home *** CD-ROM | disk | FTP | other *** search
- /* ------------------------------------------------------------------------- *\
- QUAD.C :
-
- by Christophe Schlick and Gilles Subrenat (15 May 1994)
-
- "Ray Intersection of Tessellated Surfaces : Quadrangles versus Triangles"
- in Graphics Gems V (edited by A. Paeth), Academic Press
- \* ------------------------------------------------------------------------- */
-
- #include "quad.h"
-
- /*
- ** Macro definitions
- */
- #define MY_TOL ((real) 0.0001)
-
- #define LARGEST_COMPONENT(A) (ABS((A).x) > ABS((A).y) ? \
- (ABS((A).x) > ABS((A).z) ? 'x' : 'z') : \
- (ABS((A).y) > ABS((A).z) ? 'y' : 'z'))
-
- /*
- ** Check if the point is in the quadrangle
- */
- static bool point_in_quad (QUAD *Quad, HIT *Hit)
- {
- char LargestComponent; /* of the normal vector */
- realvec2 A, B, C, D; /* Projected vertices */
- realvec2 M; /* Projected intersection point */
- realvec2 AB, BC, CD, AD, AM, AE; /* Miscellanous 3D-vectors */
- real u, v; /* Parametric coordinates */
- real a, b, c, SqrtDelta; /* Quadratic equation */
- bool Intersection = FALSE; /* Intersection flag */
- realvec2 Vector; /* Temporary 2D-vector */
-
- /*
- ** Projection on the plane that is most parallel to the facet
- */
- LargestComponent = LARGEST_COMPONENT(Quad->Normal);
-
- if (LargestComponent == 'x') {
- A.x = Quad->A.y; B.x = Quad->B.y; C.x = Quad->C.y; D.x = Quad->D.y;
- M.x = Hit->Point.y;
- }
- else {
- A.x = Quad->A.x; B.x = Quad->B.x; C.x = Quad->C.x; D.x = Quad->D.x;
- M.x = Hit->Point.x;
- }
-
- if (LargestComponent == 'z') {
- A.y = Quad->A.y; B.y = Quad->B.y; C.y = Quad->C.y; D.y = Quad->D.y;
- M.y = Hit->Point.y;
- }
- else {
- A.y = Quad->A.z; B.y = Quad->B.z; C.y = Quad->C.z; D.y = Quad->D.z;
- M.y = Hit->Point.z;
- }
-
- SUB_VEC2 (AB, B, A); SUB_VEC2 (BC, C, B);
- SUB_VEC2 (CD, D, C); SUB_VEC2 (AD, D, A);
- ADD_VEC2 (AE, CD, AB); NEG_VEC2 (AE, AE); SUB_VEC2 (AM, M, A);
-
- if (ZERO_TOL (DELTA_VEC2(AB, CD), MY_TOL)) /* case AB // CD */
- {
- SUB_VEC2 (Vector, AB, CD);
- v = DELTA_VEC2(AM, Vector) / DELTA_VEC2(AD, Vector);
- if ((v >= 0.0) && (v <= 1.0)) {
- b = DELTA_VEC2(AB, AD) - DELTA_VEC2(AM, AE);
- c = DELTA_VEC2 (AM, AD);
- u = ZERO_TOL(b, MY_TOL) ? -1.0 : c/b;
- Intersection = ((u >= 0.0) && (u <= 1.0));
- }
- }
- else if (ZERO_TOL(DELTA_VEC2(BC, AD), MY_TOL)) /* case AD // BC */
- {
- ADD_VEC2 (Vector, AD, BC);
- u = DELTA_VEC2(AM, Vector) / DELTA_VEC2(AB, Vector);
- if ((u >= 0.0) && (u <= 1.0)) {
- b = DELTA_VEC2(AD, AB) - DELTA_VEC2(AM, AE);
- c = DELTA_VEC2 (AM, AB);
- v = ZERO_TOL(b, MY_TOL) ? -1.0 : c/b;
- Intersection = ((v >= 0.0) && (v <= 1.0));
- }
- }
- else /* general case */
- {
- a = DELTA_VEC2(AB, AE); c = - DELTA_VEC2 (AM,AD);
- b = DELTA_VEC2(AB, AD) - DELTA_VEC2(AM, AE);
- a = -0.5/a; b *= a; c *= (a + a); SqrtDelta = b*b + c;
- if (SqrtDelta >= 0.0) {
- SqrtDelta = sqrt(SqrtDelta);
- u = b - SqrtDelta;
- if ((u < 0.0) || (u > 1.0)) /* we want u between 0 and 1 */
- u = b + SqrtDelta;
- if ((u >= 0.0) && (u <= 1.0)) {
- v = AD.x + u * AE.x;
- if (ZERO_TOL(v, MY_TOL))
- v = (AM.y - u * AB.y) / (AD.y + u * AE.y);
- else
- v = (AM.x - u * AB.x) / v;
- Intersection = ((v >= 0.0) && (v <= 1.0));
- }
- }
- }
-
- if (Intersection) {
- Hit->u = u;
- Hit->v = v;
- }
- return (Intersection);
- }
-
- /*
- ** Search for an intersection between a quadrangle and a ray
- */
- bool hit_ray_quad (RAY *Ray, QUAD *Quad, HIT *Hit)
- {
- realvec3 Point;
-
- /* if the ray is parallel to the quadrangle, there is no intersection */
- Hit->Distance = DOT_VEC3 (Ray->Vector, Quad->Normal);
- if (ZERO_TOL(Hit->Distance, MY_TOL)) return (FALSE);
-
- /* compute ray intersection with the plane of the quadrangle */
- SUB_VEC3 (Point, Quad->A, Ray->Point);
- Hit->Distance = DOT_VEC3 (Point, Quad->Normal) / Hit->Distance;
- MULS_VEC3 (Hit->Point, Ray->Vector, Hit->Distance);
- INC_VEC3 (Hit->Point, Ray->Point);
-
- /* is the point in the quadrangle ? */
- return (point_in_quad(Quad, Hit));
- }
-
- /* ------------------------------------------------------------------------- */
-