 34 36 32 40 | 64 69 72 65 63 74 20 70 |4@2@462@|direct p|
|00000df0| 72 6f 70 6f 72 74 69 6f | 6e 61 6c 69 74 79 03 00 |roportio|nality..|
|00000e00| 1f 00 34 40 33 40 32 31 | 31 40 69 6e 76 65 72 73 |..4@3@21|1@invers|
|00000e10| 65 20 70 72 6f 70 6f 72 | 74 69 6f 6e 61 6c 69 74 |e propor|tionalit|
|00000e20| 79 03 00 1f 00 34 40 32 | 40 32 32 34 40 69 6e 76 |y....4@2|@224@inv|
|00000e30| 65 72 73 65 20 70 72 6f | 70 6f 72 74 69 6f 6e 61 |erse pro|portiona|
|00000e40| 6c 69 74 79 03 00 1f 00 | 34 40 32 40 34 36 33 40 |lity....|4@2@463@|
|00000e50| 69 6e 76 65 72 73 65 20 | 70 72 6f 70 6f 72 74 69 |inverse |proporti|
|00000e60| 6f 6e 61 6c 69 74 79 03 | 00 1f 00 34 40 33 40 32 |onality.|...4@3@2|
|00000e70| 31 32 40 63 6f 6d 70 6c | 65 78 20 70 72 6f 70 6f |12@compl|ex propo|
|00000e80| 72 74 69 6f 6e 61 6c 69 | 74 79 01 00 1f 00 34 40 |rtionali|ty....4@|
|00000e90| 32 40 32 32 35 40 63 6f | 6d 70 6c 65 78 20 70 72 |2@225@co|mplex pr|
|00000ea0| 6f 70 6f 72 74 69 6f 6e | 61 6c 69 74 79 01 00 1f |oportion|ality...|
|00000eb0| 00 34 40 32 40 34 36 34 | 40 63 6f 6d 70 6c 65 78 |.4@2@464|@complex|
|00000ec0| 20 70 72 6f 70 6f 72 74 | 69 6f 6e 61 6c 69 74 79 | proport|ionality|
|00000ed0| 01 00 21 00 32 40 31 40 | 36 40 65 73 74 69 6d 61 |..!.2@1@|6@estima|
|00000ee0| 74 69 6f 6e 20 26 26 20 | 61 70 70 72 6f 78 69 6d |tion && |approxim|
|00000ef0| 61 74 69 6f 6e 07 00 15 | 00 33 40 31 40 32 30 40 |ation...|.3@1@20@|
|00000f00| 64 65 63 69 6d 61 6c 20 | 70 6c 61 63 65 73 07 00 |decimal |places..|
|00000f10| 16 00 34 40 33 40 34 37 | 36 40 64 65 63 69 6d 61 |..4@3@47|6@decima|
|00000f20| 6c 20 70 6c 61 63 65 73 | 06 00 16 00 34 40 32 40 |l places|....4@2@|
|00000f30| 34 37 37 40 64 65 63 69 | 6d 61 6c 20 70 6c 61 63 |477@deci|mal plac|
|00000f40| 65 73 06 00 16 00 34 40 | 32 40 34 37 38 40 64 65 |es....4@|2@478@de|
|00000f50| 63 69 6d 61 6c 20 70 6c | 61 63 65 73 06 00 26 00 |cimal pl|aces..&.|
|00000f60| 34 40 33 40 34 37 39 40 | 72 6f 75 6e 64 69 6e 67 |4@3@479@|rounding|
|00000f70| 20 6f 66 66 20 74 6f 20 | 64 65 63 69 6d 61 6c 20 | off to |decimal |
|00000f80| 70 6c 61 63 65 73 06 00 | 26 00 34 40 32 40 34 38 |places..|&.4@2@48|
|00000f90| 30 40 72 6f 75 6e 64 69 | 6e 67 20 6f 66 66 20 74 |0@roundi|ng off t|
|00000fa0| 6f 20 64 65 63 69 6d 61 | 6c 20 70 6c 61 63 65 73 |o decima|l places|
|00000fb0| 06 00 26 00 34 40 32 40 | 34 38 31 40 72 6f 75 6e |..&.4@2@|481@roun|
|00000fc0| 64 69 6e 67 20 6f 66 66 | 20 74 6f 20 64 65 63 69 |ding off| to deci|
|00000fd0| 6d 61 6c 20 70 6c 61 63 | 65 73 06 00 1f 00 34 40 |mal plac|es....4@|
|00000fe0| 33 40 34 38 32 40 7a 65 | 72 6f 73 20 69 6e 20 64 |3@482@ze|ros in d|
|00000ff0| 65 63 69 6d 61 6c 20 70 | 6c 61 63 65 73 06 00 1f |ecimal p|laces...|
|00001000| 00 34 40 32 40 34 38 33 | 40 7a 65 72 6f 73 20 69 |.4@2@483|@zeros i|
|00001010| 6e 20 64 65 63 69 6d 61 | 6c 20 70 6c 61 63 65 73 |n decima|l places|
|00001020| 06 00 1f 00 34 40 32 40 | 34 38 34 40 7a 65 72 6f |....4@2@|484@zero|
|00001030| 73 20 69 6e 20 64 65 63 | 69 6d 61 6c 20 70 6c 61 |s in dec|imal pla|
|00001040| 63 65 73 06 00 26 00 34 | 40 33 40 34 38 35 40 68 |ces..&.4|@3@485@h|
|00001050| 6f 77 20 6d 61 6e 79 20 | 64 65 63 69 6d 61 6c 20 |ow many |decimal |
|00001060| 70 6c 61 63 65 73 20 74 | 6f 20 75 73 65 03 00 26 |places t|o use..&|
|00001070| 00 34 40 32 40 34 38 36 | 40 68 6f 77 20 6d 61 6e |.4@2@486|@how man|
|00001080| 79 20 64 65 63 69 6d 61 | 6c 20 70 6c 61 63 65 73 |y decima|l places|
|00001090| 20 74 6f 20 75 73 65 03 | 00 26 00 34 40 32 40 34 | to use.|.&.4@2@4|
|000010a0| 38 37 40 68 6f 77 20 6d | 61 6e 79 20 64 65 63 69 |87@how m|any deci|
|000010b0| 6d 61 6c 20 70 6c 61 63 | 65 73 20 74 6f 20 75 73 |mal plac|es to us|
|000010c0| 65 03 00 1a 00 33 40 31 | 40 32 31 40 73 69 67 6e |e....3@1|@21@sign|
|000010d0| 69 66 69 63 61 6e 74 20 | 66 69 67 75 72 65 73 07 |ificant |figures.|
|000010e0| 00 1b 00 34 40 33 40 34 | 38 38 40 73 69 67 6e 69 |...4@3@4|88@signi|
|000010f0| 66 69 63 61 6e 74 20 66 | 69 67 75 72 65 73 06 00 |ficant f|igures..|
|00001100| 1b 00 34 40 32 40 34 38 | 39 40 73 69 67 6e 69 66 |..4@2@48|9@signif|
|00001110| 69 63 61 6e 74 20 66 69 | 67 75 72 65 73 06 00 1b |icant fi|gures...|
|00001120| 00 34 40 32 40 34 39 30 | 40 73 69 67 6e 69 66 69 |.4@2@490|@signifi|
|00001130| 63 61 6e 74 20 66 69 67 | 75 72 65 73 06 00 2b 00 |cant fig|ures..+.|
|00001140| 34 40 33 40 34 39 31 40 | 72 6f 75 6e 64 69 6e 67 |4@3@491@|rounding|
|00001150| 20 6f 66 66 20 74 6f 20 | 73 69 67 6e 69 66 69 63 | off to |signific|
|00001160| 61 6e 74 20 66 69 67 75 | 72 65 73 06 00 2b 00 34 |ant figu|res..+.4|
|00001170| 40 32 40 34 39 32 40 72 | 6f 75 6e 64 69 6e 67 20 |@2@492@r|ounding |
|00001180| 6f 66 66 20 74 6f 20 73 | 69 67 6e 69 66 69 63 61 |off to s|ignifica|
|00001190| 6e 74 20 66 69 67 75 72 | 65 73 06 00 2b 00 34 40 |nt figur|es..+.4@|
|000011a0| 32 40 34 39 33 40 72 6f | 75 6e 64 69 6e 67 20 6f |2@493@ro|unding o|
|000011b0| 66 66 20 74 6f 20 73 69 | 67 6e 69 66 69 63 61 6e |ff to si|gnifican|
|000011c0| 74 20 66 69 67 75 72 65 | 73 06 00 24 00 34 40 33 |t figure|s..$.4@3|
|000011d0| 40 34 39 34 40 7a 65 72 | 6f 73 20 69 6e 20 73 69 |@494@zer|os in si|
|000011e0| 67 6e 69 66 69 63 61 6e | 74 20 66 69 67 75 72 65 |gnifican|t figure|
|000011f0| 73 06 00 24 00 34 40 32 | 40 34 39 35 40 7a 65 72 |s..$.4@2|@495@zer|
|00001200| 6f 73 20 69 6e 20 73 69 | 67 6e 69 66 69 63 61 6e |os in si|gnifican|
|00001210| 74 20 66 69 67 75 72 65 | 73 06 00 24 00 34 40 32 |t figure|s..$.4@2|
|00001220| 40 34 39 36 40 7a 65 72 | 6f 73 20 69 6e 20 73 69 |@496@zer|os in si|
|00001230| 67 6e 69 66 69 63 61 6e | 74 20 66 69 67 75 72 65 |gnifican|t figure|
|00001240| 73 06 00 2b 00 34 40 33 | 40 34 39 37 40 68 6f 77 |s..+.4@3|@497@how|
|00001250| 20 6d 61 6e 79 20 73 69 | 67 6e 69 66 69 63 61 6e | many si|gnifican|
|00001260| 74 20 66 69 67 75 72 65 | 73 20 74 6f 20 75 73 65 |t figure|s to use|
|00001270| 03 00 2b 00 34 40 32 40 | 34 39 38 40 68 6f 77 20 |..+.4@2@|498@how |
|00001280| 6d 61 6e 79 20 73 69 67 | 6e 69 66 69 63 61 6e 74 |many sig|nificant|
|00001290| 20 66 69 67 75 72 65 73 | 20 74 6f 20 75 73 65 03 | figures| to use.|
|000012a0| 00 2b 00 34 40 32 40 34 | 39 39 40 68 6f 77 20 6d |.+.4@2@4|99@how m|
|000012b0| 61 6e 79 20 73 69 67 6e | 69 66 69 63 61 6e 74 20 |any sign|ificant |
|000012c0| 66 69 67 75 72 65 73 20 | 74 6f 20 75 73 65 03 00 |figures |to use..|
|000012d0| 22 00 33 40 31 40 32 32 | 40 65 73 74 69 6d 61 74 |".3@1@22|@estimat|
|000012e0| 69 6f 6e 20 26 26 20 61 | 70 70 72 6f 78 69 6d 61 |ion && a|pproxima|
|000012f0| 74 69 6f 6e 07 00 12 00 | 34 40 33 40 35 32 37 40 |tion....|4@3@527@|
|00001300| 65 73 74 69 6d 61 74 69 | 6f 6e 07 00 12 00 34 40 |estimati|on....4@|
|00001310| 32 40 35 32 36 40 65 73 | 74 69 6d 61 74 69 6f 6e |2@526@es|timation|
|00001320| 07 00 12 00 34 40 32 40 | 35 32 39 40 65 73 74 69 |....4@2@|529@esti|
|00001330| 6d 61 74 69 6f 6e 07 00 | 30 00 34 40 33 40 35 32 |mation..|0.4@3@52|
|00001340| 38 40 63 68 65 63 6b 69 | 6e 67 20 61 6e 73 77 65 |8@checki|ng answe|
|00001350| 72 73 20 77 69 74 68 20 | 72 6f 75 67 68 20 63 61 |rs with |rough ca|
|00001360| 6c 63 75 6c 61 74 69 6f | 6e 73 04 00 30 00 34 40 |lculatio|ns..0.4@|
|00001370| 32 40 35 33 32 40 63 68 | 65 63 6b 69 6e 67 20 61 |2@532@ch|ecking a|
|00001380| 6e 73 77 65 72 73 20 77 | 69 74 68 20 72 6f 75 67 |nswers w|ith roug|
|00001390| 68 20 63 61 6c 63 75 6c | 61 74 69 6f 6e 73 04 00 |h calcul|ations..|
|000013a0| 30 00 34 40 32 40 35 33 | 33 40 63 68 65 63 6b 69 |0.4@2@53|3@checki|
|000013b0| 6e 67 20 61 6e 73 77 65 | 72 73 20 77 69 74 68 20 |ng answe|rs with |
|000013c0| 72 6f 75 67 68 20 63 61 | 6c 63 75 6c 61 74 69 6f |rough ca|lculatio|
|000013d0| 6e 73 04 00 30 00 34 40 | 33 40 35 33 30 40 63 68 |ns..0.4@|3@530@ch|
|000013e0| 65 63 6b 69 6e 67 20 61 | 6e 73 77 65 72 73 20 77 |ecking a|nswers w|
|000013f0| 69 74 68 20 72 6f 75 67 | 68 20 63 61 6c 63 75 6c |ith roug|h calcul|
|00001400| 61 74 69 6f 6e 73 02 00 | 30 00 34 40 32 40 35 33 |ations..|0.4@2@53|
|00001410| 34 40 63 68 65 63 6b 69 | 6e 67 20 61 6e 73 77 65 |4@checki|ng answe|
|00001420| 72 73 20 77 69 74 68 20 | 72 6f 75 67 68 20 63 61 |rs with |rough ca|
|00001430| 6c 63 75 6c 61 74 69 6f | 6e 73 02 00 30 00 34 40 |lculatio|ns..0.4@|
|00001440| 32 40 35 33 35 40 63 68 | 65 63 6b 69 6e 67 20 61 |2@535@ch|ecking a|
|00001450| 6e 73 77 65 72 73 20 77 | 69 74 68 20 72 6f 75 67 |nswers w|ith roug|
|00001460| 68 20 63 61 6c 63 75 6c | 61 74 69 6f 6e 73 02 00 |h calcul|ations..|
|00001470| 30 00 34 40 33 40 35 33 | 31 40 63 68 65 63 6b 69 |0.4@3@53|1@checki|
|00001480| 6e 67 20 61 6e 73 77 65 | 72 73 20 77 69 74 68 20 |ng answe|rs with |
|00001490| 72 6f 75 67 68 20 63 61 | 6c 63 75 6c 61 74 69 6f |rough ca|lculatio|
|000014a0| 6e 73 01 00 30 00 34 40 | 32 40 35 33 36 40 63 68 |ns..0.4@|2@536@ch|
|000014b0| 65 63 6b 69 6e 67 20 61 | 6e 73 77 65 72 73 20 77 |ecking a|nswers w|
|000014c0| 69 74 68 20 72 6f 75 67 | 68 20 63 61 6c 63 75 6c |ith roug|h calcul|
|000014d0| 61 74 69 6f 6e 73 01 00 | 30 00 34 40 32 40 35 33 |ations..|0.4@2@53|
|000014e0| 37 40 63 68 65 63 6b 69 | 6e 67 20 61 6e 73 77 65 |7@checki|ng answe|
|000014f0| 72 73 20 77 69 74 68 20 | 72 6f 75 67 68 20 63 61 |rs with |rough ca|
|00001500| 6c 63 75 6c 61 74 69 6f | 6e 73 01 00 1a 00 33 40 |lculatio|ns....3@|
|00001510| 31 40 32 33 40 64 65 67 | 72 65 65 73 20 6f 66 20 |1@23@deg|rees of |
|00001520| 61 63 63 75 72 61 63 79 | 03 00 1b 00 34 40 33 40 |accuracy|....4@3@|
|00001530| 35 33 38 40 64 65 67 72 | 65 65 73 20 6f 66 20 61 |538@degr|ees of a|
|00001540| 63 63 75 72 61 63 79 03 | 00 1b 00 34 40 32 40 35 |ccuracy.|...4@2@5|
|00001550| 34 30 40 64 65 67 72 65 | 65 73 20 6f 66 20 61 63 |40@degre|es of ac|
|00001560| 63 75 72 61 63 79 03 00 | 1b 00 34 40 32 40 35 33 |curacy..|..4@2@53|
|00001570| 39 40 64 65 67 72 65 65 | 73 20 6f 66 20 61 63 63 |9@degree|s of acc|
|00001580| 75 72 61 63 79 03 00 2e | 00 34 40 33 40 35 34 31 |uracy...|.4@3@541|
|00001590| 40 61 63 63 75 72 61 74 | 65 20 74 6f 20 74 68 65 |@accurat|e to the|
|000015a0| 20 6e 65 61 72 65 73 74 | 20 68 61 6c 66 20 75 6e | nearest| half un|
|000015b0| 69 74 20 6f 6e 6c 79 03 | 00 2e 00 34 40 32 40 35 |it only.|...4@2@5|
|000015c0| 34 32 40 61 63 63 75 72 | 61 74 65 20 74 6f 20 74 |42@accur|ate to t|
|000015d0| 68 65 20 6e 65 61 72 65 | 73 74 20 68 61 6c 66 20 |he neare|st half |
|000015e0| 75 6e 69 74 20 6f 6e 6c | 79 03 00 2e 00 34 40 32 |unit onl|y....4@2|
|000015f0| 40 35 34 33 40 61 63 63 | 75 72 61 74 65 20 74 6f |@543@acc|urate to|
|00001600| 20 74 68 65 20 6e 65 61 | 72 65 73 74 20 68 61 6c | the nea|rest hal|
|00001610| 66 20 75 6e 69 74 20 6f | 6e 6c 79 03 00 2b 00 34 |f unit o|nly..+.4|
|00001620| 40 33 40 35 34 34 40 64 | 69 73 63 72 65 74 65 20 |@3@544@d|iscrete |
|00001630| 26 26 20 63 6f 6e 74 69 | 6e 75 6f 75 73 20 6d 65 |&& conti|nuous me|
|00001640| 61 73 75 72 65 6d 65 6e | 74 73 03 00 2b 00 34 40 |asuremen|ts..+.4@|
|00001650| 32 40 35 34 35 40 64 69 | 73 63 72 65 74 65 20 26 |2@545@di|screte &|
|00001660| 26 20 63 6f 6e 74 69 6e | 75 6f 75 73 20 6d 65 61 |& contin|uous mea|
|00001670| 73 75 72 65 6d 65 6e 74 | 73 03 00 2b 00 34 40 32 |surement|s..+.4@2|
|00001680| 40 35 34 36 40 64 69 73 | 63 72 65 74 65 20 26 26 |@546@dis|crete &&|
|00001690| 20 63 6f 6e 74 69 6e 75 | 6f 75 73 20 6d 65 61 73 | continu|ous meas|
|000016a0| 75 72 65 6d 65 6e 74 73 | 03 00 1c 00 34 40 33 40 |urements|....4@3@|
|000016b0| 35 35 37 40 74 68 65 20 | 65 66 66 65 63 74 73 20 |557@the |effects |
|000016c0| 6f 66 20 65 72 72 6f 72 | 01 00 1c 00 34 40 32 40 |of error|....4@2@|
|000016d0| 35 35 38 40 74 68 65 20 | 65 66 66 65 63 74 73 20 |558@the |effects |
|000016e0| 6f 66 20 65 72 72 6f 72 | 01 00 1c 00 34 40 32 40 |of error|....4@2@|
|000016f0| 35 35 39 40 74 68 65 20 | 65 66 66 65 63 74 73 20 |559@the |effects |
|00001700| 6f 66 20 65 72 72 6f 72 | 01 00 1b 00 33 40 31 40 |of error|....3@1@|
|00001710| 32 34 40 62 6f 75 6e 64 | 65 64 20 6d 65 61 73 75 |24@bound|ed measu|
|00001720| 72 65 6d 65 6e 74 73 03 | 00 1d 00 34 40 33 40 35 |rements.|...4@3@5|
|00001730| 36 30 40 75 70 70 65 72 | 20 26 26 20 6c 6f 77 65 |60@upper| && lowe|
|00001740| 72 20 62 6f 75 6e 64 73 | 03 00 1d 00 34 40 32 40 |r bounds|....4@2@|
|00001750| 35 36 31 40 75 70 70 65 | 72 20 26 26 20 6c 6f 77 |561@uppe|r && low|
|00001760| 65 72 20 62 6f 75 6e 64 | 73 03 00 1d 00 34 40 32 |er bound|s....4@2|
|00001770| 40 35 36 32 40 75 70 70 | 65 72 20 26 26 20 6c 6f |@562@upp|er && lo|
|00001780| 77 65 72 20 62 6f 75 6e | 64 73 03 00 23 00 34 40 |wer boun|ds..#.4@|
|00001790| 33 40 35 36 33 40 61 64 | 64 69 6e 67 20 62 6f 75 |3@563@ad|ding bou|
|000017a0| 6e 64 65 64 20 6d 65 61 | 73 75 72 65 6d 65 6e 74 |nded mea|surement|
|000017b0| 73 01 00 23 00 34 40 32 | 40 35 36 34 40 61 64 64 |s..#.4@2|@564@add|
|000017c0| 69 6e 67 20 62 6f 75 6e | 64 65 64 20 6d 65 61 73 |ing boun|ded meas|
|000017d0| 75 72 65 6d 65 6e 74 73 | 01 00 23 00 34 40 32 40 |urements|..#.4@2@|
|000017e0| 35 36 35 40 61 64 64 69 | 6e 67 20 62 6f 75 6e 64 |565@addi|ng bound|
|000017f0| 65 64 20 6d 65 61 73 75 | 72 65 6d 65 6e 74 73 01 |ed measu|rements.|
|00001800| 00 28 00 34 40 33 40 35 | 36 36 40 73 75 62 74 72 |.(.4@3@5|66@subtr|
|00001810| 61 63 74 69 6e 67 20 62 | 6f 75 6e 64 65 64 20 6d |acting b|ounded m|
|00001820| 65 61 73 75 72 65 6d 65 | 6e 74 73 01 00 28 00 34 |easureme|nts..(.4|
|00001830| 40 32 40 35 36 37 40 73 | 75 62 74 72 61 63 74 69 |@2@567@s|ubtracti|
|00001840| 6e 67 20 62 6f 75 6e 64 | 65 64 20 6d 65 61 73 75 |ng bound|ed measu|
|00001850| 72 65 6d 65 6e 74 73 01 | 00 28 00 34 40 32 40 35 |rements.|.(.4@2@5|
|00001860| 36 38 40 73 75 62 74 72 | 61 63 74 69 6e 67 20 62 |68@subtr|acting b|
|00001870| 6f 75 6e 64 65 64 20 6d | 65 61 73 75 72 65 6d 65 |ounded m|easureme|
|00001880| 6e 74 73 01 00 28 00 34 | 40 33 40 35 37 30 40 6d |nts..(.4|@3@570@m|
|00001890| 75 6c 74 69 70 6c 79 69 | 6e 67 20 62 6f 75 6e 64 |ultiplyi|ng bound|
|000018a0| 65 64 20 6d 65 61 73 75 | 72 65 6d 65 6e 74 73 01 |ed measu|rements.|
|000018b0| 00 28 00 34 40 32 40 35 | 37 31 40 6d 75 6c 74 69 |.(.4@2@5|71@multi|
|000018c0| 70 6c 79 69 6e 67 20 62 | 6f 75 6e 64 65 64 20 6d |plying b|ounded m|
|000018d0| 65 61 73 75 72 65 6d 65 | 6e 74 73 01 00 28 00 34 |easureme|nts..(.4|
|000018e0| 40 32 40 35 37 32 40 6d | 75 6c 74 69 70 6c 79 69 |@2@572@m|ultiplyi|
|000018f0| 6e 67 20 62 6f 75 6e 64 | 65 64 20 6d 65 61 73 75 |ng bound|ed measu|
|00001900| 72 65 6d 65 6e 74 73 01 | 00 25 00 34 40 33 40 35 |rements.|.%.4@3@5|
|00001910| 37 33 40 64 69 76 69 64 | 69 6e 67 20 62 6f 75 6e |73@divid|ing boun|
|00001920| 64 65 64 20 6d 65 61 73 | 75 72 65 6d 65 6e 74 73 |ded meas|urements|
|00001930| 01 00 25 00 34 40 32 40 | 35 37 34 40 64 69 76 69 |..%.4@2@|574@divi|
|00001940| 64 69 6e 67 20 62 6f 75 | 6e 64 65 64 20 6d 65 61 |ding bou|nded mea|
|00001950| 73 75 72 65 6d 65 6e 74 | 73 01 00 25 00 34 40 32 |surement|s..%.4@2|
|00001960| 40 35 37 35 40 64 69 76 | 69 64 69 6e 67 20 62 6f |@575@div|iding bo|
|00001970| 75 6e 64 65 64 20 6d 65 | 61 73 75 72 65 6d 65 6e |unded me|asuremen|
|00001980| 74 73 01 00 1e 00 32 40 | 31 40 37 40 69 6e 64 69 |ts....2@|1@7@indi|
|00001990| 63 65 73 20 26 26 20 73 | 74 61 6e 64 61 72 64 20 |ces && s|tandard |
|000019a0| 66 6f 72 6d 07 00 1a 00 | 33 40 31 40 32 36 40 69 |form....|3@1@26@i|
|000019b0| 6e 74 72 6f 64 75 63 69 | 6e 67 20 69 6e 64 69 63 |ntroduci|ng indic|
|000019c0| 65 73 07 00 17 00 34 40 | 33 40 33 33 34 40 73 71 |es....4@|3@334@sq|
|000019d0| 75 61 72 65 64 20 6e 75 | 6d 62 65 72 73 06 00 17 |uared nu|mbers...|
|000019e0| 00 34 40 32 40 33 32 35 | 40 73 71 75 61 72 65 64 |.4@2@325|@squared|
|000019f0| 20 6e 75 6d 62 65 72 73 | 06 00 17 00 34 40 32 40 | numbers|....4@2@|
|00001a00| 34 36 39 40 73 71 75 61 | 72 65 64 20 6e 75 6d 62 |469@squa|red numb|
|00001a10| 65 72 73 06 00 14 00 34 | 40 33 40 33 32 36 40 73 |ers....4|@3@326@s|
|00001a20| 71 75 61 72 65 20 72 6f | 6f 74 73 02 00 14 00 34 |quare ro|ots....4|
|00001a30| 40 32 40 33 32 37 40 73 | 71 75 61 72 65 20 72 6f |@2@327@s|quare ro|
|00001a40| 6f 74 73 02 00 14 00 34 | 40 32 40 34 36 38 40 73 |ots....4|@2@468@s|
|00001a50| 71 75 61 72 65 20 72 6f | 6f 74 73 02 00 15 00 34 |quare ro|ots....4|
|00001a60| 40 33 40 33 32 38 40 63 | 75 62 65 64 20 6e 75 6d |@3@328@c|ubed num|
|00001a70| 62 65 72 73 02 00 15 00 | 34 40 32 40 33 32 39 40 |bers....|4@2@329@|
|00001a80| 63 75 62 65 64 20 6e 75 | 6d 62 65 72 73 02 00 15 |cubed nu|mbers...|
|00001a90| 00 34 40 32 40 34 36 37 | 40 63 75 62 65 64 20 6e |.4@2@467|@cubed n|
|00001aa0| 75 6d 62 65 72 73 02 00 | 1d 00 34 40 33 40 33 33 |umbers..|..4@3@33|
|00001ab0| 30 40 77 72 69 74 69 6e | 67 20 69 6e 64 65 78 20 |0@writin|g index |
|00001ac0| 6e 75 6d 62 65 72 73 03 | 00 1d 00 34 40 32 40 33 |numbers.|...4@2@3|
|00001ad0| 33 31 40 77 72 69 74 69 | 6e 67 20 69 6e 64 65 78 |31@writi|ng index|
|00001ae0| 20 6e 75 6d 62 65 72 73 | 03 00 1d 00 34 40 32 40 | numbers|....4@2@|
|00001af0| 34 36 36 40 77 72 69 74 | 69 6e 67 20 69 6e 64 65 |466@writ|ing inde|
|00001b00| 78 20 6e 75 6d 62 65 72 | 73 03 00 19 00 34 40 33 |x number|s....4@3|
|00001b10| 40 33 33 32 40 77 72 69 | 74 69 6e 67 20 61 6e 79 |@332@wri|ting any|
|00001b20| 20 69 6e 64 65 78 03 00 | 19 00 34 40 32 40 33 33 | index..|..4@2@33|
|00001b30| 33 40 77 72 69 74 69 6e | 67 20 61 6e 79 20 69 6e |3@writin|g any in|
|00001b40| 64 65 78 03 00 19 00 34 | 40 32 40 34 36 35 40 77 |dex....4|@2@465@w|
|00001b50| 72 69 74 69 6e 67 20 61 | 6e 79 20 69 6e 64 65 78 |riting a|ny index|
|00001b60| 03 00 1d 00 33 40 31 40 | 32 37 40 62 61 73 69 63 |....3@1@|27@basic|
|00001b70| 20 72 75 6c 65 73 20 6f | 66 20 69 6e 64 69 63 65 | rules o|f indice|
|00001b80| 73 03 00 23 00 34 40 33 | 40 33 34 31 40 6d 75 6c |s..#.4@3|@341@mul|
|00001b90| 74 69 70 6c 79 69 6e 67 | 20 69 6e 64 65 78 65 64 |tiplying| indexed|
|00001ba0| 20 6e 75 6d 62 65 72 73 | 03 00 23 00 34 40 32 40 | numbers|..#.4@2@|
|00001bb0| 33 34 32 40 6d 75 6c 74 | 69 70 6c 79 69 6e 67 20 |342@mult|iplying |
|00001bc0| 69 6e 64 65 78 65 64 20 | 6e 75 6d 62 65 72 73 03 |indexed |numbers.|
|00001bd0| 00 23 00 34 40 32 40 33 | 34 33 40 6d 75 6c 74 69 |.#.4@2@3|43@multi|
|00001be0| 70 6c 79 69 6e 67 20 69 | 6e 64 65 78 65 64 20 6e |plying i|ndexed n|
|00001bf0| 75 6d 62 65 72 73 03 00 | 20 00 34 40 33 40 33 34 |umbers..| .4@3@34|
|00001c00| 34 40 64 69 76 69 64 69 | 6e 67 20 69 6e 64 65 78 |4@dividi|ng index|
|00001c10| 65 64 20 6e 75 6d 62 65 | 72 73 03 00 20 00 34 40 |ed numbe|rs.. .4@|
|00001c20| 32 40 33 34 35 40 64 69 | 76 69 64 69 6e 67 20 69 |2@345@di|viding i|
|00001c30| 6e 64 65 78 65 64 20 6e | 75 6d 62 65 72 73 03 00 |ndexed n|umbers..|
|00001c40| 20 00 34 40 32 40 33 34 | 36 40 64 69 76 69 64 69 | .4@2@34|6@dividi|
|00001c50| 6e 67 20 69 6e 64 65 78 | 65 64 20 6e 75 6d 62 65 |ng index|ed numbe|
|00001c60| 72 73 03 00 2f 00 34 40 | 33 40 33 34 37 40 72 61 |rs../.4@|3@347@ra|
|00001c70| 69 73 69 6e 67 20 69 6e | 64 65 78 65 64 20 6e 75 |ising in|dexed nu|
|00001c80| 6d 62 65 72 73 20 74 6f | 20 6f 74 68 65 72 20 70 |mbers to| other p|
|00001c90| 6f 77 65 72 73 03 00 2f | 00 34 40 32 40 33 34 38 |owers../|.4@2@348|
|00001ca0| 40 72 61 69 73 69 6e 67 | 20 69 6e 64 65 78 65 64 |@raising| indexed|
|00001cb0| 20 6e 75 6d 62 65 72 73 | 20 74 6f 20 6f 74 68 65 | numbers| to othe|
|00001cc0| 72 20 70 6f 77 65 72 73 | 03 00 2f 00 34 40 32 40 |r powers|../.4@2@|
|00001cd0| 33 34 39 40 72 61 69 73 | 69 6e 67 20 69 6e 64 65 |349@rais|ing inde|
|00001ce0| 78 65 64 20 6e 75 6d 62 | 65 72 73 20 74 6f 20 6f |xed numb|ers to o|
|00001cf0| 74 68 65 72 20 70 6f 77 | 65 72 73 03 00 18 00 34 |ther pow|ers....4|
|00001d00| 40 33 40 33 35 30 40 61 | 6e 20 69 6e 64 65 78 20 |@3@350@a|n index |
|00001d10| 6f 66 20 7a 65 72 6f 03 | 00 18 00 34 40 32 40 33 |of zero.|...4@2@3|
|00001d20| 35 31 40 61 6e 20 69 6e | 64 65 78 20 6f 66 20 7a |51@an in|dex of z|
|00001d30| 65 72 6f 03 00 18 00 34 | 40 32 40 33 35 32 40 61 |ero....4|@2@352@a|
|00001d40| 6e 20 69 6e 64 65 78 20 | 6f 66 20 7a 65 72 6f 03 |n index |of zero.|
|00001d50| 00 18 00 34 40 33 40 33 | 35 33 40 6e 65 67 61 74 |...4@3@3|53@negat|
|00001d60| 69 76 65 20 69 6e 64 69 | 63 65 73 03 00 18 00 34 |ive indi|ces....4|
|00001d70| 40 32 40 33 35 34 40 6e | 65 67 61 74 69 76 65 20 |@2@354@n|egative |
|00001d80| 69 6e 64 69 63 65 73 03 | 00 18 00 34 40 32 40 33 |indices.|...4@2@3|
|00001d90| 35 35 40 6e 65 67 61 74 | 69 76 65 20 69 6e 64 69 |55@negat|ive indi|
|00001da0| 63 65 73 03 00 1f 00 33 | 40 31 40 32 38 40 66 75 |ces....3|@1@28@fu|
|00001db0| 72 74 68 65 72 20 72 75 | 6c 65 73 20 6f 66 20 69 |rther ru|les of i|
|00001dc0| 6e 64 69 63 65 73 03 00 | 26 00 34 40 33 40 33 39 |ndices..|&.4@3@39|
|00001dd0| 37 40 63 6f 6d 62 69 6e | 69 6e 67 20 74 68 65 20 |7@combin|ing the |
|00001de0| 72 75 6c 65 73 20 6f 66 | 20 69 6e 64 69 63 65 73 |rules of| indices|
|00001df0| 03 00 26 00 34 40 32 40 | 33 39 38 40 63 6f 6d 62 |..&.4@2@|398@comb|
|00001e00| 69 6e 69 6e 67 20 74 68 | 65 20 72 75 6c 65 73 20 |ining th|e rules |
|00001e10| 6f 66 20 69 6e 64 69 63 | 65 73 03 00 26 00 34 40 |of indic|es..&.4@|
|00001e20| 32 40 33 39 39 40 63 6f | 6d 62 69 6e 69 6e 67 20 |2@399@co|mbining |
|00001e30| 74 68 65 20 72 75 6c 65 | 73 20 6f 66 20 69 6e 64 |the rule|s of ind|
|00001e40| 69 63 65 73 03 00 1a 00 | 34 40 33 40 34 30 30 40 |ices....|4@3@400@|
|00001e50| 66 72 61 63 74 69 6f 6e | 61 6c 20 69 6e 64 69 63 |fraction|al indic|
|00001e60| 65 73 03 00 1a 00 34 40 | 32 40 34 30 31 40 66 72 |es....4@|2@401@fr|
|00001e70| 61 63 74 69 6f 6e 61 6c | 20 69 6e 64 69 63 65 73 |actional| indices|
|00001e80| 03 00 1a 00 34 40 32 40 | 34 30 32 40 66 72 61 63 |....4@2@|402@frac|
|00001e90| 74 69 6f 6e 61 6c 20 69 | 6e 64 69 63 65 73 03 00 |tional i|ndices..|
|00001ea0| 22 00 34 40 33 40 34 30 | 33 40 63 6f 6d 70 6c 65 |".4@3@40|3@comple|
|00001eb0| 78 20 66 72 61 63 74 69 | 6f 6e 61 6c 20 69 6e 64 |x fracti|onal ind|
|00001ec0| 69 63 65 73 03 00 22 00 | 34 40 32 40 34 30 34 40 |ices..".|4@2@404@|
|00001ed0| 63 6f 6d 70 6c 65 78 20 | 66 72 61 63 74 69 6f 6e |complex |fraction|
|00001ee0| 61 6c 20 69 6e 64 69 63 | 65 73 03 00 22 00 34 40 |al indic|es..".4@|
|00001ef0| 32 40 34 30 35 40 63 6f | 6d 70 6c 65 78 20 66 72 |2@405@co|mplex fr|
|00001f00| 61 63 74 69 6f 6e 61 6c | 20 69 6e 64 69 63 65 73 |actional| indices|
|00001f10| 03 00 33 00 34 40 33 40 | 34 30 36 40 63 6f 6d 62 |..3.4@3@|406@comb|
|00001f20| 69 6e 69 6e 67 20 74 68 | 65 20 72 75 6c 65 73 20 |ining th|e rules |
|00001f30| 77 69 74 68 20 66 72 61 | 63 74 69 6f 6e 61 6c 20 |with fra|ctional |
|00001f40| 69 6e 64 69 63 65 73 03 | 00 33 00 34 40 32 40 34 |indices.|.3.4@2@4|
|00001f50| 30 37 40 63 6f 6d 62 69 | 6e 69 6e 67 20 74 68 65 |07@combi|ning the|
|00001f60| 20 72 75 6c 65 73 20 77 | 69 74 68 20 66 72 61 63 | rules w|ith frac|
|00001f70| 74 69 6f 6e 61 6c 20 69 | 6e 64 69 63 65 73 03 00 |tional i|ndices..|
|00001f80| 33 00 34 40 32 40 34 30 | 38 40 63 6f 6d 62 69 6e |3.4@2@40|8@combin|
|00001f90| 69 6e 67 20 74 68 65 20 | 72 75 6c 65 73 20 77 69 |ing the |rules wi|
|00001fa0| 74 68 20 66 72 61 63 74 | 69 6f 6e 61 6c 20 69 6e |th fract|ional in|
|00001fb0| 64 69 63 65 73 03 00 20 | 00 33 40 31 40 32 39 40 |dices.. |.3@1@29@|
|00001fc0| 69 6e 74 72 6f 64 75 63 | 69 6e 67 20 73 74 61 6e |introduc|ing stan|
|00001fd0| 64 61 72 64 20 66 6f 72 | 6d 03 00 15 00 34 40 33 |dard for|m....4@3|
|00001fe0| 40 34 31 30 40 73 74 61 | 6e 64 61 72 64 20 66 6f |@410@sta|ndard fo|
|00001ff0| 72 6d 03 00 15 00 34 40 | 32 40 34 30 39 40 73 74 |rm....4@|2@409@st|
|00002000| 61 6e 64 61 72 64 20 66 | 6f 72 6d 03 00 15 00 34 |andard f|orm....4|
|00002010| 40 32 40 34 31 32 40 73 | 74 61 6e 64 61 72 64 20 |@2@412@s|tandard |
|00002020| 66 6f 72 6d 03 00 27 00 | 34 40 33 40 34 31 31 40 |form..'.|4@3@411@|
|00002030| 73 74 61 6e 64 61 72 64 | 20 66 6f 72 6d 20 6f 6e |standard| form on|
|00002040| 20 74 68 65 20 63 61 6c | 63 75 6c 61 74 6f 72 03 | the cal|culator.|
|00002050| 00 27 00 34 40 32 40 34 | 31 33 40 73 74 61 6e 64 |.'.4@2@4|13@stand|
|00002060| 61 72 64 20 66 6f 72 6d | 20 6f 6e 20 74 68 65 20 |ard form| on the |
|00002070| 63 61 6c 63 75 6c 61 74 | 6f 72 03 00 27 00 34 40 |calculat|or..'.4@|
|00002080| 32 40 34 31 34 40 73 74 | 61 6e 64 61 72 64 20 66 |2@414@st|andard f|
|00002090| 6f 72 6d 20 6f 6e 20 74 | 68 65 20 63 61 6c 63 75 |orm on t|he calcu|
|000020a0| 6c 61 74 6f 72 03 00 29 | 00 34 40 33 40 34 31 35 |lator..)|.4@3@415|
|000020b0| 40 70 6c 61 63 65 20 76 | 61 6c 75 65 73 20 26 26 |@place v|alues &&|
|000020c0| 20 65 78 70 61 6e 64 65 | 64 20 6e 6f 74 61 74 69 | expande|d notati|
|000020d0| 6f 6e 03 00 29 00 34 40 | 32 40 34 31 36 40 70 6c |on..).4@|2@416@pl|
|000020e0| 61 63 65 20 76 61 6c 75 | 65 73 20 26 26 20 65 78 |ace valu|es && ex|
|000020f0| 70 61 6e 64 65 64 20 6e | 6f 74 61 74 69 6f 6e 03 |panded n|otation.|
|00002100| 00 29 00 34 40 32 40 34 | 31 37 40 70 6c 61 63 65 |.).4@2@4|17@place|
|00002110| 20 76 61 6c 75 65 73 20 | 26 26 20 65 78 70 61 6e | values |&& expan|
|00002120| 64 65 64 20 6e 6f 74 61 | 74 69 6f 6e 03 00 31 00 |ded nota|tion..1.|
|00002130| 34 40 33 40 34 31 38 40 | 64 65 63 69 6d 61 6c 20 |4@3@418@|decimal |
|00002140| 70 6c 61 63 65 20 76 61 | 6c 75 65 73 20 26 26 20 |place va|lues && |
|00002150| 65 78 70 61 6e 64 65 64 | 20 6e 6f 74 61 74 69 6f |expanded| notatio|
|00002160| 6e 03 00 31 00 34 40 32 | 40 34 31 39 40 64 65 63 |n..1.4@2|@419@dec|
|00002170| 69 6d 61 6c 20 70 6c 61 | 63 65 20 76 61 6c 75 65 |imal pla|ce value|
|00002180| 73 20 26 26 20 65 78 70 | 61 6e 64 65 64 20 6e 6f |s && exp|anded no|
|00002190| 74 61 74 69 6f 6e 03 00 | 31 00 34 40 32 40 34 32 |tation..|1.4@2@42|
|000021a0| 30 40 64 65 63 69 6d 61 | 6c 20 70 6c 61 63 65 20 |0@decima|l place |
|000021b0| 76 61 6c 75 65 73 20 26 | 26 20 65 78 70 61 6e 64 |values &|& expand|
|000021c0| 65 64 20 6e 6f 74 61 74 | 69 6f 6e 03 00 21 00 33 |ed notat|ion..!.3|
|000021d0| 40 31 40 33 30 40 77 6f | 72 6b 69 6e 67 20 77 69 |@1@30@wo|rking wi|
|000021e0| 74 68 20 73 74 61 6e 64 | 61 72 64 20 66 6f 72 6d |th stand|ard form|
|000021f0| 03 00 36 00 34 40 33 40 | 34 32 31 40 61 64 64 69 |..6.4@3@|421@addi|
|00002200| 6e 67 20 26 26 20 73 75 | 62 74 72 61 63 74 69 6e |ng && su|btractin|
|00002210| 67 20 6e 75 6d 62 65 72 | 73 20 69 6e 20 73 74 61 |g number|s in sta|
|00002220| 6e 64 61 72 64 20 66 6f | 72 6d 03 00 36 00 34 40 |ndard fo|rm..6.4@|
|00002230| 32 40 34 32 32 40 61 64 | 64 69 6e 67 20 26 26 20 |2@422@ad|ding && |
|00002240| 73 75 62 74 72 61 63 74 | 69 6e 67 20 6e 75 6d 62 |subtract|ing numb|
|00002250| 65 72 73 20 69 6e 20 73 | 74 61 6e 64 61 72 64 20 |ers in s|tandard |
|00002260| 66 6f 72 6d 03 00 36 00 | 34 40 32 40 34 32 33 40 |form..6.|4@2@423@|
|00002270| 61 64 64 69 6e 67 20 26 | 26 20 73 75 62 74 72 61 |adding &|& subtra|
|00002280| 63 74 69 6e 67 20 6e 75 | 6d 62 65 72 73 20 69 6e |cting nu|mbers in|
|00002290| 20 73 74 61 6e 64 61 72 | 64 20 66 6f 72 6d 03 00 | standar|d form..|
|000022a0| 2c 00 34 40 33 40 34 32 | 34 40 6d 75 6c 74 69 70 |,.4@3@42|4@multip|
|000022b0| 6c 79 69 6e 67 20 6e 75 | 6d 62 65 72 73 20 69 6e |lying nu|mbers in|
|000022c0| 20 73 74 61 6e 64 61 72 | 64 20 66 6f 72 6d 03 00 | standar|d form..|
|000022d0| 2c 00 34 40 32 40 34 32 | 35 40 6d 75 6c 74 69 70 |,.4@2@42|5@multip|
|000022e0| 6c 79 69 6e 67 20 6e 75 | 6d 62 65 72 73 20 69 6e |lying nu|mbers in|
|000022f0| 20 73 74 61 6e 64 61 72 | 64 20 66 6f 72 6d 03 00 | standar|d form..|
|00002300| 2c 00 34 40 32 40 34 32 | 36 40 6d 75 6c 74 69 70 |,.4@2@42|6@multip|
|00002310| 6c 79 69 6e 67 20 6e 75 | 6d 62 65 72 73 20 69 6e |lying nu|mbers in|
|00002320| 20 73 74 61 6e 64 61 72 | 64 20 66 6f 72 6d 03 00 | standar|d form..|
|00002330| 29 00 34 40 33 40 34 32 | 37 40 64 69 76 69 64 69 |).4@3@42|7@dividi|
|00002340| 6e 67 20 6e 75 6d 62 65 | 72 73 20 69 6e 20 73 74 |ng numbe|rs in st|
|00002350| 61 6e 64 61 72 64 20 66 | 6f 72 6d 03 00 29 00 34 |andard f|orm..).4|
|00002360| 40 32 40 34 32 38 40 64 | 69 76 69 64 69 6e 67 20 |@2@428@d|ividing |
|00002370| 6e 75 6d 62 65 72 73 20 | 69 6e 20 73 74 61 6e 64 |numbers |in stand|
|00002380| 61 72 64 20 66 6f 72 6d | 03 00 29 00 34 40 32 40 |ard form|..).4@2@|
|00002390| 34 32 39 40 64 69 76 69 | 64 69 6e 67 20 6e 75 6d |429@divi|ding num|
|000023a0| 62 65 72 73 20 69 6e 20 | 73 74 61 6e 64 61 72 64 |bers in |standard|
|000023b0| 20 66 6f 72 6d 03 00 0d | 00 31 40 31 40 31 40 41 | form...|.1@1@1@A|
|000023c0| 6c 67 65 62 72 61 07 00 | 16 00 32 40 31 40 33 32 |lgebra..|..2@1@32|
|000023d0| 40 6e 75 6d 62 65 72 20 | 70 61 74 74 65 72 6e 73 |@number |patterns|
|000023e0| 07 00 23 00 33 40 31 40 | 33 36 40 6e 75 6d 62 65 |..#.3@1@|36@numbe|
|000023f0| 72 20 73 65 71 75 65 6e | 63 65 73 20 26 26 20 70 |r sequen|ces && p|
|00002400| 61 74 74 65 72 6e 73 07 | 00 18 00 34 40 33 40 33 |atterns.|...4@3@3|
|00002410| 36 33 40 6e 75 6d 62 65 | 72 20 73 65 71 75 65 6e |63@numbe|r sequen|
|00002420| 63 65 73 07 00 18 00 34 | 40 32 40 33 36 34 40 6e |ces....4|@2@364@n|
|00002430| 75 6d 62 65 72 20 73 65 | 71 75 65 6e 63 65 73 07 |umber se|quences.|
|00002440| 00 18 00 34 40 32 40 33 | 36 35 40 6e 75 6d 62 65 |...4@2@3|65@numbe|
|00002450| 72 20 73 65 71 75 65 6e | 63 65 73 07 00 2e 00 34 |r sequen|ces....4|
|00002460| 40 33 40 33 36 36 40 6e | 75 6d 62 65 72 20 70 61 |@3@366@n|umber pa|
|00002470| 74 74 65 72 6e 20 2d 20 | 73 71 75 61 72 65 20 6e |ttern - |square n|
|00002480| 75 6d 62 65 72 20 70 61 | 74 74 65 72 6e 07 00 2e |umber pa|ttern...|
|00002490| 00 34 40 32 40 33 36 37 | 40 6e 75 6d 62 65 72 20 |.4@2@367|@number |
|000024a0| 70 61 74 74 65 72 6e 20 | 2d 20 73 71 75 61 72 65 |pattern |- square|
|000024b0| 20 6e 75 6d 62 65 72 20 | 70 61 74 74 65 72 6e 07 | number |pattern.|
|000024c0| 00 2e 00 34 40 32 40 33 | 36 38 40 6e 75 6d 62 65 |...4@2@3|68@numbe|
|000024d0| 72 20 70 61 74 74 65 72 | 6e 20 2d 20 73 71 75 61 |r patter|n - squa|
|000024e0| 72 65 20 6e 75 6d 62 65 | 72 20 70 61 74 74 65 72 |re numbe|r patter|
|000024f0| 6e 07 00 32 00 34 40 33 | 40 33 37 32 40 6e 75 6d |n..2.4@3|@372@num|
|00002500| 62 65 72 20 70 61 74 74 | 65 72 6e 20 2d 20 74 72 |ber patt|ern - tr|
|00002510| 69 61 6e 67 75 6c 61 72 | 20 6e 75 6d 62 65 72 20 |iangular| number |
|00002520| 70 61 74 74 65 72 6e 07 | 00 32 00 34 40 32 40 33 |pattern.|.2.4@2@3|
|00002530| 37 33 40 6e 75 6d 62 65 | 72 20 70 61 74 74 65 72 |73@numbe|r patter|
|00002540| 6e 20 2d 20 74 72 69 61 | 6e 67 75 6c 61 72 20 6e |n - tria|ngular n|
|00002550| 75 6d 62 65 72 20 70 61 | 74 74 65 72 6e 07 00 32 |umber pa|ttern..2|
|00002560| 00 34 40 32 40 33 37 34 | 40 6e 75 6d 62 65 72 20 |.4@2@374|@number |
|00002570| 70 61 74 74 65 72 6e 20 | 2d 20 74 72 69 61 6e 67 |pattern |- triang|
|00002580| 75 6c 61 72 20 6e 75 6d | 62 65 72 20 70 61 74 74 |ular num|ber patt|
|00002590| 65 72 6e 07 00 2b 00 34 | 40 33 40 33 37 35 40 6e |ern..+.4|@3@375@n|
|000025a0| 75 6d 62 65 72 20 70 61 | 74 74 65 72 6e 20 2d 20 |umber pa|ttern - |
|000025b0| 46 69 62 6f 6e 61 63 63 | 69 20 73 65 71 75 65 6e |Fibonacc|i sequen|
|000025c0| 63 65 07 00 2b 00 34 40 | 32 40 33 37 36 40 6e 75 |ce..+.4@|2@376@nu|
|000025d0| 6d 62 65 72 20 70 61 74 | 74 65 72 6e 20 2d 20 46 |mber pat|tern - F|
|000025e0| 69 62 6f 6e 61 63 63 69 | 20 73 65 71 75 65 6e 63 |ibonacci| sequenc|
|000025f0| 65 07 00 2b 00 34 40 32 | 40 33 37 37 40 6e 75 6d |e..+.4@2|@377@num|
|00002600| 62 65 72 20 70 61 74 74 | 65 72 6e 20 2d 20 46 69 |ber patt|ern - Fi|
|00002610| 62 6f 6e 61 63 63 69 20 | 73 65 71 75 65 6e 63 65 |bonacci |sequence|
|00002620| 07 00 22 00 33 40 31 40 | 33 37 40 75 73 69 6e 67 |..".3@1@|37@using|
|00002630| 20 74 68 65 20 64 69 66 | 66 65 72 65 6e 63 65 20 | the dif|ference |
|00002640| 6d 65 74 68 6f 64 07 00 | 27 00 34 40 33 40 33 37 |method..|'.4@3@37|
|00002650| 38 40 64 69 66 66 65 72 | 65 6e 63 65 20 6d 65 74 |8@differ|ence met|
|00002660| 68 6f 64 20 2d 20 73 69 | 6e 67 6c 65 20 73 74 65 |hod - si|ngle ste|
|00002670| 70 07 00 27 00 34 40 32 | 40 33 37 39 40 64 69 66 |p..'.4@2|@379@dif|
|00002680| 66 65 72 65 6e 63 65 20 | 6d 65 74 68 6f 64 20 2d |ference |method -|
|00002690| 20 73 69 6e 67 6c 65 20 | 73 74 65 70 07 00 27 00 | single |step..'.|
|000026a0| 34 40 32 40 33 38 30 40 | 64 69 66 66 65 72 65 6e |4@2@380@|differen|
|000026b0| 63 65 20 6d 65 74 68 6f | 64 20 2d 20 73 69 6e 67 |ce metho|d - sing|
|000026c0| 6c 65 20 73 74 65 70 07 | 00 29 00 34 40 33 40 33 |le step.|.).4@3@3|
|000026d0| 38 31 40 64 69 66 66 65 | 72 65 6e 63 65 20 6d 65 |81@diffe|rence me|
|000026e0| 74 68 6f 64 20 2d 20 6d | 75 6c 74 69 70 6c 65 20 |thod - m|ultiple |
|000026f0| 73 74 65 70 07 00 29 00 | 34 40 32 40 33 38 32 40 |step..).|4@2@382@|
|00002700| 64 69 66 66 65 72 65 6e | 63 65 20 6d 65 74 68 6f |differen|ce metho|
|00002710| 64 20 2d 20 6d 75 6c 74 | 69 70 6c 65 20 73 74 65 |d - mult|iple ste|
|00002720| 70 07 00 29 00 34 40 32 | 40 33 38 33 40 64 69 66 |p..).4@2|@383@dif|
|00002730| 66 65 72 65 6e 63 65 20 | 6d 65 74 68 6f 64 20 2d |ference |method -|
|00002740| 20 6d 75 6c 74 69 70 6c | 65 20 73 74 65 70 07 00 | multipl|e step..|
|00002750| 2a 00 34 40 33 40 33 38 | 34 40 64 69 66 66 65 72 |*.4@3@38|4@differ|
|00002760| 65 6e 63 65 20 6d 65 74 | 68 6f 64 20 2d 20 6d 75 |ence met|hod - mu|
|00002770| 6c 74 69 70 6c 69 63 61 | 74 69 6f 6e 07 00 2a 00 |ltiplica|tion..*.|
|00002780| 34 40 32 40 33 38 35 40 | 64 69 66 66 65 72 65 6e |4@2@385@|differen|
|00002790| 63 65 20 6d 65 74 68 6f | 64 20 2d 20 6d 75 6c 74 |ce metho|d - mult|
|000027a0| 69 70 6c 69 63 61 74 69 | 6f 6e 07 00 2a 00 34 40 |iplicati|on..*.4@|
|000027b0| 32 40 33 38 36 40 64 69 | 66 66 65 72 65 6e 63 65 |2@386@di|fference|
|000027c0| 20 6d 65 74 68 6f 64 20 | 2d 20 6d 75 6c 74 69 70 | method |- multip|
|000027d0| 6c 69 63 61 74 69 6f 6e | 07 00 1e 00 33 40 31 40 |lication|....3@1@|
|000027e0| 38 33 39 40 61 6c 67 65 | 62 72 61 69 63 20 70 72 |839@alge|braic pr|
|000027f0| 6f 67 72 65 73 73 69 6f | 6e 73 07 00 2c 00 34 40 |ogressio|ns..,.4@|
|00002800| 33 40 33 35 37 40 75 73 | 69 6e 67 20 6c 65 74 74 |3@357@us|ing lett|
|00002810| 65 72 73 20 74 6f 20 72 | 65 70 72 65 73 65 6e 74 |ers to r|epresent|
|00002820| 20 76 61 72 69 61 62 6c | 65 73 07 00 2c 00 34 40 | variabl|es..,.4@|
|00002830| 32 40 33 38 37 40 75 73 | 69 6e 67 20 6c 65 74 74 |2@387@us|ing lett|
|00002840| 65 72 73 20 74 6f 20 72 | 65 70 72 65 73 65 6e 74 |ers to r|epresent|
|00002850| 20 76 61 72 69 61 62 6c | 65 73 07 00 2c 00 34 40 | variabl|es..,.4@|
|00002860| 32 40 33 35 38 40 75 73 | 69 6e 67 20 6c 65 74 74 |2@358@us|ing lett|
|00002870| 65 72 73 20 74 6f 20 72 | 65 70 72 65 73 65 6e 74 |ers to r|epresent|
|00002880| 20 76 61 72 69 61 62 6c | 65 73 07 00 1e 00 34 40 | variabl|es....4@|
|00002890| 33 40 33 35 39 40 61 72 | 69 74 68 6d 65 74 69 63 |3@359@ar|ithmetic|
|000028a0| 20 70 72 6f 67 72 65 73 | 73 69 6f 6e 03 00 1e 00 | progres|sion....|
|000028b0| 34 40 32 40 33 36 30 40 | 61 72 69 74 68 6d 65 74 |4@2@360@|arithmet|
|000028c0| 69 63 20 70 72 6f 67 72 | 65 73 73 69 6f 6e 03 00 |ic progr|ession..|
|000028d0| 1e 00 34 40 32 40 33 38 | 38 40 61 72 69 74 68 6d |..4@2@38|8@arithm|
|000028e0| 65 74 69 63 20 70 72 6f | 67 72 65 73 73 69 6f 6e |etic pro|gression|
|000028f0| 03 00 35 00 34 40 33 40 | 33 36 31 40 61 72 69 74 |..5.4@3@|361@arit|
|00002900| 68 6d 65 74 69 63 20 70 | 72 6f 67 72 65 73 73 69 |hmetic p|rogressi|
|00002910| 6f 6e 20 2d 20 66 69 6e | 64 69 6e 67 20 74 68 65 |on - fin|ding the|
|00002920| 20 6e 74 68 20 74 65 72 | 6d 03 00 35 00 34 40 32 | nth ter|m..5.4@2|
|00002930| 40 33 36 32 40 61 72 69 | 74 68 6d 65 74 69 63 20 |@362@ari|thmetic |
|00002940| 70 72 6f 67 72 65 73 73 | 69 6f 6e 20 2d 20 66 69 |progress|ion - fi|
|00002950| 6e 64 69 6e 67 20 74 68 | 65 20 6e 74 68 20 74 65 |nding th|e nth te|
|00002960| 72 6d 03 00 35 00 34 40 | 32 40 33 38 39 40 61 72 |rm..5.4@|2@389@ar|
|00002970| 69 74 68 6d 65 74 69 63 | 20 70 72 6f 67 72 65 73 |ithmetic| progres|
|00002980| 73 69 6f 6e 20 2d 20 66 | 69 6e 64 69 6e 67 20 74 |sion - f|inding t|
|00002990| 68 65 20 6e 74 68 20 74 | 65 72 6d 03 00 1d 00 34 |he nth t|erm....4|
|000029a0| 40 33 40 33 39 30 40 67 | 65 6f 6d 65 74 72 69 63 |@3@390@g|eometric|
|000029b0| 20 70 72 6f 67 72 65 73 | 73 69 6f 6e 03 00 1d 00 | progres|sion....|
|000029c0| 34 40 32 40 33 39 34 40 | 67 65 6f 6d 65 74 72 69 |4@2@394@|geometri|
|000029d0| 63 20 70 72 6f 67 72 65 | 73 73 69 6f 6e 03 00 1d |c progre|ssion...|
|000029e0| 00 34 40 32 40 33 39 31 | 40 67 65 6f 6d 65 74 72 |.4@2@391|@geometr|
|000029f0| 69 63 20 70 72 6f 67 72 | 65 73 73 69 6f 6e 03 00 |ic progr|ession..|
|00002a00| 34 00 34 40 33 40 33 39 | 32 40 67 65 6f 6d 65 74 |4.4@3@39|2@geomet|
|00002a10| 72 69 63 20 70 72 6f 67 | 72 65 73 73 69 6f 6e 20 |ric prog|ression |
|00002a20| 2d 20 66 69 6e 64 69 6e | 67 20 74 68 65 20 6e 74 |- findin|g the nt|
|00002a30| 68 20 74 65 72 6d 03 00 | 34 00 34 40 32 40 33 39 |h term..|4.4@2@39|
|00002a40| 35 40 67 65 6f 6d 65 74 | 72 69 63 20 70 72 6f 67 |5@geomet|ric prog|
|00002a50| 72 65 73 73 69 6f 6e 20 | 2d 20 66 69 6e 64 69 6e |ression |- findin|
|00002a60| 67 20 74 68 65 20 6e 74 | 68 20 74 65 72 6d 03 00 |g the nt|h term..|
|00002a70| 34 00 34 40 32 40 33 39 | 36 40 67 65 6f 6d 65 74 |4.4@2@39|6@geomet|
|00002a80| 72 69 63 20 70 72 6f 67 | 72 65 73 73 69 6f 6e 20 |ric prog|ression |
|00002a90| 2d 20 66 69 6e 64 69 6e | 67 20 74 68 65 20 6e 74 |- findin|g the nt|
|00002aa0| 68 20 74 65 72 6d 03 00 | 1c 00 32 40 31 40 33 33 |h term..|..2@1@33|
|00002ab0| 40 61 6c 67 65 62 72 61 | 69 63 20 65 78 70 72 65 |@algebra|ic expre|
|00002ac0| 73 73 69 6f 6e 73 07 00 | 14 00 33 40 31 40 34 32 |ssions..|..3@1@42|
|00002ad0| 40 62 61 73 69 63 20 61 | 6c 67 65 62 72 61 07 00 |@basic a|lgebra..|
|00002ae0| 37 00 34 40 33 40 35 30 | 32 40 63 6f 6c 6c 65 63 |7.4@3@50|2@collec|
|00002af0| 74 69 6e 67 20 6c 69 6b | 65 20 74 65 72 6d 73 20 |ting lik|e terms |
|00002b00| 2d 20 61 64 64 69 74 69 | 6f 6e 20 26 26 20 73 75 |- additi|on && su|
|00002b10| 62 74 72 61 63 74 69 6f | 6e 07 00 37 00 34 40 32 |btractio|n..7.4@2|
|00002b20| 40 35 30 33 40 63 6f 6c | 6c 65 63 74 69 6e 67 20 |@503@col|lecting |
|00002b30| 6c 69 6b 65 20 74 65 72 | 6d 73 20 2d 20 61 64 64 |like ter|ms - add|
|00002b40| 69 74 69 6f 6e 20 26 26 | 20 73 75 62 74 72 61 63 |ition &&| subtrac|
|00002b50| 74 69 6f 6e 07 00 37 00 | 34 40 32 40 35 30 34 40 |tion..7.|4@2@504@|
|00002b60| 63 6f 6c 6c 65 63 74 69 | 6e 67 20 6c 69 6b 65 20 |collecti|ng like |
|00002b70| 74 65 72 6d 73 20 2d 20 | 61 64 64 69 74 69 6f 6e |terms - |addition|
|00002b80| 20 26 26 20 73 75 62 74 | 72 61 63 74 69 6f 6e 07 | && subt|raction.|
|00002b90| 00 2e 00 34 40 33 40 35 | 30 35 40 63 6f 6c 6c 65 |...4@3@5|05@colle|
|00002ba0| 63 74 69 6e 67 20 6c 69 | 6b 65 20 74 65 72 6d 73 |cting li|ke terms|
|00002bb0| 20 2d 20 6d 75 6c 74 69 | 70 6c 69 63 61 74 69 6f | - multi|plicatio|
|00002bc0| 6e 07 00 2e 00 34 40 32 | 40 35 30 36 40 63 6f 6c |n....4@2|@506@col|
|00002bd0| 6c 65 63 74 69 6e 67 20 | 6c 69 6b 65 20 74 65 72 |lecting |like ter|
|00002be0| 6d 73 20 2d 20 6d 75 6c | 74 69 70 6c 69 63 61 74 |ms - mul|tiplicat|
|00002bf0| 69 6f 6e 07 00 2e 00 34 | 40 32 40 35 30 37 40 63 |ion....4|@2@507@c|
|00002c00| 6f 6c 6c 65 63 74 69 6e | 67 20 6c 69 6b 65 20 74 |ollectin|g like t|
|00002c10| 65 72 6d 73 20 2d 20 6d | 75 6c 74 69 70 6c 69 63 |erms - m|ultiplic|
|00002c20| 61 74 69 6f 6e 07 00 28 | 00 34 40 33 40 35 30 38 |ation..(|.4@3@508|
|00002c30| 40 63 6f 6c 6c 65 63 74 | 69 6e 67 20 6c 69 6b 65 |@collect|ing like|
|00002c40| 20 74 65 72 6d 73 20 2d | 20 64 69 76 69 73 69 6f | terms -| divisio|
|00002c50| 6e 07 00 28 00 34 40 32 | 40 35 30 39 40 63 6f 6c |n..(.4@2|@509@col|
|00002c60| 6c 65 63 74 69 6e 67 20 | 6c 69 6b 65 20 74 65 72 |lecting |like ter|
|00002c70| 6d 73 20 2d 20 64 69 76 | 69 73 69 6f 6e 07 00 28 |ms - div|ision..(|
|00002c80| 00 34 40 32 40 35 31 30 | 40 63 6f 6c 6c 65 63 74 |.4@2@510|@collect|
|00002c90| 69 6e 67 20 6c 69 6b 65 | 20 74 65 72 6d 73 20 2d |ing like| terms -|
|00002ca0| 20 64 69 76 69 73 69 6f | 6e 07 00 14 00 34 40 33 | divisio|n....4@3|
|00002cb0| 40 35 31 31 40 73 75 62 | 73 74 69 74 75 74 69 6f |@511@sub|stitutio|
|00002cc0| 6e 03 00 14 00 34 40 32 | 40 35 31 32 40 73 75 62 |n....4@2|@512@sub|
|00002cd0| 73 74 69 74 75 74 69 6f | 6e 03 00 14 00 34 40 32 |stitutio|n....4@2|
|00002ce0| 40 35 31 33 40 73 75 62 | 73 74 69 74 75 74 69 6f |@513@sub|stitutio|
|00002cf0| 6e 03 00 21 00 34 40 33 | 40 35 31 34 40 75 73 69 |n..!.4@3|@514@usi|
|00002d00| 6e 67 20 62 72 61 63 6b | 65 74 73 20 69 6e 20 61 |ng brack|ets in a|
|00002d10| 6c 67 65 62 72 61 07 00 | 21 00 34 40 32 40 35 31 |lgebra..|!.4@2@51|
|00002d20| 35 40 75 73 69 6e 67 20 | 62 72 61 63 6b 65 74 73 |5@using |brackets|
|00002d30| 20 69 6e 20 61 6c 67 65 | 62 72 61 07 00 21 00 34 | in alge|bra..!.4|
|00002d40| 40 32 40 35 31 36 40 75 | 73 69 6e 67 20 62 72 61 |@2@516@u|sing bra|
|00002d50| 63 6b 65 74 73 20 69 6e | 20 61 6c 67 65 62 72 61 |ckets in| algebra|
|00002d60| 07 00 19 00 34 40 33 40 | 35 31 37 40 61 6c 67 65 |....4@3@|517@alge|
|00002d70| 62 72 61 69 63 20 66 61 | 63 74 6f 72 73 07 00 19 |braic fa|ctors...|
|00002d80| 00 34 40 32 40 35 31 38 | 40 61 6c 67 65 62 72 61 |.4@2@518|@algebra|
|00002d90| 69 63 20 66 61 63 74 6f | 72 73 07 00 19 00 34 40 |ic facto|rs....4@|
|00002da0| 32 40 35 31 39 40 61 6c | 67 65 62 72 61 69 63 20 |2@519@al|gebraic |
|00002db0| 66 61 63 74 6f 72 73 07 | 00 1a 00 33 40 31 40 34 |factors.|...3@1@4|
|00002dc0| 33 40 61 6c 67 65 62 72 | 61 69 63 20 66 72 61 63 |3@algebr|aic frac|
|00002dd0| 74 69 6f 6e 73 03 00 31 | 00 34 40 33 40 35 32 30 |tions..1|.4@3@520|
|00002de0| 40 61 64 64 69 6e 67 20 | 26 26 20 73 75 62 74 72 |@adding |&& subtr|
|00002df0| 61 63 74 69 6e 67 20 61 | 6c 67 65 62 72 61 69 63 |acting a|lgebraic|
|00002e00| 20 66 72 61 63 74 69 6f | 6e 73 03 00 31 00 34 40 | fractio|ns..1.4@|
|00002e10| 32 40 35 32 31 40 61 64 | 64 69 6e 67 20 26 26 20 |2@521@ad|ding && |
|00002e20| 73 75 62 74 72 61 63 74 | 69 6e 67 20 61 6c 67 65 |subtract|ing alge|
|00002e30| 62 72 61 69 63 20 66 72 | 61 63 74 69 6f 6e 73 03 |braic fr|actions.|
|00002e40| 00 31 00 34 40 32 40 35 | 32 32 40 61 64 64 69 6e |.1.4@2@5|22@addin|
|00002e50| 67 20 26 26 20 73 75 62 | 74 72 61 63 74 69 6e 67 |g && sub|tracting|
|00002e60| 20 61 6c 67 65 62 72 61 | 69 63 20 66 72 61 63 74 | algebra|ic fract|
|00002e70| 69 6f 6e 73 03 00 33 00 | 34 40 33 40 35 32 33 40 |ions..3.|4@3@523@|
|00002e80| 6d 75 6c 74 69 70 6c 79 | 69 6e 67 20 26 26 20 64 |multiply|ing && d|
|00002e90| 69 76 69 64 69 6e 67 20 | 61 6c 67 65 62 72 61 69 |ividing |algebrai|
|00002ea0| 63 20 66 72 61 63 74 69 | 6f 6e 73 03 00 33 00 34 |c fracti|ons..3.4|
|00002eb0| 40 32 40 35 32 34 40 6d | 75 6c 74 69 70 6c 79 69 |@2@524@m|ultiplyi|
|00002ec0| 6e 67 20 26 26 20 64 69 | 76 69 64 69 6e 67 20 61 |ng && di|viding a|
|00002ed0| 6c 67 65 62 72 61 69 63 | 20 66 72 61 63 74 69 6f |lgebraic| fractio|
|00002ee0| 6e 73 03 00 33 00 34 40 | 32 40 35 32 35 40 6d 75 |ns..3.4@|2@525@mu|
|00002ef0| 6c 74 69 70 6c 79 69 6e | 67 20 26 26 20 64 69 76 |ltiplyin|g && div|
|00002f00| 69 64 69 6e 67 20 61 6c | 67 65 62 72 61 69 63 20 |iding al|gebraic |
|00002f10| 66 72 61 63 74 69 6f 6e | 73 03 00 11 00 33 40 31 |fraction|s....3@1|
|00002f20| 40 34 34 40 71 75 61 64 | 72 61 74 69 63 73 03 00 |@44@quad|ratics..|
|00002f30| 35 00 34 40 33 40 37 31 | 32 40 66 61 63 74 6f 72 |5.4@3@71|2@factor|
|00002f40| 69 73 69 6e 67 20 71 75 | 61 64 72 61 74 69 63 73 |ising qu|adratics|
|00002f50| 20 2d 20 77 68 65 72 65 | 20 74 68 65 20 61 20 74 | - where| the a t|
|00002f60| 65 72 6d 20 3d 20 31 03 | 00 35 00 34 40 32 40 37 |erm = 1.|.5.4@2@7|
|00002f70| 31 33 40 66 61 63 74 6f | 72 69 73 69 6e 67 20 71 |13@facto|rising q|
|00002f80| 75 61 64 72 61 74 69 63 | 73 20 2d 20 77 68 65 72 |uadratic|s - wher|
|00002f90| 65 20 74 68 65 20 61 20 | 74 65 72 6d 20 3d 20 31 |e the a |term = 1|
|00002fa0| 03 00 35 00 34 40 32 40 | 37 31 34 40 66 61 63 74 |..5.4@2@|714@fact|
|00002fb0| 6f 72 69 73 69 6e 67 20 | 71 75 61 64 72 61 74 69 |orising |quadrati|
|00002fc0| 63 73 20 2d 20 77 68 65 | 72 65 20 74 68 65 20 61 |cs - whe|re the a|
|00002fd0| 20 74 65 72 6d 20 3d 20 | 31 03 00 43 00 34 40 33 | term = |1..C.4@3|
|00002fe0| 40 37 31 35 40 66 61 63 | 74 6f 72 69 73 69 6e 67 |@715@fac|torising|
|00002ff0| 20 71 75 61 64 72 61 74 | 69 63 73 20 2d 20 77 68 | quadrat|ics - wh|
|00003000| 65 72 65 20 74 68 65 20 | 61 20 74 65 72 6d 20 69 |ere the |a term i|
|00003010| 73 20 6e 6f 74 20 65 71 | 75 61 6c 20 74 6f 20 31 |s not eq|ual to 1|
|00003020| 03 00 43 00 34 40 32 40 | 37 31 36 40 66 61 63 74 |..C.4@2@|716@fact|
|00003030| 6f 72 69 73 69 6e 67 20 | 71 75 61 64 72 61 74 69 |orising |quadrati|
|00003040| 63 73 20 2d 20 77 68 65 | 72 65 20 74 68 65 20 61 |cs - whe|re the a|
|00003050| 20 74 65 72 6d 20 69 73 | 20 6e 6f 74 20 65 71 75 | term is| not equ|
|00003060| 61 6c 20 74 6f 20 31 03 | 00 43 00 34 40 32 40 37 |al to 1.|.C.4@2@7|
|00003070| 31 37 40 66 61 63 74 6f | 72 69 73 69 6e 67 20 71 |17@facto|rising q|
|00003080| 75 61 64 72 61 74 69 63 | 73 20 2d 20 77 68 65 72 |uadratic|s - wher|
|00003090| 65 20 74 68 65 20 61 20 | 74 65 72 6d 20 69 73 20 |e the a |term is |
|000030a0| 6e 6f 74 20 65 71 75 61 | 6c 20 74 6f 20 31 03 00 |not equa|l to 1..|
|000030b0| 1d 00 33 40 31 40 38 34 | 30 40 6d 61 6e 69 70 75 |..3@1@84|0@manipu|
|000030c0| 6c 61 74 69 6e 67 20 66 | 6f 72 6d 75 6c 61 65 07 |lating f|ormulae.|
|000030d0| 00 1c 00 34 40 33 40 37 | 31 38 40 72 65 61 72 72 |...4@3@7|18@rearr|
|000030e0| 61 6e 67 69 6e 67 20 66 | 6f 72 6d 75 6c 61 65 03 |anging f|ormulae.|
|000030f0| 00 1c 00 34 40 32 40 37 | 31 39 40 72 65 61 72 72 |...4@2@7|19@rearr|
|00003100| 61 6e 67 69 6e 67 20 66 | 6f 72 6d 75 6c 61 65 03 |anging f|ormulae.|
|00003110| 00 1c 00 34 40 32 40 37 | 32 30 40 72 65 61 72 72 |...4@2@7|20@rearr|
|00003120| 61 6e 67 69 6e 67 20 66 | 6f 72 6d 75 6c 61 65 03 |anging f|ormulae.|
|00003130| 00 14 00 34 40 33 40 37 | 32 31 40 69 6e 65 71 75 |...4@3@7|21@inequ|
|00003140| 61 6c 69 74 69 65 73 07 | 00 14 00 34 40 32 40 37 |alities.|...4@2@7|
|00003150| 32 33 40 69 6e 65 71 75 | 61 6c 69 74 69 65 73 07 |23@inequ|alities.|
|00003160| 00 14 00 34 40 32 40 37 | 32 32 40 69 6e 65 71 75 |...4@2@7|22@inequ|
|00003170| 61 6c 69 74 69 65 73 07 | 00 20 00 34 40 33 40 37 |alities.|. .4@3@7|
|00003180| 32 34 40 72 65 61 72 72 | 61 6e 67 69 6e 67 20 69 |24@rearr|anging i|
|00003190| 6e 65 71 75 61 6c 69 74 | 69 65 73 03 00 20 00 34 |nequalit|ies.. .4|
|000031a0| 40 32 40 37 32 35 40 72 | 65 61 72 72 61 6e 67 69 |@2@725@r|earrangi|
|000031b0| 6e 67 20 69 6e 65 71 75 | 61 6c 69 74 69 65 73 03 |ng inequ|alities.|
|000031c0| 00 20 00 34 40 32 40 37 | 32 36 40 72 65 61 72 72 |. .4@2@7|26@rearr|
|000031d0| 61 6e 67 69 6e 67 20 69 | 6e 65 71 75 61 6c 69 74 |anging i|nequalit|
|000031e0| 69 65 73 03 00 0d 00 32 | 40 31 40 33 34 40 67 72 |ies....2|@1@34@gr|
|000031f0| 61 70 68 73 07 00 1b 00 | 33 40 31 40 34 38 40 70 |aphs....|3@1@48@p|
|00003200| 72 6f 70 65 72 74 69 65 | 73 20 6f 66 20 67 72 61 |ropertie|s of gra|
|00003210| 70 68 73 07 00 1c 00 34 | 40 33 40 36 36 34 40 70 |phs....4|@3@664@p|
|00003220| 72 6f 70 65 72 74 69 65 | 73 20 6f 66 20 67 72 61 |ropertie|s of gra|
|00003230| 70 68 73 07 00 1c 00 34 | 40 32 40 36 36 35 40 70 |phs....4|@2@665@p|
|00003240| 72 6f 70 65 72 74 69 65 | 73 20 6f 66 20 67 72 61 |ropertie|s of gra|
|00003250| 70 68 73 07 00 1c 00 34 | 40 32 40 36 36 36 40 70 |phs....4|@2@666@p|
|00003260| 72 6f 70 65 72 74 69 65 | 73 20 6f 66 20 67 72 61 |ropertie|s of gra|
|00003270| 70 68 73 07 00 1b 00 33 | 40 31 40 34 39 40 73 74 |phs....3|@1@49@st|
|00003280| 72 61 69 67 68 74 20 6c | 69 6e 65 20 67 72 61 70 |raight l|ine grap|
|00003290| 68 73 03 00 22 00 34 40 | 33 40 36 35 38 40 67 72 |hs..".4@|3@658@gr|
|000032a0| 61 70 68 73 20 6f 66 20 | 6c 69 6e 65 61 72 20 66 |aphs of |linear f|
|000032b0| 75 6e 63 74 69 6f 6e 73 | 03 00 22 00 34 40 32 40 |unctions|..".4@2@|
|000032c0| 36 35 39 40 67 72 61 70 | 68 73 20 6f 66 20 6c 69 |659@grap|hs of li|
|000032d0| 6e 65 61 72 20 66 75 6e | 63 74 69 6f 6e 73 03 00 |near fun|ctions..|
|000032e0| 22 00 34 40 32 40 36 36 | 30 40 67 72 61 70 68 73 |".4@2@66|0@graphs|
|000032f0| 20 6f 66 20 6c 69 6e 65 | 61 72 20 66 75 6e 63 74 | of line|ar funct|
|00003300| 69 6f 6e 73 03 00 17 00 | 33 40 31 40 35 30 40 72 |ions....|3@1@50@r|
|00003310| 65 61 6c 20 6c 69 66 65 | 20 67 72 61 70 68 73 03 |eal life| graphs.|
|00003320| 00 15 00 34 40 33 40 36 | 39 37 40 74 72 61 76 65 |...4@3@6|97@trave|
|00003330| 6c 20 67 72 61 70 68 73 | 03 00 15 00 34 40 32 40 |l graphs|....4@2@|
|00003340| 36 39 38 40 74 72 61 76 | 65 6c 20 67 72 61 70 68 |698@trav|el graph|
|00003350| 73 03 00 15 00 34 40 32 | 40 36 39 39 40 74 72 61 |s....4@2|@699@tra|
|00003360| 76 65 6c 20 67 72 61 70 | 68 73 03 00 1e 00 34 40 |vel grap|hs....4@|
|00003370| 33 40 37 30 30 40 61 64 | 76 61 6e 63 65 64 20 74 |3@700@ad|vanced t|
|00003380| 72 61 76 65 6c 20 67 72 | 61 70 68 73 03 00 1e 00 |ravel gr|aphs....|
|00003390| 34 40 32 40 37 30 31 40 | 61 64 76 61 6e 63 65 64 |4@2@701@|advanced|
|000033a0| 20 74 72 61 76 65 6c 20 | 67 72 61 70 68 73 03 00 | travel |graphs..|
|000033b0| 1e 00 34 40 32 40 37 30 | 32 40 61 64 76 61 6e 63 |..4@2@70|2@advanc|
|000033c0| 65 64 20 74 72 61 76 65 | 6c 20 67 72 61 70 68 73 |ed trave|l graphs|
|000033d0| 03 00 22 00 34 40 33 40 | 37 30 33 40 63 75 72 72 |..".4@3@|703@curr|
|000033e0| 65 6e 63 79 20 63 6f 6e | 76 65 72 73 69 6f 6e 20 |ency con|version |
|000033f0| 67 72 61 70 68 73 03 00 | 22 00 34 40 32 40 37 30 |graphs..|".4@2@70|
|00003400| 34 40 63 75 72 72 65 6e | 63 79 20 63 6f 6e 76 65 |4@curren|cy conve|
|00003410| 72 73 69 6f 6e 20 67 72 | 61 70 68 73 02 00 22 00 |rsion gr|aphs..".|
|00003420| 34 40 32 40 37 30 35 40 | 63 75 72 72 65 6e 63 79 |4@2@705@|currency|
|00003430| 20 63 6f 6e 76 65 72 73 | 69 6f 6e 20 67 72 61 70 | convers|ion grap|
|00003440| 68 73 03 00 2c 00 34 40 | 33 40 37 30 36 40 69 6d |hs..,.4@|3@706@im|
|00003450| 70 65 72 69 61 6c 20 74 | 6f 20 6d 65 74 72 69 63 |perial t|o metric|
|00003460| 20 63 6f 6e 76 65 72 73 | 69 6f 6e 20 67 72 61 70 | convers|ion grap|
|00003470| 68 73 03 00 2c 00 34 40 | 32 40 37 30 37 40 69 6d |hs..,.4@|2@707@im|
|00003480| 70 65 72 69 61 6c 20 74 | 6f 20 6d 65 74 72 69 63 |perial t|o metric|
|00003490| 20 63 6f 6e 76 65 72 73 | 69 6f 6e 20 67 72 61 70 | convers|ion grap|
|000034a0| 68 73 03 00 2c 00 34 40 | 32 40 37 30 38 40 69 6d |hs..,.4@|2@708@im|
|000034b0| 70 65 72 69 61 6c 20 74 | 6f 20 6d 65 74 72 69 63 |perial t|o metric|
|000034c0| 20 63 6f 6e 76 65 72 73 | 69 6f 6e 20 67 72 61 70 | convers|ion grap|
|000034d0| 68 73 03 00 16 00 34 40 | 33 40 37 30 39 40 66 69 |hs....4@|3@709@fi|
|000034e0| 6c 6c 69 6e 67 20 66 6c | 61 73 6b 73 03 00 16 00 |lling fl|asks....|
|000034f0| 34 40 32 40 37 31 30 40 | 66 69 6c 6c 69 6e 67 20 |4@2@710@|filling |
|00003500| 66 6c 61 73 6b 73 03 00 | 16 00 34 40 32 40 37 31 |flasks..|..4@2@71|
|00003510| 31 40 66 69 6c 6c 69 6e | 67 20 66 6c 61 73 6b 73 |1@fillin|g flasks|
|00003520| 03 00 19 00 34 40 33 40 | 37 34 35 40 6c 69 6e 65 |....4@3@|745@line|
|00003530| 73 20 6f 66 20 62 65 73 | 74 20 66 69 74 03 00 19 |s of bes|t fit...|
|00003540| 00 34 40 32 40 37 34 36 | 40 6c 69 6e 65 73 20 6f |.4@2@746|@lines o|
|00003550| 66 20 62 65 73 74 20 66 | 69 74 03 00 19 00 34 40 |f best f|it....4@|
|00003560| 32 40 37 34 37 40 6c 69 | 6e 65 73 20 6f 66 20 62 |2@747@li|nes of b|
|00003570| 65 73 74 20 66 69 74 03 | 00 1a 00 33 40 31 40 35 |est fit.|...3@1@5|
|00003580| 31 40 67 72 61 70 68 73 | 20 6f 66 20 66 75 6e 63 |1@graphs| of func|
|00003590| 74 69 6f 6e 73 03 00 18 | 00 34 40 33 40 36 36 37 |tions...|.4@3@667|
|000035a0| 40 71 75 61 64 72 61 74 | 69 63 20 63 75 72 76 65 |@quadrat|ic curve|
|000035b0| 73 03 00 18 00 34 40 32 | 40 36 36 38 40 71 75 61 |s....4@2|@668@qua|
|000035c0| 64 72 61 74 69 63 20 63 | 75 72 76 65 73 03 00 18 |dratic c|urves...|
|000035d0| 00 34 40 32 40 36 36 39 | 40 71 75 61 64 72 61 74 |.4@2@669|@quadrat|
|000035e0| 69 63 20 63 75 72 76 65 | 73 03 00 14 00 34 40 33 |ic curve|s....4@3|
|000035f0| 40 36 37 30 40 63 75 62 | 69 63 20 63 75 72 76 65 |@670@cub|ic curve|
|00003600| 73 03 00 14 00 34 40 32 | 40 36 37 31 40 63 75 62 |s....4@2|@671@cub|
|00003610| 69 63 20 63 75 72 76 65 | 73 03 00 14 00 34 40 32 |ic curve|s....4@2|
|00003620| 40 36 37 32 40 63 75 62 | 69 63 20 63 75 72 76 65 |@672@cub|ic curve|
|00003630| 73 03 00 19 00 34 40 33 | 40 36 37 33 40 72 65 63 |s....4@3|@673@rec|
|00003640| 69 70 72 6f 63 61 6c 20 | 63 75 72 76 65 73 03 00 |iprocal |curves..|
|00003650| 19 00 34 40 32 40 36 37 | 35 40 72 65 63 69 70 72 |..4@2@67|5@recipr|
|00003660| 6f 63 61 6c 20 63 75 72 | 76 65 73 03 00 19 00 34 |ocal cur|ves....4|
|00003670| 40 32 40 36 37 34 40 72 | 65 63 69 70 72 6f 63 61 |@2@674@r|eciproca|
|00003680| 6c 20 63 75 72 76 65 73 | 03 00 1c 00 32 40 31 40 |l curves|....2@1@|
|00003690| 33 35 40 65 71 75 61 74 | 69 6f 6e 73 20 26 26 20 |35@equat|ions && |
|000036a0| 66 6f 72 6d 75 6c 61 65 | 07 00 17 00 33 40 31 40 |formulae|....3@1@|
|000036b0| 35 34 40 6c 69 6e 65 61 | 72 20 65 71 75 61 74 69 |54@linea|r equati|
|000036c0| 6f 6e 73 07 00 20 00 34 | 40 33 40 36 32 38 40 73 |ons.. .4|@3@628@s|
|000036d0| 6f 6c 76 69 6e 67 20 6c | 69 6e 65 61 72 20 65 71 |olving l|inear eq|
|000036e0| 75 61 74 69 6f 6e 73 07 | 00 20 00 34 40 32 40 36 |uations.|. .4@2@6|
|000036f0| 33 30 40 73 6f 6c 76 69 | 6e 67 20 6c 69 6e 65 61 |30@solvi|ng linea|
|00003700| 72 20 65 71 75 61 74 69 | 6f 6e 73 07 00 20 00 34 |r equati|ons.. .4|
|00003710| 40 32 40 36 32 39 40 73 | 6f 6c 76 69 6e 67 20 6c |@2@629@s|olving l|
|00003720| 69 6e 65 61 72 20 65 71 | 75 61 74 69 6f 6e 73 07 |inear eq|uations.|
|00003730| 00 35 00 34 40 33 40 36 | 33 31 40 73 6f 6c 76 69 |.5.4@3@6|31@solvi|
|00003740| 6e 67 20 6c 69 6e 65 61 | 72 20 65 71 75 61 74 69 |ng linea|r equati|
|00003750| 6f 6e 73 20 2d 20 69 6e | 63 6c 75 64 69 6e 67 20 |ons - in|cluding |
|00003760| 62 72 61 63 6b 65 74 73 | 03 00 35 00 34 40 32 40 |brackets|..5.4@2@|
|00003770| 36 33 32 40 73 6f 6c 76 | 69 6e 67 20 6c 69 6e 65 |632@solv|ing line|
|00003780| 61 72 20 65 71 75 61 74 | 69 6f 6e 73 20 2d 20 69 |ar equat|ions - i|
|00003790| 6e 63 6c 75 64 69 6e 67 | 20 62 72 61 63 6b 65 74 |ncluding| bracket|
|000037a0| 73 03 00 35 00 34 40 32 | 40 36 33 33 40 73 6f 6c |s..5.4@2|@633@sol|
|000037b0| 76 69 6e 67 20 6c 69 6e | 65 61 72 20 65 71 75 61 |ving lin|ear equa|
|000037c0| 74 69 6f 6e 73 20 2d 20 | 69 6e 63 6c 75 64 69 6e |tions - |includin|
|000037d0| 67 20 62 72 61 63 6b 65 | 74 73 03 00 3b 00 34 40 |g bracke|ts..;.4@|
|000037e0| 33 40 37 34 38 40 73 6f | 6c 76 69 6e 67 20 6c 69 |3@748@so|lving li|
|000037f0| 6e 65 61 72 20 65 71 75 | 61 74 69 6f 6e 73 20 75 |near equ|ations u|
|00003800| 73 69 6e 67 20 74 72 69 | 61 6c 20 26 26 20 69 6d |sing tri|al && im|
|00003810| 70 72 6f 76 65 6d 65 6e | 74 03 00 3b 00 34 40 32 |provemen|t..;.4@2|
|00003820| 40 37 34 39 40 73 6f 6c | 76 69 6e 67 20 6c 69 6e |@749@sol|ving lin|
|00003830| 65 61 72 20 65 71 75 61 | 74 69 6f 6e 73 20 75 73 |ear equa|tions us|
|00003840| 69 6e 67 20 74 72 69 61 | 6c 20 26 26 20 69 6d 70 |ing tria|l && imp|
|00003850| 72 6f 76 65 6d 65 6e 74 | 03 00 3b 00 34 40 32 40 |rovement|..;.4@2@|
|00003860| 37 35 30 40 73 6f 6c 76 | 69 6e 67 20 6c 69 6e 65 |750@solv|ing line|
|00003870| 61 72 20 65 71 75 61 74 | 69 6f 6e 73 20 75 73 69 |ar equat|ions usi|
|00003880| 6e 67 20 74 72 69 61 6c | 20 26 26 20 69 6d 70 72 |ng trial| && impr|
|00003890| 6f 76 65 6d 65 6e 74 03 | 00 1d 00 33 40 31 40 35 |ovement.|...3@1@5|
|000038a0| 35 40 73 69 6d 75 6c 74 | 61 6e 65 6f 75 73 20 65 |5@simult|aneous e|
|000038b0| 71 75 61 74 69 6f 6e 73 | 03 00 26 00 34 40 33 40 |quations|..&.4@3@|
|000038c0| 36 33 37 40 73 6f 6c 76 | 69 6e 67 20 73 69 6d 75 |637@solv|ing simu|
|000038d0| 6c 74 61 6e 65 6f 75 73 | 20 65 71 75 61 74 69 6f |ltaneous| equatio|
|000038e0| 6e 73 03 00 26 00 34 40 | 32 40 36 33 38 40 73 6f |ns..&.4@|2@638@so|
|000038f0| 6c 76 69 6e 67 20 73 69 | 6d 75 6c 74 61 6e 65 6f |lving si|multaneo|
|00003900| 75 73 20 65 71 75 61 74 | 69 6f 6e 73 03 00 26 00 |us equat|ions..&.|
|00003910| 34 40 32 40 36 33 39 40 | 73 6f 6c 76 69 6e 67 20 |4@2@639@|solving |
|00003920| 73 69 6d 75 6c 74 61 6e | 65 6f 75 73 20 65 71 75 |simultan|eous equ|
|00003930| 61 74 69 6f 6e 73 03 00 | 1a 00 33 40 31 40 35 36 |ations..|..3@1@56|
|00003940| 40 71 75 61 64 72 61 74 | 69 63 20 65 71 75 61 74 |@quadrat|ic equat|
|00003950| 69 6f 6e 73 03 00 34 00 | 34 40 33 40 36 34 30 40 |ions..4.|4@3@640@|
|00003960| 73 6f 6c 76 69 6e 67 20 | 71 75 61 64 72 61 74 69 |solving |quadrati|
|00003970| 63 20 65 71 75 61 74 69 | 6f 6e 73 20 62 79 20 66 |c equati|ons by f|
|00003980| 61 63 74 6f 72 69 73 61 | 74 69 6f 6e 03 00 34 00 |actorisa|tion..4.|
|00003990| 34 40 32 40 36 34 31 40 | 73 6f 6c 76 69 6e 67 20 |4@2@641@|solving |
|000039a0| 71 75 61 64 72 61 74 69 | 63 20 65 71 75 61 74 69 |quadrati|c equati|
|000039b0| 6f 6e 73 20 62 79 20 66 | 61 63 74 6f 72 69 73 61 |ons by f|actorisa|
|000039c0| 74 69 6f 6e 03 00 34 00 | 34 40 32 40 36 34 32 40 |tion..4.|4@2@642@|
|000039d0| 73 6f 6c 76 69 6e 67 20 | 71 75 61 64 72 61 74 69 |solving |quadrati|
|000039e0| 63 20 65 71 75 61 74 69 | 6f 6e 73 20 62 79 20 66 |c equati|ons by f|
|000039f0| 61 63 74 6f 72 69 73 61 | 74 69 6f 6e 03 00 3d 00 |actorisa|tion..=.|
|00003a00| 34 40 33 40 36 34 33 40 | 73 6f 6c 76 69 6e 67 20 |4@3@643@|solving |
|00003a10| 71 75 61 64 72 61 74 69 | 63 20 65 71 75 61 74 69 |quadrati|c equati|
|00003a20| 6f 6e 73 20 74 68 61 74 | 20 63 61 6e 6e 6f 74 20 |ons that| cannot |
|00003a30| 62 65 20 66 61 63 74 6f | 72 69 73 65 64 03 00 3d |be facto|rised..=|
|00003a40| 00 34 40 32 40 36 34 34 | 40 73 6f 6c 76 69 6e 67 |.4@2@644|@solving|
|00003a50| 20 71 75 61 64 72 61 74 | 69 63 20 65 71 75 61 74 | quadrat|ic equat|
|00003a60| 69 6f 6e 73 20 74 68 61 | 74 20 63 61 6e 6e 6f 74 |ions tha|t cannot|
|00003a70| 20 62 65 20 66 61 63 74 | 6f 72 69 73 65 64 03 00 | be fact|orised..|
|00003a80| 3d 00 34 40 32 40 36 34 | 35 40 73 6f 6c 76 69 6e |=.4@2@64|5@solvin|
|00003a90| 67 20 71 75 61 64 72 61 | 74 69 63 20 65 71 75 61 |g quadra|tic equa|
|00003aa0| 74 69 6f 6e 73 20 74 68 | 61 74 20 63 61 6e 6e 6f |tions th|at canno|
|00003ab0| 74 20 62 65 20 66 61 63 | 74 6f 72 69 73 65 64 03 |t be fac|torised.|
|00003ac0| 00 28 00 33 40 31 40 37 | 35 31 40 73 6f 6c 76 69 |.(.3@1@7|51@solvi|
|00003ad0| 6e 67 20 70 6f 6c 79 6e | 6f 6d 69 61 6c 73 20 75 |ng polyn|omials u|
|00003ae0| 73 69 6e 67 20 67 72 61 | 70 68 73 03 00 30 00 34 |sing gra|phs..0.4|
|00003af0| 40 33 40 37 35 32 40 73 | 6f 6c 76 69 6e 67 20 71 |@3@752@s|olving q|
|00003b00| 75 61 64 72 61 74 69 63 | 20 65 71 75 61 74 69 6f |uadratic| equatio|
|00003b10| 6e 73 20 75 73 69 6e 67 | 20 67 72 61 70 68 73 03 |ns using| graphs.|
|00003b20| 00 30 00 34 40 32 40 37 | 36 36 40 73 6f 6c 76 69 |.0.4@2@7|66@solvi|
|00003b30| 6e 67 20 71 75 61 64 72 | 61 74 69 63 20 65 71 75 |ng quadr|atic equ|
|00003b40| 61 74 69 6f 6e 73 20 75 | 73 69 6e 67 20 67 72 61 |ations u|sing gra|
|00003b50| 70 68 73 03 00 30 00 34 | 40 32 40 37 35 35 40 73 |phs..0.4|@2@755@s|
|00003b60| 6f 6c 76 69 6e 67 20 71 | 75 61 64 72 61 74 69 63 |olving q|uadratic|
|00003b70| 20 65 71 75 61 74 69 6f | 6e 73 20 75 73 69 6e 67 | equatio|ns using|
|00003b80| 20 67 72 61 70 68 73 03 | 00 2c 00 34 40 33 40 37 | graphs.|.,.4@3@7|
|00003b90| 35 33 40 73 6f 6c 76 69 | 6e 67 20 63 75 62 69 63 |53@solvi|ng cubic|
|00003ba0| 20 65 71 75 61 74 69 6f | 6e 73 20 75 73 69 6e 67 | equatio|ns using|
|00003bb0| 20 67 72 61 70 68 73 03 | 00 2c 00 34 40 32 40 37 | graphs.|.,.4@2@7|
|00003bc0| 35 36 40 73 6f 6c 76 69 | 6e 67 20 63 75 62 69 63 |56@solvi|ng cubic|
|00003bd0| 20 65 71 75 61 74 69 6f | 6e 73 20 75 73 69 6e 67 | equatio|ns using|
|00003be0| 20 67 72 61 70 68 73 03 | 00 2c 00 34 40 32 40 37 | graphs.|.,.4@2@7|
|00003bf0| 35 37 40 73 6f 6c 76 69 | 6e 67 20 63 75 62 69 63 |57@solvi|ng cubic|
|00003c00| 20 65 71 75 61 74 69 6f | 6e 73 20 75 73 69 6e 67 | equatio|ns using|
|00003c10| 20 67 72 61 70 68 73 03 | 00 1b 00 33 40 31 40 37 | graphs.|...3@1@7|
|00003c20| 35 38 40 77 6f 72 6b 69 | 6e 67 20 77 69 74 68 20 |58@worki|ng with |
|00003c30| 63 75 72 76 65 73 03 00 | 32 00 34 40 33 40 37 35 |curves..|2.4@3@75|
|00003c40| 39 40 66 69 6e 64 69 6e | 67 20 67 72 61 64 69 65 |9@findin|g gradie|
|00003c50| 6e 74 73 20 6f 66 20 63 | 75 72 76 65 73 20 75 73 |nts of c|urves us|
|00003c60| 69 6e 67 20 74 61 6e 67 | 65 6e 74 73 03 00 32 00 |ing tang|ents..2.|
|00003c70| 34 40 32 40 37 36 30 40 | 66 69 6e 64 69 6e 67 20 |4@2@760@|finding |
|00003c80| 67 72 61 64 69 65 6e 74 | 73 20 6f 66 20 63 75 72 |gradient|s of cur|
|00003c90| 76 65 73 20 75 73 69 6e | 67 20 74 61 6e 67 65 6e |ves usin|g tangen|
|00003ca0| 74 73 03 00 32 00 34 40 | 32 40 37 36 31 40 66 69 |ts..2.4@|2@761@fi|
|00003cb0| 6e 64 69 6e 67 20 67 72 | 61 64 69 65 6e 74 73 20 |nding gr|adients |
|00003cc0| 6f 66 20 63 75 72 76 65 | 73 20 75 73 69 6e 67 20 |of curve|s using |
|00003cd0| 74 61 6e 67 65 6e 74 73 | 03 00 26 00 34 40 33 40 |tangents|..&.4@3@|
|00003ce0| 37 36 32 40 66 69 6e 64 | 69 6e 67 20 74 68 65 20 |762@find|ing the |
|00003cf0| 61 72 65 61 20 75 6e 64 | 65 72 20 61 20 63 75 72 |area und|er a cur|
|00003d00| 76 65 03 00 26 00 34 40 | 32 40 37 36 33 40 66 69 |ve..&.4@|2@763@fi|
|00003d10| 6e 64 69 6e 67 20 74 68 | 65 20 61 72 65 61 20 75 |nding th|e area u|
|00003d20| 6e 64 65 72 20 61 20 63 | 75 72 76 65 03 00 26 00 |nder a c|urve..&.|
|00003d30| 34 40 32 40 37 36 34 40 | 66 69 6e 64 69 6e 67 20 |4@2@764@|finding |
|00003d40| 74 68 65 20 61 72 65 61 | 20 75 6e 64 65 72 20 61 |the area| under a|
|00003d50| 20 63 75 72 76 65 03 00 | 1d 00 31 40 31 40 32 40 | curve..|..1@1@2@|
|00003d60| 53 68 61 70 65 2c 20 53 | 70 61 63 65 20 26 26 20 |Shape, S|pace && |
|00003d70| 4d 65 61 73 75 72 65 07 | 00 1a 00 32 40 31 40 36 |Measure.|...2@1@6|
|00003d80| 30 40 70 72 6f 70 65 72 | 74 69 65 73 20 6f 66 20 |0@proper|ties of |
|00003d90| 73 68 61 70 65 07 00 10 | 00 33 40 31 40 31 31 30 |shape...|.3@1@110|
|00003da0| 40 70 6f 6c 79 67 6f 6e | 73 07 00 1c 00 34 40 33 |@polygon|s....4@3|
|00003db0| 40 32 37 38 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@278@int|roducing|
|00003dc0| 20 70 6f 6c 79 67 6f 6e | 73 07 00 1c 00 34 40 32 | polygon|s....4@2|
|00003dd0| 40 32 37 39 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@279@int|roducing|
|00003de0| 20 70 6f 6c 79 67 6f 6e | 73 07 00 1c 00 34 40 32 | polygon|s....4@2|
|00003df0| 40 32 39 30 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@290@int|roducing|
|00003e00| 20 70 6f 6c 79 67 6f 6e | 73 07 00 25 00 34 40 33 | polygon|s..%.4@3|
|00003e10| 40 31 34 35 40 72 65 67 | 75 6c 61 72 20 26 26 20 |@145@reg|ular && |
|00003e20| 69 72 72 65 67 75 6c 61 | 72 20 70 6f 6c 79 67 6f |irregula|r polygo|
|00003e30| 6e 73 07 00 25 00 34 40 | 32 40 31 34 36 40 72 65 |ns..%.4@|2@146@re|
|00003e40| 67 75 6c 61 72 20 26 26 | 20 69 72 72 65 67 75 6c |gular &&| irregul|
|00003e50| 61 72 20 70 6f 6c 79 67 | 6f 6e 73 07 00 25 00 34 |ar polyg|ons..%.4|
|00003e60| 40 32 40 34 33 30 40 72 | 65 67 75 6c 61 72 20 26 |@2@430@r|egular &|
|00003e70| 26 20 69 72 72 65 67 75 | 6c 61 72 20 70 6f 6c 79 |& irregu|lar poly|
|00003e80| 67 6f 6e 73 07 00 17 00 | 33 40 31 40 31 31 31 40 |gons....|3@1@111@|
|00003e90| 32 44 20 26 26 20 33 44 | 20 73 68 61 70 65 73 07 |2D && 3D| shapes.|
|00003ea0| 00 17 00 34 40 33 40 32 | 33 38 40 32 44 20 26 26 |...4@3@2|38@2D &&|
|00003eb0| 20 33 44 20 73 68 61 70 | 65 73 07 00 17 00 34 40 | 3D shap|es....4@|
|00003ec0| 32 40 32 33 39 40 32 44 | 20 26 26 20 33 44 20 73 |2@239@2D| && 3D s|
|00003ed0| 68 61 70 65 73 07 00 17 | 00 34 40 32 40 32 38 30 |hapes...|.4@2@280|
|00003ee0| 40 32 44 20 26 26 20 33 | 44 20 73 68 61 70 65 73 |@2D && 3|D shapes|
|00003ef0| 07 00 10 00 33 40 31 40 | 31 31 33 40 73 79 6d 6d |....3@1@|113@symm|
|00003f00| 65 74 72 79 07 00 1c 00 | 34 40 33 40 32 34 31 40 |etry....|4@3@241@|
|00003f10| 69 6e 74 72 6f 64 75 63 | 69 6e 67 20 73 79 6d 6d |introduc|ing symm|
|00003f20| 65 74 72 79 07 00 1c 00 | 34 40 32 40 32 34 30 40 |etry....|4@2@240@|
|00003f30| 69 6e 74 72 6f 64 75 63 | 69 6e 67 20 73 79 6d 6d |introduc|ing symm|
|00003f40| 65 74 72 79 07 00 1c 00 | 34 40 32 40 32 38 31 40 |etry....|4@2@281@|
|00003f50| 69 6e 74 72 6f 64 75 63 | 69 6e 67 20 73 79 6d 6d |introduc|ing symm|
|00003f60| 65 74 72 79 07 00 24 00 | 34 40 33 40 32 34 32 40 |etry..$.|4@3@242@|
|00003f70| 72 6f 74 61 74 69 6f 6e | 61 6c 20 26 26 20 70 6f |rotation|al && po|
|00003f80| 69 6e 74 20 73 79 6d 6d | 65 74 72 79 03 00 24 00 |int symm|etry..$.|
|00003f90| 34 40 32 40 32 34 33 40 | 72 6f 74 61 74 69 6f 6e |4@2@243@|rotation|
|00003fa0| 61 6c 20 26 26 20 70 6f | 69 6e 74 20 73 79 6d 6d |al && po|int symm|
|00003fb0| 65 74 72 79 03 00 24 00 | 34 40 32 40 32 38 32 40 |etry..$.|4@2@282@|
|00003fc0| 72 6f 74 61 74 69 6f 6e | 61 6c 20 26 26 20 70 6f |rotation|al && po|
|00003fd0| 69 6e 74 20 73 79 6d 6d | 65 74 72 79 03 00 1a 00 |int symm|etry....|
|00003fe0| 34 40 33 40 32 34 34 40 | 70 6c 61 6e 65 73 20 6f |4@3@244@|planes o|
|00003ff0| 66 20 73 79 6d 6d 65 74 | 72 79 07 00 1a 00 34 40 |f symmet|ry....4@|
|00004000| 32 40 32 34 35 40 70 6c | 61 6e 65 73 20 6f 66 20 |2@245@pl|anes of |
|00004010| 73 79 6d 6d 65 74 72 79 | 07 00 1a 00 34 40 32 40 |symmetry|....4@2@|
|00004020| 32 38 33 40 70 6c 61 6e | 65 73 20 6f 66 20 73 79 |283@plan|es of sy|
|00004030| 6d 6d 65 74 72 79 07 00 | 0f 00 33 40 31 40 32 37 |mmetry..|..3@1@27|
|00004040| 31 40 63 69 72 63 6c 65 | 73 07 00 19 00 34 40 33 |1@circle|s....4@3|
|00004050| 40 32 37 32 40 77 68 61 | 74 20 69 73 20 61 20 63 |@272@wha|t is a c|
|00004060| 69 72 63 6c 65 3f 07 00 | 19 00 34 40 32 40 32 37 |ircle?..|..4@2@27|
|00004070| 33 40 77 68 61 74 20 69 | 73 20 61 20 63 69 72 63 |3@what i|s a circ|
|00004080| 6c 65 3f 07 00 19 00 34 | 40 32 40 34 33 39 40 77 |le?....4|@2@439@w|
|00004090| 68 61 74 20 69 73 20 61 | 20 63 69 72 63 6c 65 3f |hat is a| circle?|
|000040a0| 07 00 17 00 32 40 31 40 | 36 31 40 6d 65 61 73 75 |....2@1@|61@measu|
|000040b0| 72 69 6e 67 20 73 68 61 | 70 65 73 07 00 14 00 33 |ring sha|pes....3|
|000040c0| 40 31 40 31 30 34 40 6d | 65 61 73 75 72 65 6d 65 |@1@104@m|easureme|
|000040d0| 6e 74 73 07 00 1f 00 34 | 40 33 40 37 36 37 40 69 |nts....4|@3@767@i|
|000040e0| 6e 74 72 6f 64 75 63 69 | 6e 67 20 6d 65 61 73 75 |ntroduci|ng measu|
|000040f0| 72 65 6d 65 6e 74 07 00 | 1f 00 34 40 32 40 37 36 |rement..|..4@2@76|
|00004100| 38 40 69 6e 74 72 6f 64 | 75 63 69 6e 67 20 6d 65 |8@introd|ucing me|
|00004110| 61 73 75 72 65 6d 65 6e | 74 07 00 1f 00 34 40 32 |asuremen|t....4@2|
|00004120| 40 37 36 39 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@769@int|roducing|
|00004130| 20 6d 65 61 73 75 72 65 | 6d 65 6e 74 07 00 1b 00 | measure|ment....|
|00004140| 33 40 31 40 31 30 35 40 | 6d 65 61 73 75 72 69 6e |3@1@105@|measurin|
|00004150| 67 20 32 44 20 73 68 61 | 70 65 73 07 00 1f 00 34 |g 2D sha|pes....4|
|00004160| 40 33 40 37 37 30 40 6d | 65 61 73 75 72 69 6e 67 |@3@770@m|easuring|
|00004170| 20 70 6c 61 6e 65 20 66 | 69 67 75 72 65 73 07 00 | plane f|igures..|
|00004180| 1f 00 34 40 32 40 37 37 | 31 40 6d 65 61 73 75 72 |..4@2@77|1@measur|
|00004190| 69 6e 67 20 70 6c 61 6e | 65 20 66 69 67 75 72 65 |ing plan|e figure|
|000041a0| 73 07 00 1f 00 34 40 32 | 40 37 37 32 40 6d 65 61 |s....4@2|@772@mea|
|000041b0| 73 75 72 69 6e 67 20 70 | 6c 61 6e 65 20 66 69 67 |suring p|lane fig|
|000041c0| 75 72 65 73 07 00 19 00 | 34 40 33 40 37 37 36 40 |ures....|4@3@776@|
|000041d0| 6d 65 61 73 75 72 69 6e | 67 20 63 69 72 63 6c 65 |measurin|g circle|
|000041e0| 73 07 00 19 00 34 40 32 | 40 37 37 34 40 6d 65 61 |s....4@2|@774@mea|
|000041f0| 73 75 72 69 6e 67 20 63 | 69 72 63 6c 65 73 07 00 |suring c|ircles..|
|00004200| 19 00 34 40 32 40 37 37 | 35 40 6d 65 61 73 75 72 |..4@2@77|5@measur|
|00004210| 69 6e 67 20 63 69 72 63 | 6c 65 73 07 00 1b 00 33 |ing circ|les....3|
|00004220| 40 31 40 31 30 36 40 6d | 65 61 73 75 72 69 6e 67 |@1@106@m|easuring|
|00004230| 20 33 44 20 73 68 61 70 | 65 73 07 00 2e 00 34 40 | 3D shap|es....4@|
|00004240| 33 40 37 37 37 40 66 69 | 6e 64 69 6e 67 20 74 68 |3@777@fi|nding th|
|00004250| 65 20 73 75 72 66 61 63 | 65 20 61 72 65 61 20 6f |e surfac|e area o|
|00004260| 66 20 33 44 20 6f 62 6a | 65 63 74 73 07 00 2e 00 |f 3D obj|ects....|
|00004270| 34 40 32 40 37 37 38 40 | 66 69 6e 64 69 6e 67 20 |4@2@778@|finding |
|00004280| 74 68 65 20 73 75 72 66 | 61 63 65 20 61 72 65 61 |the surf|ace area|
|00004290| 20 6f 66 20 33 44 20 6f | 62 6a 65 63 74 73 07 00 | of 3D o|bjects..|
|000042a0| 2e 00 34 40 32 40 37 37 | 39 40 66 69 6e 64 69 6e |..4@2@77|9@findin|
|000042b0| 67 20 74 68 65 20 73 75 | 72 66 61 63 65 20 61 72 |g the su|rface ar|
|000042c0| 65 61 20 6f 66 20 33 44 | 20 6f 62 6a 65 63 74 73 |ea of 3D| objects|
|000042d0| 07 00 28 00 34 40 33 40 | 37 38 30 40 66 69 6e 64 |..(.4@3@|780@find|
|000042e0| 69 6e 67 20 74 68 65 20 | 76 6f 6c 75 6d 65 20 6f |ing the |volume o|
|000042f0| 66 20 33 44 20 6f 62 6a | 65 63 74 73 07 00 28 00 |f 3D obj|ects..(.|
|00004300| 34 40 32 40 37 38 31 40 | 66 69 6e 64 69 6e 67 20 |4@2@781@|finding |
|00004310| 74 68 65 20 76 6f 6c 75 | 6d 65 20 6f 66 20 33 44 |the volu|me of 3D|
|00004320| 20 6f 62 6a 65 63 74 73 | 07 00 28 00 34 40 32 40 | objects|..(.4@2@|
|00004330| 37 38 32 40 66 69 6e 64 | 69 6e 67 20 74 68 65 20 |782@find|ing the |
|00004340| 76 6f 6c 75 6d 65 20 6f | 66 20 33 44 20 6f 62 6a |volume o|f 3D obj|
|00004350| 65 63 74 73 07 00 0d 00 | 32 40 31 40 36 32 40 61 |ects....|2@1@62@a|
|00004360| 6e 67 6c 65 73 07 00 0d | 00 33 40 31 40 39 38 40 |ngles...|.3@1@98@|
|00004370| 61 6e 67 6c 65 73 07 00 | 1a 00 34 40 33 40 32 34 |angles..|..4@3@24|
|00004380| 36 40 69 6e 74 72 6f 64 | 75 63 69 6e 67 20 61 6e |6@introd|ucing an|
|00004390| 67 6c 65 73 07 00 1a 00 | 34 40 32 40 32 34 37 40 |gles....|4@2@247@|
|000043a0| 69 6e 74 72 6f 64 75 63 | 69 6e 67 20 61 6e 67 6c |introduc|ing angl|
|000043b0| 65 73 07 00 1a 00 34 40 | 32 40 32 38 36 40 69 6e |es....4@|2@286@in|
|000043c0| 74 72 6f 64 75 63 69 6e | 67 20 61 6e 67 6c 65 73 |troducin|g angles|
|000043d0| 07 00 30 00 34 40 33 40 | 32 34 38 40 64 65 67 72 |..0.4@3@|248@degr|
|000043e0| 65 65 73 2c 20 6d 69 6e | 75 74 65 73 2c 20 73 65 |ees, min|utes, se|
|000043f0| 63 6f 6e 64 73 20 26 26 | 20 72 65 76 6f 6c 75 74 |conds &&| revolut|
|00004400| 69 6f 6e 73 07 00 30 00 | 34 40 32 40 32 34 39 40 |ions..0.|4@2@249@|
|00004410| 64 65 67 72 65 65 73 2c | 20 6d 69 6e 75 74 65 73 |degrees,| minutes|
|00004420| 2c 20 73 65 63 6f 6e 64 | 73 20 26 26 20 72 65 76 |, second|s && rev|
|00004430| 6f 6c 75 74 69 6f 6e 73 | 07 00 30 00 34 40 32 40 |olutions|..0.4@2@|
|00004440| 32 38 37 40 64 65 67 72 | 65 65 73 2c 20 6d 69 6e |287@degr|ees, min|
|00004450| 75 74 65 73 2c 20 73 65 | 63 6f 6e 64 73 20 26 26 |utes, se|conds &&|
|00004460| 20 72 65 76 6f 6c 75 74 | 69 6f 6e 73 07 00 21 00 | revolut|ions..!.|
|00004470| 34 40 33 40 32 35 30 40 | 64 69 66 66 65 72 65 6e |4@3@250@|differen|
|00004480| 74 20 74 79 70 65 73 20 | 6f 66 20 61 6e 67 6c 65 |t types |of angle|
|00004490| 73 07 00 21 00 34 40 32 | 40 32 35 31 40 64 69 66 |s..!.4@2|@251@dif|
|000044a0| 66 65 72 65 6e 74 20 74 | 79 70 65 73 20 6f 66 20 |ferent t|ypes of |
|000044b0| 61 6e 67 6c 65 73 07 00 | 21 00 34 40 32 40 32 38 |angles..|!.4@2@28|
|000044c0| 38 40 64 69 66 66 65 72 | 65 6e 74 20 74 79 70 65 |8@differ|ent type|
|000044d0| 73 20 6f 66 20 61 6e 67 | 6c 65 73 07 00 1e 00 33 |s of ang|les....3|
|000044e0| 40 31 40 39 39 40 73 68 | 61 70 65 73 2c 20 6c 69 |@1@99@sh|apes, li|
|000044f0| 6e 65 73 20 26 26 20 61 | 6e 67 6c 65 73 07 00 1b |nes && a|ngles...|
|00004500| 00 34 40 33 40 32 35 32 | 40 32 44 20 73 68 61 70 |.4@3@252|@2D shap|
|00004510| 65 73 20 26 26 20 61 6e | 67 6c 65 73 07 00 1b 00 |es && an|gles....|
|00004520| 34 40 32 40 32 35 33 40 | 32 44 20 73 68 61 70 65 |4@2@253@|2D shape|
|00004530| 73 20 26 26 20 61 6e 67 | 6c 65 73 07 00 1b 00 34 |s && ang|les....4|
|00004540| 40 32 40 32 38 39 40 32 | 44 20 73 68 61 70 65 73 |@2@289@2|D shapes|
|00004550| 20 26 26 20 61 6e 67 6c | 65 73 07 00 17 00 34 40 | && angl|es....4@|
|00004560| 33 40 32 35 34 40 6c 69 | 6e 65 73 20 26 26 20 61 |3@254@li|nes && a|
|00004570| 6e 67 6c 65 73 07 00 17 | 00 34 40 32 40 32 35 35 |ngles...|.4@2@255|
|00004580| 40 6c 69 6e 65 73 20 26 | 26 20 61 6e 67 6c 65 73 |@lines &|& angles|
|00004590| 07 00 17 00 34 40 32 40 | 34 33 31 40 6c 69 6e 65 |....4@2@|431@line|
|000045a0| 73 20 26 26 20 61 6e 67 | 6c 65 73 07 00 11 00 33 |s && ang|les....3|
|000045b0| 40 31 40 31 30 30 40 74 | 72 69 61 6e 67 6c 65 73 |@1@100@t|riangles|
|000045c0| 07 00 21 00 34 40 33 40 | 32 35 38 40 69 6e 74 72 |..!.4@3@|258@intr|
|000045d0| 6f 64 75 63 74 69 6f 6e | 20 74 6f 20 74 72 69 61 |oduction| to tria|
|000045e0| 6e 67 6c 65 73 07 00 21 | 00 34 40 32 40 32 35 39 |ngles..!|.4@2@259|
|000045f0| 40 69 6e 74 72 6f 64 75 | 63 74 69 6f 6e 20 74 6f |@introdu|ction to|
|00004600| 20 74 72 69 61 6e 67 6c | 65 73 07 00 21 00 34 40 | triangl|es..!.4@|
|00004610| 32 40 34 33 33 40 69 6e | 74 72 6f 64 75 63 74 69 |2@433@in|troducti|
|00004620| 6f 6e 20 74 6f 20 74 72 | 69 61 6e 67 6c 65 73 07 |on to tr|iangles.|
|00004630| 00 19 00 34 40 33 40 38 | 31 33 40 64 72 61 77 69 |...4@3@8|13@drawi|
|00004640| 6e 67 20 74 72 69 61 6e | 67 6c 65 73 07 00 19 00 |ng trian|gles....|
|00004650| 34 40 32 40 38 31 34 40 | 64 72 61 77 69 6e 67 20 |4@2@814@|drawing |
|00004660| 74 72 69 61 6e 67 6c 65 | 73 07 00 19 00 34 40 32 |triangle|s....4@2|
|00004670| 40 38 31 35 40 64 72 61 | 77 69 6e 67 20 74 72 69 |@815@dra|wing tri|
|00004680| 61 6e 67 6c 65 73 07 00 | 24 00 34 40 33 40 32 36 |angles..|$.4@3@26|
|00004690| 30 40 74 72 69 61 6e 67 | 6c 65 73 20 26 26 20 65 |0@triang|les && e|
|000046a0| 78 74 65 72 69 6f 72 20 | 61 6e 67 6c 65 73 03 00 |xterior |angles..|
|000046b0| 24 00 34 40 32 40 32 36 | 31 40 74 72 69 61 6e 67 |$.4@2@26|1@triang|
|000046c0| 6c 65 73 20 26 26 20 65 | 78 74 65 72 69 6f 72 20 |les && e|xterior |
|000046d0| 61 6e 67 6c 65 73 03 00 | 24 00 34 40 32 40 34 33 |angles..|$.4@2@43|
|000046e0| 34 40 74 72 69 61 6e 67 | 6c 65 73 20 26 26 20 65 |4@triang|les && e|
|000046f0| 78 74 65 72 69 6f 72 20 | 61 6e 67 6c 65 73 03 00 |xterior |angles..|
|00004700| 1f 00 34 40 33 40 32 36 | 32 40 74 72 69 61 6e 67 |..4@3@26|2@triang|
|00004710| 6c 65 73 20 26 26 20 50 | 79 74 68 61 67 6f 72 61 |les && P|ythagora|
|00004720| 73 03 00 1f 00 34 40 32 | 40 32 36 33 40 74 72 69 |s....4@2|@263@tri|
|00004730| 61 6e 67 6c 65 73 20 26 | 26 20 50 79 74 68 61 67 |angles &|& Pythag|
|00004740| 6f 72 61 73 03 00 1f 00 | 34 40 32 40 34 33 35 40 |oras....|4@2@435@|
|00004750| 74 72 69 61 6e 67 6c 65 | 73 20 26 26 20 50 79 74 |triangle|s && Pyt|
|00004760| 68 61 67 6f 72 61 73 03 | 00 24 00 34 40 33 40 32 |hagoras.|.$.4@3@2|
|00004770| 36 34 40 69 6e 74 72 6f | 64 75 63 74 69 6f 6e 20 |64@intro|duction |
|00004780| 74 6f 20 74 72 69 67 6f | 6e 6f 6d 65 74 72 79 03 |to trigo|nometry.|
|00004790| 00 24 00 34 40 32 40 32 | 36 35 40 69 6e 74 72 6f |.$.4@2@2|65@intro|
|000047a0| 64 75 63 74 69 6f 6e 20 | 74 6f 20 74 72 69 67 6f |duction |to trigo|
|000047b0| 6e 6f 6d 65 74 72 79 03 | 00 24 00 34 40 32 40 34 |nometry.|.$.4@2@4|
|000047c0| 33 36 40 69 6e 74 72 6f | 64 75 63 74 69 6f 6e 20 |36@intro|duction |
|000047d0| 74 6f 20 74 72 69 67 6f | 6e 6f 6d 65 74 72 79 03 |to trigo|nometry.|
|000047e0| 00 1d 00 34 40 33 40 32 | 36 36 40 75 73 69 6e 67 |...4@3@2|66@using|
|000047f0| 20 73 69 6e 2c 20 63 6f | 73 20 26 26 20 74 61 6e | sin, co|s && tan|
|00004800| 03 00 1d 00 34 40 32 40 | 32 36 37 40 75 73 69 6e |....4@2@|267@usin|
|00004810| 67 20 73 69 6e 2c 20 63 | 6f 73 20 26 26 20 74 61 |g sin, c|os && ta|
|00004820| 6e 03 00 1d 00 34 40 32 | 40 34 33 37 40 75 73 69 |n....4@2|@437@usi|
|00004830| 6e 67 20 73 69 6e 2c 20 | 63 6f 73 20 26 26 20 74 |ng sin, |cos && t|
|00004840| 61 6e 03 00 2c 00 32 40 | 31 40 36 33 40 74 72 61 |an..,.2@|1@63@tra|
|00004850| 6e 73 66 6f 72 6d 61 74 | 69 6f 6e 73 2c 20 76 65 |nsformat|ions, ve|
|00004860| 63 74 6f 72 73 20 61 6e | 64 20 62 65 61 72 69 6e |ctors an|d bearin|
|00004870| 67 73 07 00 16 00 33 40 | 31 40 39 32 40 74 72 61 |gs....3@|1@92@tra|
|00004880| 6e 73 66 6f 72 6d 61 74 | 69 6f 6e 73 07 00 17 00 |nsformat|ions....|
|00004890| 34 40 33 40 37 38 33 40 | 74 72 61 6e 73 66 6f 72 |4@3@783@|transfor|
|000048a0| 6d 61 74 69 6f 6e 73 07 | 00 17 00 34 40 32 40 37 |mations.|...4@2@7|
|000048b0| 38 34 40 74 72 61 6e 73 | 66 6f 72 6d 61 74 69 6f |84@trans|formatio|
|000048c0| 6e 73 07 00 17 00 34 40 | 32 40 37 38 35 40 74 72 |ns....4@|2@785@tr|
|000048d0| 61 6e 73 66 6f 72 6d 61 | 74 69 6f 6e 73 07 00 14 |ansforma|tions...|
|000048e0| 00 34 40 33 40 37 38 36 | 40 74 72 61 6e 73 6c 61 |.4@3@786|@transla|
|000048f0| 74 69 6f 6e 73 07 00 14 | 00 34 40 32 40 37 38 37 |tions...|.4@2@787|
|00004900| 40 74 72 61 6e 73 6c 61 | 74 69 6f 6e 73 07 00 14 |@transla|tions...|
|00004910| 00 34 40 32 40 37 38 38 | 40 74 72 61 6e 73 6c 61 |.4@2@788|@transla|
|00004920| 74 69 6f 6e 73 07 00 13 | 00 34 40 33 40 37 38 39 |tions...|.4@3@789|
|00004930| 40 72 65 66 6c 65 63 74 | 69 6f 6e 73 07 00 13 00 |@reflect|ions....|
|00004940| 34 40 32 40 37 39 30 40 | 72 65 66 6c 65 63 74 69 |4@2@790@|reflecti|
|00004950| 6f 6e 73 07 00 13 00 34 | 40 32 40 37 39 31 40 72 |ons....4|@2@791@r|
|00004960| 65 66 6c 65 63 74 69 6f | 6e 73 07 00 11 00 34 40 |eflectio|ns....4@|
|00004970| 33 40 37 39 32 40 72 6f | 74 61 74 69 6f 6e 73 07 |3@792@ro|tations.|
|00004980| 00 11 00 34 40 32 40 37 | 39 33 40 72 6f 74 61 74 |...4@2@7|93@rotat|
|00004990| 69 6f 6e 73 07 00 11 00 | 34 40 32 40 37 39 34 40 |ions....|4@2@794@|
|000049a0| 72 6f 74 61 74 69 6f 6e | 73 07 00 14 00 34 40 33 |rotation|s....4@3|
|000049b0| 40 37 39 35 40 65 6e 6c | 61 72 67 65 6d 65 6e 74 |@795@enl|argement|
|000049c0| 73 07 00 14 00 34 40 32 | 40 37 39 36 40 65 6e 6c |s....4@2|@796@enl|
|000049d0| 61 72 67 65 6d 65 6e 74 | 73 07 00 14 00 34 40 32 |argement|s....4@2|
|000049e0| 40 37 39 37 40 65 6e 6c | 61 72 67 65 6d 65 6e 74 |@797@enl|argement|
|000049f0| 73 07 00 0e 00 34 40 33 | 40 37 39 38 40 73 68 65 |s....4@3|@798@she|
|00004a00| 61 72 73 03 00 0e 00 34 | 40 32 40 37 39 39 40 73 |ars....4|@2@799@s|
|00004a10| 68 65 61 72 73 03 00 0e | 00 34 40 32 40 38 30 30 |hears...|.4@2@800|
|00004a20| 40 73 68 65 61 72 73 03 | 00 0e 00 33 40 31 40 39 |@shears.|...3@1@9|
|00004a30| 33 40 76 65 63 74 6f 72 | 73 03 00 1b 00 34 40 33 |3@vector|s....4@3|
|00004a40| 40 38 30 31 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@801@int|roducing|
|00004a50| 20 76 65 63 74 6f 72 73 | 03 00 1b 00 34 40 32 40 | vectors|....4@2@|
|00004a60| 38 30 32 40 69 6e 74 72 | 6f 64 75 63 69 6e 67 20 |802@intr|oducing |
|00004a70| 76 65 63 74 6f 72 73 03 | 00 1b 00 34 40 32 40 38 |vectors.|...4@2@8|
|00004a80| 30 33 40 69 6e 74 72 6f | 64 75 63 69 6e 67 20 76 |03@intro|ducing v|
|00004a90| 65 63 74 6f 72 73 03 00 | 0f 00 33 40 31 40 39 34 |ectors..|..3@1@94|
|00004aa0| 40 62 65 61 72 69 6e 67 | 73 03 00 1c 00 34 40 33 |@bearing|s....4@3|
|00004ab0| 40 38 30 34 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@804@int|roducing|
|00004ac0| 20 62 65 61 72 69 6e 67 | 73 03 00 1c 00 34 40 32 | bearing|s....4@2|
|00004ad0| 40 38 30 35 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@805@int|roducing|
|00004ae0| 20 62 65 61 72 69 6e 67 | 73 03 00 1c 00 34 40 32 | bearing|s....4@2|
|00004af0| 40 38 30 36 40 69 6e 74 | 72 6f 64 75 63 69 6e 67 |@806@int|roducing|
|00004b00| 20 62 65 61 72 69 6e 67 | 73 03 00 15 00 34 40 33 | bearing|s....4@3|
|00004b10| 40 38 30 37 40 62 61 63 | 6b 20 62 65 61 72 69 6e |@807@bac|k bearin|
|00004b20| 67 73 03 00 15 00 34 40 | 32 40 38 30 38 40 62 61 |gs....4@|2@808@ba|
|00004b30| 63 6b 20 62 65 61 72 69 | 6e 67 73 03 00 15 00 34 |ck beari|ngs....4|
|00004b40| 40 32 40 38 30 39 40 62 | 61 63 6b 20 62 65 61 72 |@2@809@b|ack bear|
|00004b50| 69 6e 67 73 03 00 26 00 | 34 40 33 40 38 31 30 40 |ings..&.|4@3@810@|
|00004b60| 6c 6f 63 61 74 69 6e 67 | 20 61 20 70 6f 69 6e 74 |locating| a point|
|00004b70| 20 77 69 74 68 20 62 65 | 61 72 69 6e 67 73 03 00 | with be|arings..|
|00004b80| 26 00 34 40 32 40 38 31 | 31 40 6c 6f 63 61 74 69 |&.4@2@81|1@locati|
|00004b90| 6e 67 20 61 20 70 6f 69 | 6e 74 20 77 69 74 68 20 |ng a poi|nt with |
|00004ba0| 62 65 61 72 69 6e 67 73 | 03 00 26 00 34 40 32 40 |bearings|..&.4@2@|
|00004bb0| 38 31 32 40 6c 6f 63 61 | 74 69 6e 67 20 61 20 70 |812@loca|ting a p|
|00004bc0| 6f 69 6e 74 20 77 69 74 | 68 20 62 65 61 72 69 6e |oint wit|h bearin|
|00004bd0| 67 73 03 00 13 00 31 40 | 31 40 33 40 48 61 6e 64 |gs....1@|1@3@Hand|
|00004be0| 6c 69 6e 67 20 44 61 74 | 61 07 00 23 00 32 40 31 |ling Dat|a..#.2@1|
|00004bf0| 40 36 34 40 63 6f 6c 6c | 65 63 74 69 6f 6e 20 26 |@64@coll|ection &|
|00004c00| 26 20 72 65 70 72 65 73 | 65 6e 74 61 74 69 6f 6e |& repres|entation|
|00004c10| 07 00 16 00 33 40 31 40 | 38 36 40 64 61 74 61 20 |....3@1@|86@data |
|00004c20| 63 6f 6c 6c 65 63 74 69 | 6f 6e 07 00 14 00 34 40 |collecti|on....4@|
|00004c30| 33 40 32 30 31 40 74 61 | 6c 6c 79 20 74 61 62 6c |3@201@ta|lly tabl|
|00004c40| 65 73 07 00 14 00 34 40 | 32 40 32 32 36 40 74 61 |es....4@|2@226@ta|
|00004c50| 6c 6c 79 20 74 61 62 6c | 65 73 07 00 14 00 34 40 |lly tabl|es....4@|
|00004c60| 32 40 33 34 30 40 74 61 | 6c 6c 79 20 74 61 62 6c |2@340@ta|lly tabl|
|00004c70| 65 73 07 00 1d 00 34 40 | 33 40 32 32 39 40 67 72 |es....4@|3@229@gr|
|00004c80| 6f 75 70 65 64 20 64 69 | 73 74 72 69 62 75 74 69 |ouped di|stributi|
|00004c90| 6f 6e 73 07 00 1d 00 34 | 40 32 40 32 33 30 40 67 |ons....4|@2@230@g|
|00004ca0| 72 6f 75 70 65 64 20 64 | 69 73 74 72 69 62 75 74 |rouped d|istribut|
|00004cb0| 69 6f 6e 73 07 00 1d 00 | 34 40 32 40 33 33 39 40 |ions....|4@2@339@|
|00004cc0| 67 72 6f 75 70 65 64 20 | 64 69 73 74 72 69 62 75 |grouped |distribu|
|00004cd0| 74 69 6f 6e 73 07 00 16 | 00 34 40 33 40 32 39 31 |tions...|.4@3@291|
|00004ce0| 40 71 75 65 73 74 69 6f | 6e 6e 61 69 72 65 73 07 |@questio|nnaires.|
|00004cf0| 00 16 00 34 40 32 40 32 | 39 32 40 71 75 65 73 74 |...4@2@2|92@quest|
|00004d00| 69 6f 6e 6e 61 69 72 65 | 73 07 00 16 00 34 40 32 |ionnaire|s....4@2|
|00004d10| 40 33 33 38 40 71 75 65 | 73 74 69 6f 6e 6e 61 69 |@338@que|stionnai|
|00004d20| 72 65 73 07 00 0c 00 34 | 40 33 40 32 39 33 40 62 |res....4|@3@293@b|
|00004d30| 69 61 73 07 00 0c 00 34 | 40 32 40 32 39 34 40 62 |ias....4|@2@294@b|
|00004d40| 69 61 73 07 00 0c 00 34 | 40 32 40 33 33 37 40 62 |ias....4|@2@337@b|
|00004d50| 69 61 73 07 00 10 00 34 | 40 33 40 32 39 35 40 66 |ias....4|@3@295@f|
|00004d60| 61 69 72 6e 65 73 73 07 | 00 10 00 34 40 32 40 32 |airness.|...4@2@2|
|00004d70| 39 36 40 66 61 69 72 6e | 65 73 73 07 00 10 00 34 |96@fairn|ess....4|
|00004d80| 40 32 40 33 33 36 40 66 | 61 69 72 6e 65 73 73 07 |@2@336@f|airness.|
|00004d90| 00 14 00 33 40 31 40 38 | 37 40 74 79 70 65 73 20 |...3@1@8|7@types |
|00004da0| 6f 66 20 64 61 74 61 07 | 00 15 00 34 40 33 40 32 |of data.|...4@3@2|
|00004db0| 39 37 40 74 79 70 65 73 | 20 6f 66 20 64 61 74 61 |97@types| of data|
|00004dc0| 07 00 15 00 34 40 32 40 | 32 39 38 40 74 79 70 65 |....4@2@|298@type|
|00004dd0| 73 20 6f 66 20 64 61 74 | 61 07 00 15 00 34 40 32 |s of dat|a....4@2|
|00004de0| 40 32 39 39 40 74 79 70 | 65 73 20 6f 66 20 64 61 |@299@typ|es of da|
|00004df0| 74 61 07 00 18 00 33 40 | 31 40 38 38 40 72 65 70 |ta....3@|1@88@rep|
|00004e00| 72 65 73 65 6e 74 69 6e | 67 20 64 61 74 61 07 00 |resentin|g data..|
|00004e10| 12 00 34 40 33 40 33 30 | 30 40 70 69 63 74 6f 67 |..4@3@30|0@pictog|
|00004e20| 72 61 6d 73 07 00 12 00 | 34 40 32 40 33 35 36 40 |rams....|4@2@356@|
|00004e30| 70 69 63 74 6f 67 72 61 | 6d 73 07 00 12 00 34 40 |pictogra|ms....4@|
|00004e40| 32 40 33 30 32 40 70 69 | 63 74 6f 67 72 61 6d 73 |2@302@pi|ctograms|
|00004e50| 07 00 12 00 34 40 33 40 | 33 30 33 40 62 61 72 20 |....4@3@|303@bar |
|00004e60| 63 68 61 72 74 73 07 00 | 12 00 34 40 32 40 33 30 |charts..|..4@2@30|
|00004e70| 34 40 62 61 72 20 63 68 | 61 72 74 73 07 00 12 00 |4@bar ch|arts....|
|00004e80| 34 40 32 40 33 30 35 40 | 62 61 72 20 63 68 61 72 |4@2@305@|bar char|
|00004e90| 74 73 07 00 13 00 34 40 | 33 40 33 30 36 40 6c 69 |ts....4@|3@306@li|
|00004ea0| 6e 65 20 67 72 61 70 68 | 73 07 00 13 00 34 40 32 |ne graph|s....4@2|
|00004eb0| 40 33 30 37 40 6c 69 6e | 65 20 67 72 61 70 68 73 |@307@lin|e graphs|
|00004ec0| 07 00 13 00 34 40 32 40 | 33 30 38 40 6c 69 6e 65 |....4@2@|308@line|
|00004ed0| 20 67 72 61 70 68 73 07 | 00 12 00 34 40 33 40 33 | graphs.|...4@3@3|
|00004ee0| 30 39 40 70 69 65 20 63 | 68 61 72 74 73 07 00 12 |09@pie c|harts...|
|00004ef0| 00 34 40 32 40 33 31 30 | 40 70 69 65 20 63 68 61 |.4@2@310|@pie cha|
|00004f00| 72 74 73 07 00 12 00 34 | 40 32 40 33 31 31 40 70 |rts....4|@2@311@p|
|00004f10| 69 65 20 63 68 61 72 74 | 73 07 00 12 00 34 40 33 |ie chart|s....4@3|
|00004f20| 40 33 31 32 40 68 69 73 | 74 6f 67 72 61 6d 73 07 |@312@his|tograms.|
|00004f30| 00 12 00 34 40 32 40 33 | 31 33 40 68 69 73 74 6f |...4@2@3|13@histo|
|00004f40| 67 72 61 6d 73 07 00 12 | 00 34 40 32 40 33 31 34 |grams...|.4@2@314|
|00004f50| 40 68 69 73 74 6f 67 72 | 61 6d 73 07 00 1a 00 34 |@histogr|ams....4|
|00004f60| 40 33 40 33 31 35 40 66 | 72 65 71 75 65 6e 63 79 |@3@315@f|requency|
|00004f70| 20 70 6f 6c 79 67 6f 6e | 73 07 00 1a 00 34 40 32 | polygon|s....4@2|
|00004f80| 40 33 31 36 40 66 72 65 | 71 75 65 6e 63 79 20 70 |@316@fre|quency p|
|00004f90| 6f 6c 79 67 6f 6e 73 07 | 00 1a 00 34 40 32 40 33 |olygons.|...4@2@3|
|00004fa0| 31 37 40 66 72 65 71 75 | 65 6e 63 79 20 70 6f 6c |17@frequ|ency pol|
|00004fb0| 79 67 6f 6e 73 07 00 18 | 00 34 40 33 40 33 31 38 |ygons...|.4@3@318|
|00004fc0| 40 73 63 61 74 74 65 72 | 20 64 69 61 67 72 61 6d |@scatter| diagram|
|00004fd0| 73 07 00 18 00 34 40 32 | 40 33 31 39 40 73 63 61 |s....4@2|@319@sca|
|00004fe0| 74 74 65 72 20 64 69 61 | 67 72 61 6d 73 07 00 18 |tter dia|grams...|
|00004ff0| 00 34 40 32 40 33 32 30 | 40 73 63 61 74 74 65 72 |.4@2@320|@scatter|
|00005000| 20 64 69 61 67 72 61 6d | 73 07 00 1b 00 33 40 31 | diagram|s....3@1|
|00005010| 40 38 39 40 63 75 6d 75 | 6c 61 74 69 76 65 20 66 |@89@cumu|lative f|
|00005020| 72 65 71 75 65 6e 63 79 | 03 00 23 00 34 40 33 40 |requency|..#.4@3@|
|00005030| 33 32 31 40 63 75 6d 75 | 6c 61 74 69 76 65 20 66 |321@cumu|lative f|
|00005040| 72 65 71 75 65 6e 63 79 | 20 74 61 62 6c 65 73 03 |requency| tables.|
|00005050| 00 23 00 34 40 32 40 33 | 32 32 40 63 75 6d 75 6c |.#.4@2@3|22@cumul|
|00005060| 61 74 69 76 65 20 66 72 | 65 71 75 65 6e 63 79 20 |ative fr|equency |
|00005070| 74 61 62 6c 65 73 03 00 | 23 00 34 40 32 40 33 32 |tables..|#.4@2@32|
|00005080| 33 40 63 75 6d 75 6c 61 | 74 69 76 65 20 66 72 65 |3@cumula|tive fre|
|00005090| 71 75 65 6e 63 79 20 74 | 61 62 6c 65 73 03 00 23 |quency t|ables..#|
|000050a0| 00 34 40 33 40 34 34 31 | 40 63 75 6d 75 6c 61 74 |.4@3@441|@cumulat|
|000050b0| 69 76 65 20 66 72 65 71 | 75 65 6e 63 79 20 63 75 |ive freq|uency cu|
|000050c0| 72 76 65 73 03 00 23 00 | 34 40 32 40 34 34 32 40 |rves..#.|4@2@442@|
|000050d0| 63 75 6d 75 6c 61 74 69 | 76 65 20 66 72 65 71 75 |cumulati|ve frequ|
|000050e0| 65 6e 63 79 20 63 75 72 | 76 65 73 03 00 23 00 34 |ency cur|ves..#.4|
|000050f0| 40 32 40 34 34 33 40 63 | 75 6d 75 6c 61 74 69 76 |@2@443@c|umulativ|
|00005100| 65 20 66 72 65 71 75 65 | 6e 63 79 20 63 75 72 76 |e freque|ncy curv|
|00005110| 65 73 03 00 3a 00 34 40 | 33 40 34 34 34 40 69 6e |es..:.4@|3@444@in|
|00005120| 74 65 72 71 75 61 72 74 | 69 6c 65 20 72 61 6e 67 |terquart|ile rang|
|00005130| 65 20 6f 6e 20 63 75 6d | 75 6c 61 74 69 76 65 20 |e on cum|ulative |
|00005140| 66 72 65 71 75 65 6e 63 | 79 20 63 75 72 76 65 73 |frequenc|y curves|
|00005150| 03 00 3a 00 34 40 32 40 | 34 34 35 40 69 6e 74 65 |..:.4@2@|445@inte|
|00005160| 72 71 75 61 72 74 69 6c | 65 20 72 61 6e 67 65 20 |rquartil|e range |
|00005170| 6f 6e 20 63 75 6d 75 6c | 61 74 69 76 65 20 66 72 |on cumul|ative fr|
|00005180| 65 71 75 65 6e 63 79 20 | 63 75 72 76 65 73 03 00 |equency |curves..|
|00005190| 3a 00 34 40 32 40 34 34 | 36 40 69 6e 74 65 72 71 |:.4@2@44|6@interq|
|000051a0| 75 61 72 74 69 6c 65 20 | 72 61 6e 67 65 20 6f 6e |uartile |range on|
|000051b0| 20 63 75 6d 75 6c 61 74 | 69 76 65 20 66 72 65 71 | cumulat|ive freq|
|000051c0| 75 65 6e 63 79 20 63 75 | 72 76 65 73 03 00 12 00 |uency cu|rves....|
|000051d0| 33 40 31 40 38 34 31 40 | 68 69 73 74 6f 67 72 61 |3@1@841@|histogra|
|000051e0| 6d 73 03 00 1a 00 34 40 | 33 40 35 38 32 40 64 72 |ms....4@|3@582@dr|
|000051f0| 61 77 69 6e 67 20 68 69 | 73 74 6f 67 72 61 6d 73 |awing hi|stograms|
|00005200| 03 00 1a 00 34 40 32 40 | 35 38 33 40 64 72 61 77 |....4@2@|583@draw|
|00005210| 69 6e 67 20 68 69 73 74 | 6f 67 72 61 6d 73 03 00 |ing hist|ograms..|
|00005220| 1a 00 34 40 32 40 35 35 | 34 40 64 72 61 77 69 6e |..4@2@55|4@drawin|
|00005230| 67 20 68 69 73 74 6f 67 | 72 61 6d 73 03 00 19 00 |g histog|rams....|
|00005240| 34 40 33 40 35 38 34 40 | 66 72 65 71 75 65 6e 63 |4@3@584@|frequenc|
|00005250| 79 20 64 65 6e 73 69 74 | 79 03 00 19 00 34 40 32 |y densit|y....4@2|
|00005260| 40 35 38 36 40 66 72 65 | 71 75 65 6e 63 79 20 64 |@586@fre|quency d|
|00005270| 65 6e 73 69 74 79 03 00 | 19 00 34 40 32 40 35 38 |ensity..|..4@2@58|
|00005280| 35 40 66 72 65 71 75 65 | 6e 63 79 20 64 65 6e 73 |5@freque|ncy dens|
|00005290| 69 74 79 03 00 24 00 32 | 40 31 40 36 35 40 69 6e |ity..$.2|@1@65@in|
|000052a0| 74 65 72 70 72 65 74 61 | 74 69 6f 6e 20 26 26 20 |terpreta|tion && |
|000052b0| 75 73 65 20 6f 66 20 64 | 61 74 61 07 00 23 00 33 |use of d|ata..#.3|
|000052c0| 40 31 40 38 30 40 6d 65 | 61 73 75 72 65 73 20 6f |@1@80@me|asures o|
|000052d0| 66 20 63 65 6e 74 72 61 | 6c 20 74 65 6e 64 65 6e |f centra|l tenden|
|000052e0| 63 79 07 00 0c 00 34 40 | 33 40 35 38 37 40 6d 65 |cy....4@|3@587@me|
|000052f0| 61 6e 07 00 0c 00 34 40 | 32 40 35 38 38 40 6d 65 |an....4@|2@588@me|
|00005300| 61 6e 07 00 0c 00 34 40 | 32 40 35 38 39 40 6d 65 |an....4@|2@589@me|
|00005310| 61 6e 07 00 0c 00 34 40 | 33 40 35 39 30 40 6d 6f |an....4@|3@590@mo|
|00005320| 64 65 07 00 0c 00 34 40 | 32 40 35 39 31 40 6d 6f |de....4@|2@591@mo|
|00005330| 64 65 07 00 0c 00 34 40 | 32 40 35 39 32 40 6d 6f |de....4@|2@592@mo|
|00005340| 64 65 07 00 0e 00 34 40 | 33 40 35 39 33 40 6d 65 |de....4@|3@593@me|
|00005350| 64 69 61 6e 07 00 0e 00 | 34 40 32 40 35 39 34 40 |dian....|4@2@594@|
|00005360| 6d 65 64 69 61 6e 07 00 | 0e 00 34 40 32 40 35 39 |median..|..4@2@59|
|00005370| 35 40 6d 65 64 69 61 6e | 07 00 13 00 34 40 33 40 |5@median|....4@3@|
|00005380| 35 39 36 40 6d 6f 64 61 | 6c 20 63 6c 61 73 73 07 |596@moda|l class.|
|00005390| 00 13 00 34 40 32 40 35 | 39 37 40 6d 6f 64 61 6c |...4@2@5|97@modal|
|000053a0| 20 63 6c 61 73 73 07 00 | 13 00 34 40 32 40 35 39 | class..|..4@2@59|
|000053b0| 38 40 6d 6f 64 61 6c 20 | 63 6c 61 73 73 07 00 1c |8@modal |class...|
|000053c0| 00 34 40 33 40 35 39 39 | 40 6d 65 61 6e 20 6f 66 |.4@3@599|@mean of|
|000053d0| 20 67 72 6f 75 70 65 64 | 20 64 61 74 61 03 00 1c | grouped| data...|
|000053e0| 00 34 40 32 40 36 30 30 | 40 6d 65 61 6e 20 6f 66 |.4@2@600|@mean of|
|000053f0| 20 67 72 6f 75 70 65 64 | 20 64 61 74 61 03 00 1c | grouped| data...|
|00005400| 00 34 40 32 40 36 30 31 | 40 6d 65 61 6e 20 6f 66 |.4@2@601|@mean of|
|00005410| 20 67 72 6f 75 70 65 64 | 20 64 61 74 61 03 00 18 | grouped| data...|
|00005420| 00 33 40 31 40 38 31 40 | 66 69 6e 64 69 6e 67 20 |.3@1@81@|finding |
|00005430| 74 68 65 20 72 61 6e 67 | 65 07 00 19 00 34 40 33 |the rang|e....4@3|
|00005440| 40 36 30 32 40 66 69 6e | 64 69 6e 67 20 74 68 65 |@602@fin|ding the|
|00005450| 20 72 61 6e 67 65 07 00 | 19 00 34 40 32 40 36 30 | range..|..4@2@60|
|00005460| 33 40 66 69 6e 64 69 6e | 67 20 74 68 65 20 72 61 |3@findin|g the ra|
|00005470| 6e 67 65 07 00 19 00 34 | 40 32 40 36 30 34 40 66 |nge....4|@2@604@f|
|00005480| 69 6e 64 69 6e 67 20 74 | 68 65 20 72 61 6e 67 65 |inding t|he range|
|00005490| 07 00 2a 00 34 40 33 40 | 36 30 35 40 65 73 74 69 |..*.4@3@|605@esti|
|000054a0| 6d 61 74 69 6e 67 20 74 | 68 65 20 69 6e 74 65 72 |mating t|he inter|
|000054b0| 71 75 61 72 74 69 6c 65 | 20 72 61 6e 67 65 03 00 |quartile| range..|
|000054c0| 2a 00 34 40 32 40 36 30 | 36 40 65 73 74 69 6d 61 |*.4@2@60|6@estima|
|000054d0| 74 69 6e 67 20 74 68 65 | 20 69 6e 74 65 72 71 75 |ting the| interqu|
|000054e0| 61 72 74 69 6c 65 20 72 | 61 6e 67 65 03 00 2a 00 |artile r|ange..*.|
|000054f0| 34 40 32 40 36 30 37 40 | 65 73 74 69 6d 61 74 69 |4@2@607@|estimati|
|00005500| 6e 67 20 74 68 65 20 69 | 6e 74 65 72 71 75 61 72 |ng the i|nterquar|
|00005510| 74 69 6c 65 20 72 61 6e | 67 65 03 00 1e 00 33 40 |tile ran|ge....3@|
|00005520| 31 40 38 32 40 63 6f 6d | 70 61 72 69 6e 67 20 64 |1@82@com|paring d|
|00005530| 69 73 74 72 69 62 75 74 | 69 6f 6e 73 03 00 26 00 |istribut|ions..&.|
|00005540| 34 40 33 40 36 31 36 40 | 64 69 73 70 65 72 73 69 |4@3@616@|dispersi|
|00005550| 6f 6e 20 26 26 20 63 65 | 6e 74 72 61 6c 20 74 65 |on && ce|ntral te|
|00005560| 6e 64 65 6e 63 79 03 00 | 26 00 34 40 32 40 36 31 |ndency..|&.4@2@61|
|00005570| 37 40 64 69 73 70 65 72 | 73 69 6f 6e 20 26 26 20 |7@disper|sion && |
|00005580| 63 65 6e 74 72 61 6c 20 | 74 65 6e 64 65 6e 63 79 |central |tendency|
|00005590| 03 00 26 00 34 40 32 40 | 36 31 38 40 64 69 73 70 |..&.4@2@|618@disp|
|000055a0| 65 72 73 69 6f 6e 20 26 | 26 20 63 65 6e 74 72 61 |ersion &|& centra|
|000055b0| 6c 20 74 65 6e 64 65 6e | 63 79 03 00 1f 00 34 40 |l tenden|cy....4@|
|000055c0| 33 40 36 31 39 40 69 6e | 74 65 72 70 72 65 74 69 |3@619@in|terpreti|
|000055d0| 6e 67 20 68 69 73 74 6f | 67 72 61 6d 73 03 00 1f |ng histo|grams...|
|000055e0| 00 34 40 32 40 36 32 30 | 40 69 6e 74 65 72 70 72 |.4@2@620|@interpr|
|000055f0| 65 74 69 6e 67 20 68 69 | 73 74 6f 67 72 61 6d 73 |eting hi|stograms|
|00005600| 03 00 1f 00 34 40 32 40 | 36 32 31 40 69 6e 74 65 |....4@2@|621@inte|
|00005610| 72 70 72 65 74 69 6e 67 | 20 68 69 73 74 6f 67 72 |rpreting| histogr|
|00005620| 61 6d 73 03 00 19 00 33 | 40 31 40 38 33 40 73 74 |ams....3|@1@83@st|
|00005630| 61 6e 64 61 72 64 20 64 | 65 76 69 61 74 69 6f 6e |andard d|eviation|
|00005640| 03 00 1a 00 34 40 33 40 | 36 32 32 40 73 74 61 6e |....4@3@|622@stan|
|00005650| 64 61 72 64 20 64 65 76 | 69 61 74 69 6f 6e 03 00 |dard dev|iation..|
|00005660| 1a 00 34 40 32 40 36 32 | 33 40 73 74 61 6e 64 61 |..4@2@62|3@standa|
|00005670| 72 64 20 64 65 76 69 61 | 74 69 6f 6e 03 00 1a 00 |rd devia|tion....|
|00005680| 34 40 32 40 36 32 34 40 | 73 74 61 6e 64 61 72 64 |4@2@624@|standard|
|00005690| 20 64 65 76 69 61 74 69 | 6f 6e 03 00 35 00 34 40 | deviati|on..5.4@|
|000056a0| 33 40 36 32 35 40 73 74 | 61 6e 64 61 72 64 20 64 |3@625@st|andard d|
|000056b0| 65 76 69 61 74 69 6f 6e | 20 6f 66 20 66 72 65 71 |eviation| of freq|
|000056c0| 75 65 6e 63 79 20 64 69 | 73 74 72 69 62 75 74 69 |uency di|stributi|
|000056d0| 6f 6e 73 03 00 35 00 34 | 40 32 40 36 32 36 40 73 |ons..5.4|@2@626@s|
|000056e0| 74 61 6e 64 61 72 64 20 | 64 65 76 69 61 74 69 6f |tandard |deviatio|
|000056f0| 6e 20 6f 66 20 66 72 65 | 71 75 65 6e 63 79 20 64 |n of fre|quency d|
|00005700| 69 73 74 72 69 62 75 74 | 69 6f 6e 73 03 00 35 00 |istribut|ions..5.|
|00005710| 34 40 32 40 36 32 37 40 | 73 74 61 6e 64 61 72 64 |4@2@627@|standard|
|00005720| 20 64 65 76 69 61 74 69 | 6f 6e 20 6f 66 20 66 72 | deviati|on of fr|
|00005730| 65 71 75 65 6e 63 79 20 | 64 69 73 74 72 69 62 75 |equency |distribu|
|00005740| 74 69 6f 6e 73 03 00 12 | 00 32 40 31 40 36 36 40 |tions...|.2@1@66@|
|00005750| 70 72 6f 62 61 62 69 6c | 69 74 79 07 00 2d 00 33 |probabil|ity..-.3|
|00005760| 40 31 40 37 34 40 74 68 | 65 6f 72 65 74 69 63 61 |@1@74@th|eoretica|
|00005770| 6c 20 63 61 6c 63 75 6c | 61 74 69 6f 6e 20 6f 66 |l calcul|ation of|
|00005780| 20 70 72 6f 62 61 62 69 | 6c 69 74 79 07 00 24 00 | probabi|lity..$.|
|00005790| 34 40 33 40 36 34 39 40 | 70 72 6f 62 61 62 69 6c |4@3@649@|probabil|
|000057a0| 69 74 79 20 6f 66 20 73 | 69 6e 67 6c 65 20 65 76 |ity of s|ingle ev|
|000057b0| 65 6e 74 73 07 00 24 00 | 34 40 32 40 36 35 30 40 |ents..$.|4@2@650@|
|000057c0| 70 72 6f 62 61 62 69 6c | 69 74 79 20 6f 66 20 73 |probabil|ity of s|
|000057d0| 69 6e 67 6c 65 20 65 76 | 65 6e 74 73 07 00 24 00 |ingle ev|ents..$.|
|000057e0| 34 40 32 40 36 35 31 40 | 70 72 6f 62 61 62 69 6c |4@2@651@|probabil|
|000057f0| 69 74 79 20 6f 66 20 73 | 69 6e 67 6c 65 20 65 76 |ity of s|ingle ev|
|00005800| 65 6e 74 73 07 00 29 00 | 34 40 33 40 36 35 32 40 |ents..).|4@3@652@|
|00005810| 64 65 73 63 72 69 62 69 | 6e 67 20 26 26 20 77 72 |describi|ng && wr|
|00005820| 69 74 69 6e 67 20 70 72 | 6f 62 61 62 69 6c 69 74 |iting pr|obabilit|
|00005830| 79 07 00 29 00 34 40 32 | 40 36 35 33 40 64 65 73 |y..).4@2|@653@des|
|00005840| 63 72 69 62 69 6e 67 20 | 26 26 20 77 72 69 74 69 |cribing |&& writi|
|00005850| 6e 67 20 70 72 6f 62 61 | 62 69 6c 69 74 79 07 00 |ng proba|bility..|
|00005860| 29 00 34 40 32 40 36 35 | 34 40 64 65 73 63 72 69 |).4@2@65|4@descri|
|00005870| 62 69 6e 67 20 26 26 20 | 77 72 69 74 69 6e 67 20 |bing && |writing |
|00005880| 70 72 6f 62 61 62 69 6c | 69 74 79 07 00 31 00 34 |probabil|ity..1.4|
|00005890| 40 33 40 36 35 35 40 63 | 6f 6d 70 6c 65 6d 65 6e |@3@655@c|omplemen|
|000058a0| 74 61 72 79 20 26 26 20 | 6d 75 74 61 6c 6c 79 20 |tary && |mutally |
|000058b0| 65 78 63 6c 75 73 69 76 | 65 20 65 76 65 6e 74 73 |exclusiv|e events|
|000058c0| 03 00 31 00 34 40 32 40 | 36 35 36 40 63 6f 6d 70 |..1.4@2@|656@comp|
|000058d0| 6c 65 6d 65 6e 74 61 72 | 79 20 26 26 20 6d 75 74 |lementar|y && mut|
|000058e0| 61 6c 6c 79 20 65 78 63 | 6c 75 73 69 76 65 20 65 |ally exc|lusive e|
|000058f0| 76 65 6e 74 73 03 00 31 | 00 34 40 32 40 36 35 37 |vents..1|.4@2@657|
|00005900| 40 63 6f 6d 70 6c 65 6d | 65 6e 74 61 72 79 20 26 |@complem|entary &|
|00005910| 26 20 6d 75 74 61 6c 6c | 79 20 65 78 63 6c 75 73 |& mutall|y exclus|
|00005920| 69 76 65 20 65 76 65 6e | 74 73 03 00 2e 00 33 40 |ive even|ts....3@|
|00005930| 31 40 37 35 40 65 78 70 | 65 72 69 6d 65 6e 74 61 |1@75@exp|erimenta|
|00005940| 6c 20 63 61 6c 63 75 6c | 61 74 69 6f 6e 20 6f 66 |l calcul|ation of|
|00005950| 20 70 72 6f 62 61 62 69 | 6c 69 74 79 07 00 1a 00 | probabi|lity....|
|00005960| 34 40 33 40 36 37 36 40 | 72 65 6c 61 74 69 76 65 |4@3@676@|relative|
|00005970| 20 66 72 65 71 75 65 6e | 63 79 07 00 1a 00 34 40 | frequen|cy....4@|
|00005980| 32 40 36 37 37 40 72 65 | 6c 61 74 69 76 65 20 66 |2@677@re|lative f|
|00005990| 72 65 71 75 65 6e 63 79 | 07 00 1a 00 34 40 32 40 |requency|....4@2@|
|000059a0| 36 37 38 40 72 65 6c 61 | 74 69 76 65 20 66 72 65 |678@rela|tive fre|
|000059b0| 71 75 65 6e 63 79 07 00 | 43 00 34 40 33 40 36 37 |quency..|C.4@3@67|
|000059c0| 39 40 63 6f 6d 70 61 72 | 69 6e 67 20 74 68 65 6f |9@compar|ing theo|
|000059d0| 72 65 74 69 63 61 6c 20 | 70 72 6f 62 61 62 69 6c |retical |probabil|
|000059e0| 69 74 79 20 77 69 74 68 | 20 65 78 70 65 72 69 6d |ity with| experim|
|000059f0| 65 6e 74 61 6c 20 72 65 | 73 75 6c 74 73 07 00 43 |ental re|sults..C|
|00005a00| 00 34 40 32 40 36 38 30 | 40 63 6f 6d 70 61 72 69 |.4@2@680|@compari|
|00005a10| 6e 67 20 74 68 65 6f 72 | 65 74 69 63 61 6c 20 70 |ng theor|etical p|
|00005a20| 72 6f 62 61 62 69 6c 69 | 74 79 20 77 69 74 68 20 |robabili|ty with |
|00005a30| 65 78 70 65 72 69 6d 65 | 6e 74 61 6c 20 72 65 73 |experime|ntal res|
|00005a40| 75 6c 74 73 07 00 43 00 | 34 40 32 40 36 38 31 40 |ults..C.|4@2@681@|
|00005a50| 63 6f 6d 70 61 72 69 6e | 67 20 74 68 65 6f 72 65 |comparin|g theore|
|00005a60| 74 69 63 61 6c 20 70 72 | 6f 62 61 62 69 6c 69 74 |tical pr|obabilit|
|00005a70| 79 20 77 69 74 68 20 65 | 78 70 65 72 69 6d 65 6e |y with e|xperimen|
|00005a80| 74 61 6c 20 72 65 73 75 | 6c 74 73 07 00 2f 00 34 |tal resu|lts../.4|
|00005a90| 40 33 40 36 38 32 40 74 | 68 65 6f 72 65 74 69 63 |@3@682@t|heoretic|
|00005aa0| 61 6c 20 6f 72 20 65 78 | 70 65 72 69 6d 65 6e 74 |al or ex|periment|
|00005ab0| 61 6c 20 70 72 6f 62 61 | 62 69 6c 69 74 79 07 00 |al proba|bility..|
|00005ac0| 2f 00 34 40 32 40 36 38 | 33 40 74 68 65 6f 72 65 |/.4@2@68|3@theore|
|00005ad0| 74 69 63 61 6c 20 6f 72 | 20 65 78 70 65 72 69 6d |tical or| experim|
|00005ae0| 65 6e 74 61 6c 20 70 72 | 6f 62 61 62 69 6c 69 74 |ental pr|obabilit|
|00005af0| 79 07 00 2f 00 34 40 32 | 40 36 38 34 40 74 68 65 |y../.4@2|@684@the|
|00005b00| 6f 72 65 74 69 63 61 6c | 20 6f 72 20 65 78 70 65 |oretical| or expe|
|00005b10| 72 69 6d 65 6e 74 61 6c | 20 70 72 6f 62 61 62 69 |rimental| probabi|
|00005b20| 6c 69 74 79 07 00 18 00 | 34 40 33 40 36 38 35 40 |lity....|4@3@685@|
|00005b30| 63 6f 6d 62 69 6e 69 6e | 67 20 65 76 65 6e 74 73 |combinin|g events|
|00005b40| 07 00 18 00 34 40 32 40 | 36 38 36 40 63 6f 6d 62 |....4@2@|686@comb|
|00005b50| 69 6e 69 6e 67 20 65 76 | 65 6e 74 73 07 00 18 00 |ining ev|ents....|
|00005b60| 34 40 32 40 36 38 37 40 | 63 6f 6d 62 69 6e 69 6e |4@2@687@|combinin|
|00005b70| 67 20 65 76 65 6e 74 73 | 07 00 2b 00 33 40 31 40 |g events|..+.3@1@|
|00005b80| 37 36 40 61 64 64 69 6e | 67 20 61 6e 64 20 6d 75 |76@addin|g and mu|
|00005b90| 6c 74 69 70 6c 79 69 6e | 67 20 70 72 6f 62 61 62 |ltiplyin|g probab|
|00005ba0| 69 6c 69 74 69 65 73 03 | 00 1c 00 34 40 33 40 36 |ilities.|...4@3@6|
|00005bb0| 38 38 40 61 64 64 69 6e | 67 20 70 72 6f 62 61 62 |88@addin|g probab|
|00005bc0| 69 6c 69 74 69 65 73 03 | 00 1c 00 34 40 32 40 36 |ilities.|...4@2@6|
|00005bd0| 38 39 40 61 64 64 69 6e | 67 20 70 72 6f 62 61 62 |89@addin|g probab|
|00005be0| 69 6c 69 74 69 65 73 03 | 00 1c 00 34 40 32 40 36 |ilities.|...4@2@6|
|00005bf0| 39 30 40 61 64 64 69 6e | 67 20 70 72 6f 62 61 62 |90@addin|g probab|
|00005c00| 69 6c 69 74 69 65 73 03 | 00 21 00 34 40 33 40 36 |ilities.|.!.4@3@6|
|00005c10| 39 31 40 6d 75 6c 74 69 | 70 6c 79 69 6e 67 20 70 |91@multi|plying p|
|00005c20| 72 6f 62 61 62 69 6c 69 | 74 69 65 73 03 00 21 00 |robabili|ties..!.|
|00005c30| 34 40 32 40 36 39 32 40 | 6d 75 6c 74 69 70 6c 79 |4@2@692@|multiply|
|00005c40| 69 6e 67 20 70 72 6f 62 | 61 62 69 6c 69 74 69 65 |ing prob|abilitie|
|00005c50| 73 03 00 21 00 34 40 32 | 40 36 39 33 40 6d 75 6c |s..!.4@2|@693@mul|
|00005c60| 74 69 70 6c 79 69 6e 67 | 20 70 72 6f 62 61 62 69 |tiplying| probabi|
|00005c70| 6c 69 74 69 65 73 03 00 | 1e 00 33 40 31 40 37 37 |lities..|..3@1@77|
|00005c80| 40 63 6f 6e 64 69 74 69 | 6f 6e 61 6c 20 70 72 6f |@conditi|onal pro|
|00005c90| 62 61 62 69 6c 69 74 79 | 03 00 1f 00 34 40 33 40 |bability|....4@3@|
|00005ca0| 36 39 34 40 63 6f 6e 64 | 69 74 69 6f 6e 61 6c 20 |694@cond|itional |
|00005cb0| 70 72 6f 62 61 62 69 6c | 69 74 79 03 00 1f 00 34 |probabil|ity....4|
|00005cc0| 40 32 40 36 39 35 40 63 | 6f 6e 64 69 74 69 6f 6e |@2@695@c|ondition|
|00005cd0| 61 6c 20 70 72 6f 62 61 | 62 69 6c 69 74 79 03 00 |al proba|bility..|
|00005ce0| 1f 00 34 40 32 40 36 39 | 36 40 63 6f 6e 64 69 74 |..4@2@69|6@condit|
|00005cf0| 69 6f 6e 61 6c 20 70 72 | 6f 62 61 62 69 6c 69 74 |ional pr|obabilit|
|00005d00| 79 03 00 0c 00 31 40 31 | 40 31 32 37 40 68 65 6c |y....1@1|@127@hel|
|00005d10| 70 00 00 12 00 32 40 31 | 40 31 32 38 40 63 61 6c |p....2@1|@128@cal|
|00005d20| 63 75 6c 61 74 6f 72 00 | 00 0f 00 33 40 34 40 31 |culator.|...3@4@1|
|00005d30| 32 39 40 64 69 73 70 6c | 61 79 00 00 0c 00 33 40 |29@displ|ay....3@|
|00005d40| 34 40 31 33 34 40 70 6c | 75 73 00 00 11 00 33 40 |4@134@pl|us....3@|
|00005d50| 34 40 31 34 30 40 73 75 | 62 73 74 72 61 63 74 00 |4@140@su|bstract.|
|00005d60| 00 10 00 33 40 34 40 31 | 34 31 40 6d 75 6c 74 69 |...3@4@1|41@multi|
|00005d70| 70 6c 79 00 00 0d 00 33 | 40 34 40 31 34 32 40 65 |ply....3|@4@142@e|
|00005d80| 71 75 61 6c 00 00 0d 00 | 32 40 31 40 31 33 30 40 |qual....|2@1@130@|
|00005d90| 75 6e 69 74 73 00 00 0c | 00 33 40 34 40 31 33 32 |units...|.3@4@132|
|00005da0| 40 46 6f 72 6d 00 00 0e | 00 33 40 34 40 31 36 39 |@Form...|.3@4@169|
|00005db0| 40 4c 65 6e 67 74 68 00 | 00 0a 00 33 40 34 40 31 |@Length.|...3@4@1|
|00005dc0| 33 33 40 6d 6d 00 00 0a | 00 33 40 34 40 31 33 37 |33@mm...|.3@4@137|
|00005dd0| 40 63 6d 00 00 09 00 33 | 40 34 40 31 33 38 40 6d |@cm....3|@4@138@m|
|00005de0| 00 00 0a 00 33 40 34 40 | 31 33 39 40 6b 6d 00 00 |....3@4@|139@km..|
|00005df0| 0c 00 33 40 34 40 31 33 | 31 40 41 72 65 61 00 00 |..3@4@13|1@Area..|
|00005e00| 0b 00 33 40 34 40 31 37 | 30 40 6d 6d 88 00 00 0b |..3@4@17|0@mm....|
|00005e10| 00 33 40 34 40 31 37 31 | 40 63 6d 88 00 00 0a 00 |.3@4@171|@cm.....|
|00005e20| 33 40 34 40 31 37 32 40 | 6d 88 00 00 0b 00 33 40 |3@4@172@|m.....3@|
|00005e30| 34 40 31 37 33 40 6b 6d | 88 00 00 0e 00 33 40 34 |4@173@km|.....3@4|
|00005e40| 40 31 37 34 40 56 6f 6c | 75 6d 65 00 00 0b 00 33 |@174@Vol|ume....3|
|00005e50| 40 34 40 31 37 35 40 6d | 6d 89 00 00 0b 00 33 40 |@4@175@m|m.....3@|
|00005e60| 34 40 31 37 36 40 63 6d | 89 00 00 0a 00 33 40 34 |4@176@cm|.....3@4|
|00005e70| 40 31 37 37 40 6d 89 00 | 00 0a 00 33 40 34 40 31 |@177@m..|...3@4@1|
|00005e80| 37 38 40 6d 6c 00 00 0a | 00 33 40 34 40 31 37 39 |78@ml...|.3@4@179|
|00005e90| 40 63 6c 00 00 0c 00 33 | 40 34 40 31 38 30 40 6c |@cl....3|@4@180@l|
|00005ea0| 74 72 73 00 00 0c 00 33 | 40 34 40 31 38 31 40 4d |trs....3|@4@181@M|
|00005eb0| 61 73 73 00 00 0a 00 33 | 40 34 40 31 38 32 40 6d |ass....3|@4@182@m|
|00005ec0| 67 00 00 09 00 33 40 34 | 40 31 38 33 40 67 00 00 |g....3@4|@183@g..|
|00005ed0| 0a 00 33 40 34 40 31 38 | 34 40 6b 67 00 00 09 00 |..3@4@18|4@kg....|
|00005ee0| 33 40 34 40 31 38 35 40 | 74 00 00 0c 00 33 40 34 |3@4@185@|t....3@4|
|00005ef0| 40 31 38 36 40 54 69 6d | 65 00 00 0b 00 33 40 34 |@186@Tim|e....3@4|
|00005f00| 40 31 38 37 40 73 65 63 | 00 00 0b 00 33 40 34 40 |@187@sec|....3@4@|
|00005f10| 31 38 38 40 6d 69 6e 00 | 00 0b 00 33 40 34 40 31 |188@min.|...3@4@1|
|00005f20| 38 39 40 68 72 73 00 00 | 0c 00 33 40 34 40 31 39 |89@hrs..|..3@4@19|
|00005f30| 30 40 64 61 79 73 00 00 | 0b 00 33 40 34 40 31 39 |0@days..|..3@4@19|
|00005f40| 31 40 77 6b 73 00 00 0c | 00 33 40 34 40 31 39 32 |1@wks...|.3@4@192|
|00005f50| 40 6d 74 68 73 00 00 0b | 00 33 40 34 40 31 39 33 |@mths...|.3@4@193|
|00005f60| 40 79 72 73 00 00 0d 00 | 33 40 34 40 31 39 34 40 |@yrs....|3@4@194@|
|00005f70| 53 70 65 65 64 00 00 0b | 00 33 40 34 40 31 39 35 |Speed...|.3@4@195|
|00005f80| 40 6d 2f 73 00 00 0c 00 | 33 40 34 40 31 39 36 40 |@m/s....|3@4@196@|
|00005f90| 6b 6d 2f 68 00 00 0c 00 | 33 40 34 40 31 39 37 40 |km/h....|3@4@197@|
|00005fa0| 6d 2f 73 88 00 00 10 00 | 33 40 34 40 31 39 38 40 |m/s.....|3@4@198@|
|00005fb0| 43 75 72 72 65 6e 63 79 | 00 00 09 00 33 40 34 40 |Currency|....3@4@|
|00005fc0| 31 39 39 40 a3 00 00 09 | 00 33 40 34 40 32 30 30 |199@....|.3@4@200|
|00005fd0| 40 70 00 00 0f 00 32 40 | 31 40 32 37 37 40 6c 70 |@p....2@|1@277@lp|
|00005fe0| 68 65 6c 70 73 00 00 0c | 00 33 40 34 40 37 33 39 |helps...|.3@4@739|
|00005ff0| 40 6d 6f 64 65 00 00 0e | 00 33 40 34 40 37 34 30 |@mode...|.3@4@740|
|00006000| 40 6d 65 64 69 61 6e 00 | 00 13 00 33 40 34 40 37 |@median.|...3@4@7|
|00006010| 33 37 40 6d 6f 64 61 6c | 20 63 6c 61 73 73 00 00 |37@modal| class..|
|00006020| 0c 00 33 40 34 40 37 33 | 38 40 6d 65 61 6e 00 00 |..3@4@73|8@mean..|
|00006030| 16 00 33 40 34 40 37 33 | 36 40 75 70 70 65 72 20 |..3@4@73|6@upper |
|00006040| 71 75 61 72 74 69 6c 65 | 00 00 17 00 33 40 34 40 |quartile|....3@4@|
|00006050| 37 33 35 40 73 65 63 6f | 6e 64 20 71 75 61 72 74 |735@seco|nd quart|
|00006060| 69 6c 65 00 00 1c 00 33 | 40 34 40 37 33 34 40 63 |ile....3|@4@734@c|
|00006070| 75 6d 75 6c 61 74 69 76 | 65 20 66 72 65 71 75 65 |umulativ|e freque|
|00006080| 6e 63 79 00 00 13 00 33 | 40 34 40 37 33 33 40 63 |ncy....3|@4@733@c|
|00006090| 6f 72 72 65 6c 61 74 69 | 6f 6e 00 00 19 00 33 40 |orrelati|on....3@|
|000060a0| 34 40 37 33 32 40 66 72 | 65 71 75 65 6e 63 79 20 |4@732@fr|equency |
|000060b0| 64 65 6e 73 69 74 79 00 | 00 14 00 33 40 34 40 37 |density.|...3@4@7|
|000060c0| 33 31 40 67 72 6f 75 70 | 65 64 20 64 61 74 61 00 |31@group|ed data.|
|000060d0| 00 1e 00 33 40 34 40 37 | 33 30 40 66 72 65 71 75 |...3@4@7|30@frequ|
|000060e0| 65 6e 63 79 20 64 69 73 | 74 72 69 62 75 74 69 6f |ency dis|tributio|
|000060f0| 6e 00 00 10 00 33 40 34 | 40 37 32 39 40 64 69 73 |n....3@4|@729@dis|
|00006100| 63 72 65 74 65 00 00 20 | 00 33 40 34 40 37 32 38 |crete.. |.3@4@728|
|00006110| 40 63 68 72 6f 6e 6f 6c | 6f 67 69 63 61 6c 20 62 |@chronol|ogical b|
|00006120| 61 72 20 63 68 61 72 74 | 73 00 00 16 00 33 40 34 |ar chart|s....3@4|
|00006130| 40 37 32 37 40 6c 6f 77 | 65 72 20 71 75 61 72 74 |@727@low|er quart|
|00006140| 69 6c 65 00 00 1f 00 33 | 40 34 40 35 35 36 40 66 |ile....3|@4@556@f|
|00006150| 72 65 71 75 65 6e 63 79 | 20 64 69 73 74 72 69 62 |requency| distrib|
|00006160| 75 74 69 6f 6e 73 00 00 | 0f 00 33 40 34 40 35 30 |utions..|..3@4@50|
|00006170| 30 40 66 61 63 74 6f 72 | 35 00 00 0f 00 33 40 34 |0@factor|5....3@4|
|00006180| 40 35 30 31 40 66 61 63 | 74 6f 72 34 00 00 0d 00 |@501@fac|tor4....|
|00006190| 33 40 34 40 32 37 36 40 | 73 69 64 65 73 00 00 10 |3@4@276@|sides...|
|000061a0| 00 33 40 34 40 38 31 36 | 40 41 34 30 35 30 32 46 |.3@4@816|@A40502F|
|000061b0| 42 00 00 10 00 33 40 34 | 40 38 31 37 40 41 34 30 |B....3@4|@817@A40|
|000061c0| 35 30 32 45 42 00 00 10 | 00 33 40 34 40 38 31 38 |502EB...|.3@4@818|
|000061d0| 40 41 34 30 35 30 32 43 | 42 00 00 0f 00 33 40 34 |@A40502C|B....3@4|
|000061e0| 40 38 31 39 40 41 34 30 | 35 30 31 42 00 00 0f 00 |@819@A40|501B....|
|000061f0| 33 40 34 40 38 32 31 40 | 41 34 30 35 30 31 44 00 |3@4@821@|A40501D.|
|00006200| 00 0f 00 33 40 34 40 38 | 32 32 40 41 34 30 35 30 |...3@4@8|22@A4050|
|00006210| 31 45 00 00 10 00 33 40 | 34 40 38 32 33 40 41 33 |1E....3@|4@823@A3|
|00006220| 30 33 30 37 46 42 00 00 | 10 00 33 40 34 40 38 32 |0307FB..|..3@4@82|
|00006230| 34 40 41 33 30 33 30 37 | 45 42 00 00 10 00 33 40 |4@A30307|EB....3@|
|00006240| 34 40 38 32 35 40 41 33 | 30 33 30 37 44 42 00 00 |4@825@A3|0307DB..|
|00006250| 10 00 33 40 34 40 38 32 | 36 40 41 33 30 33 30 37 |..3@4@82|6@A30307|
|00006260| 43 42 00 00 10 00 33 40 | 34 40 38 32 37 40 41 33 |CB....3@|4@827@A3|
|00006270| 30 33 30 37 42 42 00 00 | 10 00 33 40 34 40 38 32 |0307BB..|..3@4@82|
|00006280| 38 40 41 33 30 33 30 34 | 45 42 00 00 10 00 33 40 |8@A30304|EB....3@|
|00006290| 34 40 38 32 39 40 41 33 | 30 33 30 34 44 42 00 00 |4@829@A3|0304DB..|
|000062a0| 10 00 33 40 34 40 38 33 | 30 40 41 33 30 33 30 34 |..3@4@83|0@A30304|
|000062b0| 43 42 00 00 10 00 33 40 | 34 40 38 33 31 40 41 33 |CB....3@|4@831@A3|
|000062c0| 30 33 30 34 41 42 00 00 | 10 00 33 40 34 40 38 33 |0304AB..|..3@4@83|
|000062d0| 32 40 41 33 30 33 30 33 | 43 42 00 00 10 00 33 40 |2@A30303|CB....3@|
|000062e0| 34 40 38 33 33 40 41 33 | 30 33 30 33 42 42 00 00 |4@833@A3|0303BB..|
|000062f0| 10 00 33 40 34 40 38 33 | 34 40 41 33 30 33 30 33 |..3@4@83|4@A30303|
|00006300| 41 42 00 00 10 00 33 40 | 34 40 38 33 35 40 41 33 |AB....3@|4@835@A3|
|00006310| 30 33 30 32 45 42 00 00 | 0e 00 33 40 34 40 38 34 |0302EB..|..3@4@84|
|00006320| 33 40 53 71 75 61 72 65 | 00 00 11 00 33 40 34 40 |3@Square|....3@4@|
|00006330| 38 34 34 40 52 65 63 74 | 61 6e 67 6c 65 00 00 0f |844@Rect|angle...|
|00006340| 00 33 40 34 40 38 34 35 | 40 52 68 6f 6d 62 75 73 |.3@4@845|@Rhombus|
|00006350| 00 00 15 00 33 40 34 40 | 38 34 36 40 50 61 72 61 |....3@4@|846@Para|
|00006360| 6c 6c 65 6c 6f 67 72 61 | 6d 00 00 11 00 33 40 34 |llelogra|m....3@4|
|00006370| 40 38 34 37 40 54 72 61 | 70 65 7a 69 75 6d 00 00 |@847@Tra|pezium..|
|00006380| 10 00 33 40 34 40 38 34 | 38 40 54 72 69 61 6e 67 |..3@4@84|8@Triang|
|00006390| 6c 65 00 00 15 00 33 40 | 34 40 38 34 39 40 43 75 |le....3@|4@849@Cu|
|000063a0| 62 69 63 45 71 75 61 74 | 69 6f 6e 00 00 |bicEquat|ion.. |
+--------+-------------------------+-------------------------+--------+--------+