home *** CD-ROM | disk | FTP | other *** search
Ruby Source | 2008-05-24 | 12.1 KB | 565 lines |
- #
- # rational.rb -
- # $Release Version: 0.5 $
- # $Revision: 1.7 $
- # $Date: 1999/08/24 12:49:28 $
- # by Keiju ISHITSUKA(SHL Japan Inc.)
- #
- # Documentation by Kevin Jackson and Gavin Sinclair.
- #
- # When you <tt>require 'rational'</tt>, all interactions between numbers
- # potentially return a rational result. For example:
- #
- # 1.quo(2) # -> 0.5
- # require 'rational'
- # 1.quo(2) # -> Rational(1,2)
- #
- # See Rational for full documentation.
- #
-
-
- #
- # Creates a Rational number (i.e. a fraction). +a+ and +b+ should be Integers:
- #
- # Rational(1,3) # -> 1/3
- #
- # Note: trying to construct a Rational with floating point or real values
- # produces errors:
- #
- # Rational(1.1, 2.3) # -> NoMethodError
- #
- def Rational(a, b = 1)
- if a.kind_of?(Rational) && b == 1
- a
- else
- Rational.reduce(a, b)
- end
- end
-
- #
- # Rational implements a rational class for numbers.
- #
- # <em>A rational number is a number that can be expressed as a fraction p/q
- # where p and q are integers and q != 0. A rational number p/q is said to have
- # numerator p and denominator q. Numbers that are not rational are called
- # irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html)
- #
- # To create a Rational Number:
- # Rational(a,b) # -> a/b
- # Rational.new!(a,b) # -> a/b
- #
- # Examples:
- # Rational(5,6) # -> 5/6
- # Rational(5) # -> 5/1
- #
- # Rational numbers are reduced to their lowest terms:
- # Rational(6,10) # -> 3/5
- #
- # But not if you use the unusual method "new!":
- # Rational.new!(6,10) # -> 6/10
- #
- # Division by zero is obviously not allowed:
- # Rational(3,0) # -> ZeroDivisionError
- #
- class Rational < Numeric
- @RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'
-
- #
- # Reduces the given numerator and denominator to their lowest terms. Use
- # Rational() instead.
- #
- def Rational.reduce(num, den = 1)
- raise ZeroDivisionError, "denominator is zero" if den == 0
-
- if den < 0
- num = -num
- den = -den
- end
- gcd = num.gcd(den)
- num = num.div(gcd)
- den = den.div(gcd)
- if den == 1 && defined?(Unify)
- num
- else
- new!(num, den)
- end
- end
-
- #
- # Implements the constructor. This method does not reduce to lowest terms or
- # check for division by zero. Therefore #Rational() should be preferred in
- # normal use.
- #
- def Rational.new!(num, den = 1)
- new(num, den)
- end
-
- private_class_method :new
-
- #
- # This method is actually private.
- #
- def initialize(num, den)
- if den < 0
- num = -num
- den = -den
- end
- if num.kind_of?(Integer) and den.kind_of?(Integer)
- @numerator = num
- @denominator = den
- else
- @numerator = num.to_i
- @denominator = den.to_i
- end
- end
-
- #
- # Returns the addition of this value and +a+.
- #
- # Examples:
- # r = Rational(3,4) # -> Rational(3,4)
- # r + 1 # -> Rational(7,4)
- # r + 0.5 # -> 1.25
- #
- def + (a)
- if a.kind_of?(Rational)
- num = @numerator * a.denominator
- num_a = a.numerator * @denominator
- Rational(num + num_a, @denominator * a.denominator)
- elsif a.kind_of?(Integer)
- self + Rational.new!(a, 1)
- elsif a.kind_of?(Float)
- Float(self) + a
- else
- x, y = a.coerce(self)
- x + y
- end
- end
-
- #
- # Returns the difference of this value and +a+.
- # subtracted.
- #
- # Examples:
- # r = Rational(3,4) # -> Rational(3,4)
- # r - 1 # -> Rational(-1,4)
- # r - 0.5 # -> 0.25
- #
- def - (a)
- if a.kind_of?(Rational)
- num = @numerator * a.denominator
- num_a = a.numerator * @denominator
- Rational(num - num_a, @denominator*a.denominator)
- elsif a.kind_of?(Integer)
- self - Rational.new!(a, 1)
- elsif a.kind_of?(Float)
- Float(self) - a
- else
- x, y = a.coerce(self)
- x - y
- end
- end
-
- #
- # Returns the product of this value and +a+.
- #
- # Examples:
- # r = Rational(3,4) # -> Rational(3,4)
- # r * 2 # -> Rational(3,2)
- # r * 4 # -> Rational(3,1)
- # r * 0.5 # -> 0.375
- # r * Rational(1,2) # -> Rational(3,8)
- #
- def * (a)
- if a.kind_of?(Rational)
- num = @numerator * a.numerator
- den = @denominator * a.denominator
- Rational(num, den)
- elsif a.kind_of?(Integer)
- self * Rational.new!(a, 1)
- elsif a.kind_of?(Float)
- Float(self) * a
- else
- x, y = a.coerce(self)
- x * y
- end
- end
-
- #
- # Returns the quotient of this value and +a+.
- # r = Rational(3,4) # -> Rational(3,4)
- # r / 2 # -> Rational(3,8)
- # r / 2.0 # -> 0.375
- # r / Rational(1,2) # -> Rational(3,2)
- #
- def / (a)
- if a.kind_of?(Rational)
- num = @numerator * a.denominator
- den = @denominator * a.numerator
- Rational(num, den)
- elsif a.kind_of?(Integer)
- raise ZeroDivisionError, "division by zero" if a == 0
- self / Rational.new!(a, 1)
- elsif a.kind_of?(Float)
- Float(self) / a
- else
- x, y = a.coerce(self)
- x / y
- end
- end
-
- #
- # Returns this value raised to the given power.
- #
- # Examples:
- # r = Rational(3,4) # -> Rational(3,4)
- # r ** 2 # -> Rational(9,16)
- # r ** 2.0 # -> 0.5625
- # r ** Rational(1,2) # -> 0.866025403784439
- #
- def ** (other)
- if other.kind_of?(Rational)
- Float(self) ** other
- elsif other.kind_of?(Integer)
- if other > 0
- num = @numerator ** other
- den = @denominator ** other
- elsif other < 0
- num = @denominator ** -other
- den = @numerator ** -other
- elsif other == 0
- num = 1
- den = 1
- end
- Rational.new!(num, den)
- elsif other.kind_of?(Float)
- Float(self) ** other
- else
- x, y = other.coerce(self)
- x ** y
- end
- end
-
- def div(other)
- (self / other).floor
- end
-
- #
- # Returns the remainder when this value is divided by +other+.
- #
- # Examples:
- # r = Rational(7,4) # -> Rational(7,4)
- # r % Rational(1,2) # -> Rational(1,4)
- # r % 1 # -> Rational(3,4)
- # r % Rational(1,7) # -> Rational(1,28)
- # r % 0.26 # -> 0.19
- #
- def % (other)
- value = (self / other).floor
- return self - other * value
- end
-
- #
- # Returns the quotient _and_ remainder.
- #
- # Examples:
- # r = Rational(7,4) # -> Rational(7,4)
- # r.divmod Rational(1,2) # -> [3, Rational(1,4)]
- #
- def divmod(other)
- value = (self / other).floor
- return value, self - other * value
- end
-
- #
- # Returns the absolute value.
- #
- def abs
- if @numerator > 0
- self
- else
- Rational.new!(-@numerator, @denominator)
- end
- end
-
- #
- # Returns +true+ iff this value is numerically equal to +other+.
- #
- # But beware:
- # Rational(1,2) == Rational(4,8) # -> true
- # Rational(1,2) == Rational.new!(4,8) # -> false
- #
- # Don't use Rational.new!
- #
- def == (other)
- if other.kind_of?(Rational)
- @numerator == other.numerator and @denominator == other.denominator
- elsif other.kind_of?(Integer)
- self == Rational.new!(other, 1)
- elsif other.kind_of?(Float)
- Float(self) == other
- else
- other == self
- end
- end
-
- #
- # Standard comparison operator.
- #
- def <=> (other)
- if other.kind_of?(Rational)
- num = @numerator * other.denominator
- num_a = other.numerator * @denominator
- v = num - num_a
- if v > 0
- return 1
- elsif v < 0
- return -1
- else
- return 0
- end
- elsif other.kind_of?(Integer)
- return self <=> Rational.new!(other, 1)
- elsif other.kind_of?(Float)
- return Float(self) <=> other
- elsif defined? other.coerce
- x, y = other.coerce(self)
- return x <=> y
- else
- return nil
- end
- end
-
- def coerce(other)
- if other.kind_of?(Float)
- return other, self.to_f
- elsif other.kind_of?(Integer)
- return Rational.new!(other, 1), self
- else
- super
- end
- end
-
- #
- # Converts the rational to an Integer. Not the _nearest_ integer, the
- # truncated integer. Study the following example carefully:
- # Rational(+7,4).to_i # -> 1
- # Rational(-7,4).to_i # -> -1
- # (-1.75).to_i # -> -1
- #
- # In other words:
- # Rational(-7,4) == -1.75 # -> true
- # Rational(-7,4).to_i == (-1.75).to_i # -> true
- #
-
-
- def floor()
- @numerator.div(@denominator)
- end
-
- def ceil()
- -((-@numerator).div(@denominator))
- end
-
- def truncate()
- if @numerator < 0
- return -((-@numerator).div(@denominator))
- end
- @numerator.div(@denominator)
- end
-
- alias_method :to_i, :truncate
-
- def round()
- if @numerator < 0
- num = -@numerator
- num = num * 2 + @denominator
- den = @denominator * 2
- -(num.div(den))
- else
- num = @numerator * 2 + @denominator
- den = @denominator * 2
- num.div(den)
- end
- end
-
- #
- # Converts the rational to a Float.
- #
- def to_f
- @numerator.to_f/@denominator.to_f
- end
-
- #
- # Returns a string representation of the rational number.
- #
- # Example:
- # Rational(3,4).to_s # "3/4"
- # Rational(8).to_s # "8"
- #
- def to_s
- if @denominator == 1
- @numerator.to_s
- else
- @numerator.to_s+"/"+@denominator.to_s
- end
- end
-
- #
- # Returns +self+.
- #
- def to_r
- self
- end
-
- #
- # Returns a reconstructable string representation:
- #
- # Rational(5,8).inspect # -> "Rational(5, 8)"
- #
- def inspect
- sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
- end
-
- #
- # Returns a hash code for the object.
- #
- def hash
- @numerator.hash ^ @denominator.hash
- end
-
- attr :numerator
- attr :denominator
-
- private :initialize
- end
-
- class Integer
- #
- # In an integer, the value _is_ the numerator of its rational equivalent.
- # Therefore, this method returns +self+.
- #
- def numerator
- self
- end
-
- #
- # In an integer, the denominator is 1. Therefore, this method returns 1.
- #
- def denominator
- 1
- end
-
- #
- # Returns a Rational representation of this integer.
- #
- def to_r
- Rational(self, 1)
- end
-
- #
- # Returns the <em>greatest common denominator</em> of the two numbers (+self+
- # and +n+).
- #
- # Examples:
- # 72.gcd 168 # -> 24
- # 19.gcd 36 # -> 1
- #
- # The result is positive, no matter the sign of the arguments.
- #
- def gcd(other)
- min = self.abs
- max = other.abs
- while min > 0
- tmp = min
- min = max % min
- max = tmp
- end
- max
- end
-
- #
- # Returns the <em>lowest common multiple</em> (LCM) of the two arguments
- # (+self+ and +other+).
- #
- # Examples:
- # 6.lcm 7 # -> 42
- # 6.lcm 9 # -> 18
- #
- def lcm(other)
- if self.zero? or other.zero?
- 0
- else
- (self.div(self.gcd(other)) * other).abs
- end
- end
-
- #
- # Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments
- # (+self+ and +other+). This is more efficient than calculating them
- # separately.
- #
- # Example:
- # 6.gcdlcm 9 # -> [3, 18]
- #
- def gcdlcm(other)
- gcd = self.gcd(other)
- if self.zero? or other.zero?
- [gcd, 0]
- else
- [gcd, (self.div(gcd) * other).abs]
- end
- end
- end
-
- class Fixnum
- remove_method :quo
-
- # If Rational is defined, returns a Rational number instead of a Float.
- def quo(other)
- Rational.new!(self, 1) / other
- end
- alias rdiv quo
-
- # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
- def rpower (other)
- if other >= 0
- self.power!(other)
- else
- Rational.new!(self, 1)**other
- end
- end
-
- end
-
- class Bignum
- remove_method :quo
-
- # If Rational is defined, returns a Rational number instead of a Float.
- def quo(other)
- Rational.new!(self, 1) / other
- end
- alias rdiv quo
-
- # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
- def rpower (other)
- if other >= 0
- self.power!(other)
- else
- Rational.new!(self, 1)**other
- end
- end
-
- end
-
- unless defined? 1.power!
- class Fixnum
- alias power! **
- alias ** rpower
- end
- class Bignum
- alias power! **
- alias ** rpower
- end
- end
-