home *** CD-ROM | disk | FTP | other *** search
- H@seeAlso 2difference method - single step
- @seeAlso 2difference method - multiple step
- @seeAlso 2difference method - multiplication
- @seeAlso 2arithmetic progression
- @seeAlso 2geometric progression
-
-
- @animate FibRaiseLArm
-
-
- @atGraphic 5,5
- @Picture algebra\a010101.bmp
-
-
-
- @PlaySoundFile \a1010101.wav
-
-
-
- @At 0,5
- #<number sequences#
-
-
-
- @definition
- @at 60,23
- A set of numbers linked by a common
- @At 10,
- rule is known as a number sequence or pattern.
-
-
-
-
- @prompt
- @At 10,55
- @keyPoint 9999,introduction
-
-
- @animate FibLowerLArm
-
- A number sequence can also be called a
- #bprogression#. Each number in the sequence
- is called a #Bterm#.
-
- @PlaySoundFile \a1010102.wav
- @PlaySoundFile \a1010103.wav
-
- @Wait 0.5
- @at ,+8
- 1st term 2nd term 3rd term 4th term 5th term . . .
-
-
-
- @animate FibRaiseRArm,FibWaveRArm,FibWaveRArm,FibWaveRArm,FibLowerRArm
-
-
-
- @Wait 0.25
- 3, ;
- @Wait 0.25
- 6, ;
- @Wait 0.25
- 9, ;
- @Wait 0.25
- 12, ;
- @Wait 0.25
- 15 . . .
-
-
- @Wait 0.5
-
-
-
-
-
- @at 10,+8
- Each term is linked to the next one in the
- sequence by a rule.
-
- For example in the above sequence the #brule#
- could be :
-
-
- @Wait 0.5
- @at ,+8
- #bAdd 3 to the last term to find the next#
- #Bterm#.
-
-
-
-
-
- @prompt
- @keyPoint 9999,arithmetic progression
- @animate FibSwordOut,FibWaveSword,FibWaveSword,FibWaveSword,FibSwordIn
-
-
- 3, ;
- @Wait 0.25
- 6, ;
- @Wait 0.25
- 9, ;
- @Wait 0.25
- 12, ;
- @Wait 0.25
- 15, ;
- @Wait 0.25
- 18, ;
- @Wait 0.25
- 21 . . .
-
-
- @Wait 0.5
- @at 10,+8
- #bRule : Add 3 to the last term to find the#
- #bnext term.#
-
-
- @Wait 0.5
- @at ,+8
- The simplest type of sequence where the next
- term is found by adding a constant value to the
- last term is known as an #barithmetic#
- #Bprogression#.
-
-
- @Wait 0.5
-
-
- @PlaySoundFile \a1010104.wav
-
-
- @at ,+8
- This constant value is called the #bcommon#
- #bdifference#.
-
-
- @Wait 0.5
- @at ,+8
- In this case the common difference = #B3#.
-
-
-
-
-
-
-
- @prompt
- @keyPoint 9999,multiplying rules
-
- @PlaySoundFile \a1010105.wav
-
-
- @animate FibRaiseLArm,FibLowerLArm
-
- 2, ;
- @Wait 0.25
- 4, ;
- @Wait 0.25
- 8, ;
- @Wait 0.25
- 16, ;
- @Wait 0.25
- 32, ;
- @Wait 0.25
- 64, ;
- @Wait 0.25
- 128
-
- @Wait 0.5
-
-
-
-
- @animate FibRaiseRArm,FibWaveRArm,FibLowerRArm
-
-
- @at 10,+8
- Can you think what the rule might be here?
-
- @animate FibRaiseRArm,FibWaveRArm,FibWaveRArm,FibWaveRArm,FibLowerRArm
-
- @at ,+8
- @Wait 3
-
- How about :
- @at ,+8
-
- @Wait 0.5
- #bThe next term is found by multiplying#
- #bthe last term by 2.#
-
- @Wait 0.5
-
-
- @at ,+8
- A number sequence where the next term is
- found by multiplying or dividing the last term by a
- number is called a #bgeometric progression#.
-
- @Wait 0.5
-
- @PlaySoundFile \a1010106.wav
-
-
-
- @at ,+8
- The constant number used to multiply each term
- is called the #bcommon ratio#.
-
-
-
- @prompt
- @keyPoint 9999,summary
- #bSummary#
- @Wait 0.75
- @At ,+3
- * #^A set of numbers linked by a #brule# is known
- #tas ;
- @At -1,
- a ;
- @At -1,
- #bnumber sequence# ;
- @At -1,
- or ;
- @At -1,
- #Bprogression#.
- @at 10,+3
- @wait 0.75
-
- * #tEach number in the sequence is known as
- #ta #bterm#
- @at ,+3
- @Wait 0.75
-
- * #tThe next term in the sequence can always
- #tbe found by applying the rule ;
- @At -1,
- to ;
- @At -1,
- the ;
- @At -1,
- last ;
- @At -1,
- term
- @at 10,+3
- @Wait 0.75
-
- *#tIf the rule contains only addition or
- #Tsubtraction the sequence is called an
- #T#barithmetic# #bprogression#
- @at ,+3
- @Wait 0.75
-
- *#tIf the rule contains multiplication or division
- #Tthe sequence is called a #bgeometric#
- #T#Bprogression#.
-
-
-
-
- '@at 5,235
- 'See also:
- '#j4difference method - single step#
- '#j4difference method - multiple step#
- '#j4difference method - multiplication#
- '#j4arithmetic progression#
- '#j4geometric progression#
- fference method - multiplication#
- '#j4arithmetic progression#
- '#j4geometric progression#
-