home *** CD-ROM | disk | FTP | other *** search
- // gmMatrix3.cc - 3x3 element matrix class
- //
- // libgm++: Graphics Math Library
- // Ferdi Scheepers and Stephen F May
- // 15 June 1994
-
- #include "gmMat3.h"
- #include "gmVec2.h"
- #include "gmVec3.h"
-
- // private function: RCD
- // - dot product of row i of matrix A and row j of matrix B
-
- inline double RCD(const gmMatrix3& A, const gmMatrix3& B, int i, int j)
- {
- return A[i][0] * B[0][j] + A[i][1] * B[1][j] + A[i][2] * B[2][j];
- }
-
- // private function: MINOR
- // - MINOR of M[r][c]; r in {0,1,2}-{r0,r1}; c in {0,1,2}-{c0,c1}
-
- inline double MINOR(const gmMatrix3& M, int r0, int r1, int c0, int c1)
- {
- return M[r0][c0] * M[r1][c1] - M[r1][c0] * M[r0][c1];
- }
-
- // CONSTRUCTORS
-
- gmMatrix3::gmMatrix3()
- {
- assign(0,0,0, 0,0,0, 0,0,0);
- }
-
- gmMatrix3::gmMatrix3(const gmMatrix3& M)
- {
- assign(M[0][0], M[0][1], M[0][2],
- M[1][0], M[1][1], M[1][2],
- M[2][0], M[2][1], M[2][2]);
- }
-
- gmMatrix3::gmMatrix3(double a00, double a01, double a02,
- double a10, double a11, double a12,
- double a20, double a21, double a22)
- {
- assign(a00, a01, a02,
- a10, a11, a12,
- a20, a21, a22);
- }
-
- // ASSIGNMENT
-
- gmMatrix3& gmMatrix3::assign(double a00, double a01, double a02,
- double a10, double a11, double a12,
- double a20, double a21, double a22)
- {
- m_[0][0] = a00; m_[0][1] = a01; m_[0][2] = a02;
- m_[1][0] = a10; m_[1][1] = a11; m_[1][2] = a12;
- m_[2][0] = a20; m_[2][1] = a21; m_[2][2] = a22;
- return *this;
- }
-
- gmMatrix3& gmMatrix3::operator =(const gmMatrix3& M)
- {
- assign(M[0][0], M[0][1], M[0][2],
- M[1][0], M[1][1], M[1][2],
- M[2][0], M[2][1], M[2][2]);
- return *this;
- }
-
- // OPERATORS
-
- gmMatrix3& gmMatrix3::operator +=(const gmMatrix3& M)
- {
- m_[0][0] += M[0][0]; m_[0][1] += M[0][1]; m_[0][2] += M[0][2];
- m_[1][0] += M[1][0]; m_[1][1] += M[1][1]; m_[1][2] += M[1][2];
- m_[2][0] += M[2][0]; m_[2][1] += M[2][1]; m_[2][2] += M[2][2];
- return *this;
- }
-
- gmMatrix3& gmMatrix3::operator -=(const gmMatrix3& M)
- {
- m_[0][0] -= M[0][0]; m_[0][1] -= M[0][1]; m_[0][2] -= M[0][2];
- m_[1][0] -= M[1][0]; m_[1][1] -= M[1][1]; m_[1][2] -= M[1][2];
- m_[2][0] -= M[2][0]; m_[2][1] -= M[2][1]; m_[2][2] -= M[2][2];
- return *this;
- }
-
- gmMatrix3& gmMatrix3::operator *=(const gmMatrix3& M)
- {
- assign(RCD(*this, M, 0, 0), RCD(*this, M, 0, 1), RCD(*this, M, 0, 2),
- RCD(*this, M, 1, 0), RCD(*this, M, 1, 1), RCD(*this, M, 1, 2),
- RCD(*this, M, 2, 0), RCD(*this, M, 2, 1), RCD(*this, M, 2, 2));
- return *this;
- }
-
- gmMatrix3& gmMatrix3::operator *=(double d)
- {
- m_[0][0] *= d; m_[0][1] *= d; m_[0][2] *= d;
- m_[1][0] *= d; m_[1][1] *= d; m_[1][2] *= d;
- m_[2][0] *= d; m_[2][1] *= d; m_[2][2] *= d;
- return *this;
- }
-
- gmMatrix3& gmMatrix3::operator /=(double d)
- {
- double di = 1 / d;
- m_[0][0] *= di; m_[0][1] *= di; m_[0][2] *= di;
- m_[1][0] *= di; m_[1][1] *= di; m_[1][2] *= di;
- m_[2][0] *= di; m_[2][1] *= di; m_[2][2] *= di;
- return *this;
- }
-
- gmMatrix3 gmMatrix3::operator +(const gmMatrix3& M) const
- {
- return gmMatrix3(m_[0][0] + M[0][0], m_[0][1] + M[0][1], m_[0][2] + M[0][2],
- m_[1][0] + M[1][0], m_[1][1] + M[1][1], m_[1][2] + M[1][2],
- m_[2][0] + M[2][0], m_[2][1] + M[2][1], m_[2][2] + M[2][2]);
- }
-
- gmMatrix3 gmMatrix3::operator -(const gmMatrix3& M) const
- {
- return gmMatrix3(m_[0][0] - M[0][0], m_[0][1] - M[0][1], m_[0][2] - M[0][2],
- m_[1][0] - M[1][0], m_[1][1] - M[1][1], m_[1][2] - M[1][2],
- m_[2][0] - M[2][0], m_[2][1] - M[2][1], m_[2][2] - M[2][2]);
- }
-
- gmMatrix3 gmMatrix3::operator -() const
- {
- return gmMatrix3(-m_[0][0], -m_[0][1], -m_[0][2],
- -m_[1][0], -m_[1][1], -m_[1][2],
- -m_[2][0], -m_[2][1], -m_[2][2]);
- }
-
- gmMatrix3 gmMatrix3::operator *(const gmMatrix3& M) const
- {
- return
- gmMatrix3(RCD(*this, M, 0, 0), RCD(*this, M, 0, 1), RCD(*this, M, 0, 2),
- RCD(*this, M, 1, 0), RCD(*this, M, 1, 1), RCD(*this, M, 1, 2),
- RCD(*this, M, 2, 0), RCD(*this, M, 2, 1), RCD(*this, M, 2, 2));
- }
-
- gmMatrix3 gmMatrix3::operator *(double d) const
- {
- return gmMatrix3(m_[0][0] * d, m_[0][1] * d, m_[0][2] * d,
- m_[1][0] * d, m_[1][1] * d, m_[1][2] * d,
- m_[2][0] * d, m_[2][1] * d, m_[2][2] * d);
- }
-
- gmMatrix3 gmMatrix3::operator /(double d) const
- {
- assert(!gmIsZero(d));
- double di = 1 / d;
- return gmMatrix3(m_[0][0] * di, m_[0][1] * di, m_[0][2] * di,
- m_[1][0] * di, m_[1][1] * di, m_[1][2] * di,
- m_[2][0] * di, m_[2][1] * di, m_[2][2] * di);
- }
-
- gmMatrix3 operator *(double d, const gmMatrix3& M)
- {
- return gmMatrix3(M[0][0] * d, M[0][1] * d, M[0][2] * d,
- M[1][0] * d, M[1][1] * d, M[1][2] * d,
- M[2][0] * d, M[2][1] * d, M[2][2] * d);
- }
-
- bool gmMatrix3::operator ==(const gmMatrix3& M) const
- {
- return(gmFuzEQ(m_[0][0], M[0][0]) &&
- gmFuzEQ(m_[0][1], M[0][1]) &&
- gmFuzEQ(m_[0][2], M[0][2]) &&
-
- gmFuzEQ(m_[1][0], M[1][0]) &&
- gmFuzEQ(m_[1][1], M[1][1]) &&
- gmFuzEQ(m_[1][2], M[1][2]) &&
-
- gmFuzEQ(m_[2][0], M[2][0]) &&
- gmFuzEQ(m_[2][1], M[2][1]) &&
- gmFuzEQ(m_[2][2], M[2][2]));
- }
-
- bool gmMatrix3::operator !=(const gmMatrix3& M) const
- {
- return (!(*this == M));
- }
-
- gmVector3 gmMatrix3::operator *(const gmVector3& v) const
- {
- return gmVector3(m_[0][0] * v[0] + m_[0][1] * v[1] + m_[0][2] * v[2],
- m_[1][0] * v[0] + m_[1][1] * v[1] + m_[1][2] * v[2],
- m_[2][0] * v[0] + m_[2][1] * v[1] + m_[2][2] * v[2]);
- }
-
- gmVector3 operator *(const gmVector3& v, const gmMatrix3& M)
- {
- return gmVector3(v[0] * M[0][0] + v[1] * M[1][0] + v[2] * M[2][0],
- v[0] * M[0][1] + v[1] * M[1][1] + v[2] * M[2][1],
- v[0] * M[0][2] * v[1] * M[1][2] + v[2] * M[2][2]);
- }
-
- // OPERATIONS
-
- gmMatrix3 gmMatrix3::transpose() const
- {
- return gmMatrix3(m_[0][0], m_[1][0], m_[2][0],
- m_[0][1], m_[1][1], m_[2][1],
- m_[0][2], m_[1][2], m_[2][2]);
- }
-
- gmMatrix3 gmMatrix3::inverse() const
- {
- assert(!isSingular());
- return adjoint() * gmInv(determinant());
- }
-
- gmMatrix3 gmMatrix3::adjoint() const
- {
- gmMatrix3 A;
-
- A[0][0] = MINOR(*this, 1, 2, 1, 2);
- A[0][1] = -MINOR(*this, 0, 2, 1, 2);
- A[0][2] = MINOR(*this, 0, 1, 1, 2);
- A[1][0] = -MINOR(*this, 1, 2, 0, 2);
- A[1][1] = MINOR(*this, 0, 2, 0, 2);
- A[1][2] = -MINOR(*this, 0, 1, 0, 2);
- A[2][0] = MINOR(*this, 1, 2, 0, 1);
- A[2][1] = -MINOR(*this, 0, 2, 0, 1);
- A[2][2] = MINOR(*this, 0, 1, 0, 1);
-
- return A;
- }
-
- double gmMatrix3::determinant() const
- {
- return m_[0][0] * MINOR(*this, 1, 2, 1, 2) -
- m_[0][1] * MINOR(*this, 1, 2, 0, 2) +
- m_[0][2] * MINOR(*this, 1, 2, 0, 1);
- }
-
- bool gmMatrix3::isSingular() const
- {
- return gmIsZero(determinant());
- }
-
- gmVector2 gmMatrix3::transform(const gmVector2& v) const
- {
- return gmVector2(v[0] * m_[0][0] + v[1] * m_[1][0] + m_[2][0],
- v[0] * m_[0][1] + v[1] * m_[1][1] + m_[2][1]);
- }
-
- // TRANSFORMATION MATRICES
-
- gmMatrix3 gmMatrix3::identity()
- {
- return gmMatrix3(1, 0, 0,
- 0, 1, 0,
- 0, 0, 1);
- }
-
- gmMatrix3 gmMatrix3::rotate(double angle)
- {
- double sine = sin(gmRadians(angle));
- double cosine = cos(gmRadians(angle));
-
- return gmMatrix3( cosine, sine, 0,
- -sine, cosine, 0,
- 0, 0, 1);
- }
-
- gmMatrix3 gmMatrix3::scale(double x, double y)
- {
- return gmMatrix3(x, 0, 0,
- 0, y, 0,
- 0, 0, 1);
- }
-
- gmMatrix3 gmMatrix3::translate(double x, double y)
- {
- return gmMatrix3(1, 0, 0,
- 0, 1, 0,
- x, y, 1);
- }
-