home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Tricks of the Windows Gam…ming Gurus (2nd Edition)
/
Disc2.iso
/
vc98
/
mfc
/
src
/
array_p.cpp
< prev
next >
Wrap
C/C++ Source or Header
|
1998-06-16
|
7KB
|
313 lines
// This is a part of the Microsoft Foundation Classes C++ library.
// Copyright (C) 1992-1998 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Microsoft Foundation Classes Reference and related
// electronic documentation provided with the library.
// See these sources for detailed information regarding the
// Microsoft Foundation Classes product.
/////////////////////////////////////////////////////////////////////////////
//
// Implementation of parameterized Array
//
/////////////////////////////////////////////////////////////////////////////
// NOTE: we allocate an array of 'm_nMaxSize' elements, but only
// the current size 'm_nSize' contains properly constructed
// objects.
#include "stdafx.h"
#ifdef AFX_COLL_SEG
#pragma code_seg(AFX_COLL_SEG)
#endif
#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#define new DEBUG_NEW
/////////////////////////////////////////////////////////////////////////////
CPtrArray::CPtrArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = m_nGrowBy = 0;
}
CPtrArray::~CPtrArray()
{
ASSERT_VALID(this);
delete[] (BYTE*)m_pData;
}
void CPtrArray::SetSize(int nNewSize, int nGrowBy)
{
ASSERT_VALID(this);
ASSERT(nNewSize >= 0);
if (nGrowBy != -1)
m_nGrowBy = nGrowBy; // set new size
if (nNewSize == 0)
{
// shrink to nothing
delete[] (BYTE*)m_pData;
m_pData = NULL;
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// create one with exact size
#ifdef SIZE_T_MAX
ASSERT(nNewSize <= SIZE_T_MAX/sizeof(void*)); // no overflow
#endif
m_pData = (void**) new BYTE[nNewSize * sizeof(void*)];
memset(m_pData, 0, nNewSize * sizeof(void*)); // zero fill
m_nSize = m_nMaxSize = nNewSize;
}
else if (nNewSize <= m_nMaxSize)
{
// it fits
if (nNewSize > m_nSize)
{
// initialize the new elements
memset(&m_pData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*));
}
m_nSize = nNewSize;
}
else
{
// otherwise, grow array
int nGrowBy = m_nGrowBy;
if (nGrowBy == 0)
{
// heuristically determine growth when nGrowBy == 0
// (this avoids heap fragmentation in many situations)
nGrowBy = min(1024, max(4, m_nSize / 8));
}
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy; // granularity
else
nNewMax = nNewSize; // no slush
ASSERT(nNewMax >= m_nMaxSize); // no wrap around
#ifdef SIZE_T_MAX
ASSERT(nNewMax <= SIZE_T_MAX/sizeof(void*)); // no overflow
#endif
void** pNewData = (void**) new BYTE[nNewMax * sizeof(void*)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*));
// construct remaining elements
ASSERT(nNewSize > m_nSize);
memset(&pNewData[m_nSize], 0, (nNewSize-m_nSize) * sizeof(void*));
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}
int CPtrArray::Append(const CPtrArray& src)
{
ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
int nOldSize = m_nSize;
SetSize(m_nSize + src.m_nSize);
memcpy(m_pData + nOldSize, src.m_pData, src.m_nSize * sizeof(void*));
return nOldSize;
}
void CPtrArray::Copy(const CPtrArray& src)
{
ASSERT_VALID(this);
ASSERT(this != &src); // cannot append to itself
SetSize(src.m_nSize);
memcpy(m_pData, src.m_pData, src.m_nSize * sizeof(void*));
}
void CPtrArray::FreeExtra()
{
ASSERT_VALID(this);
if (m_nSize != m_nMaxSize)
{
// shrink to desired size
#ifdef SIZE_T_MAX
ASSERT(m_nSize <= SIZE_T_MAX/sizeof(void*)); // no overflow
#endif
void** pNewData = NULL;
if (m_nSize != 0)
{
pNewData = (void**) new BYTE[m_nSize * sizeof(void*)];
// copy new data from old
memcpy(pNewData, m_pData, m_nSize * sizeof(void*));
}
// get rid of old stuff (note: no destructors called)
delete[] (BYTE*)m_pData;
m_pData = pNewData;
m_nMaxSize = m_nSize;
}
}
/////////////////////////////////////////////////////////////////////////////
void CPtrArray::SetAtGrow(int nIndex, void* newElement)
{
ASSERT_VALID(this);
ASSERT(nIndex >= 0);
if (nIndex >= m_nSize)
SetSize(nIndex+1);
m_pData[nIndex] = newElement;
}
void CPtrArray::InsertAt(int nIndex, void* newElement, int nCount)
{
ASSERT_VALID(this);
ASSERT(nIndex >= 0); // will expand to meet need
ASSERT(nCount > 0); // zero or negative size not allowed
if (nIndex >= m_nSize)
{
// adding after the end of the array
SetSize(nIndex + nCount); // grow so nIndex is valid
}
else
{
// inserting in the middle of the array
int nOldSize = m_nSize;
SetSize(m_nSize + nCount); // grow it to new size
// shift old data up to fill gap
memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
(nOldSize-nIndex) * sizeof(void*));
// re-init slots we copied from
memset(&m_pData[nIndex], 0, nCount * sizeof(void*));
}
// insert new value in the gap
ASSERT(nIndex + nCount <= m_nSize);
// copy elements into the empty space
while (nCount--)
m_pData[nIndex++] = newElement;
}
void CPtrArray::RemoveAt(int nIndex, int nCount)
{
ASSERT_VALID(this);
ASSERT(nIndex >= 0);
ASSERT(nCount >= 0);
ASSERT(nIndex + nCount <= m_nSize);
// just remove a range
int nMoveCount = m_nSize - (nIndex + nCount);
if (nMoveCount)
memmove(&m_pData[nIndex], &m_pData[nIndex + nCount],
nMoveCount * sizeof(void*));
m_nSize -= nCount;
}
void CPtrArray::InsertAt(int nStartIndex, CPtrArray* pNewArray)
{
ASSERT_VALID(this);
ASSERT(pNewArray != NULL);
ASSERT_KINDOF(CPtrArray, pNewArray);
ASSERT_VALID(pNewArray);
ASSERT(nStartIndex >= 0);
if (pNewArray->GetSize() > 0)
{
InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize());
for (int i = 0; i < pNewArray->GetSize(); i++)
SetAt(nStartIndex + i, pNewArray->GetAt(i));
}
}
/////////////////////////////////////////////////////////////////////////////
// Diagnostics
#ifdef _DEBUG
void CPtrArray::Dump(CDumpContext& dc) const
{
CObject::Dump(dc);
dc << "with " << m_nSize << " elements";
if (dc.GetDepth() > 0)
{
for (int i = 0; i < m_nSize; i++)
dc << "\n\t[" << i << "] = " << m_pData[i];
}
dc << "\n";
}
void CPtrArray::AssertValid() const
{
CObject::AssertValid();
if (m_pData == NULL)
{
ASSERT(m_nSize == 0);
ASSERT(m_nMaxSize == 0);
}
else
{
ASSERT(m_nSize >= 0);
ASSERT(m_nMaxSize >= 0);
ASSERT(m_nSize <= m_nMaxSize);
ASSERT(AfxIsValidAddress(m_pData, m_nMaxSize * sizeof(void*)));
}
}
#endif //_DEBUG
#ifdef AFX_INIT_SEG
#pragma code_seg(AFX_INIT_SEG)
#endif
IMPLEMENT_DYNAMIC(CPtrArray, CObject)
/////////////////////////////////////////////////////////////////////////////