home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Amiga MA Magazine 1998 #6
/
amigamamagazinepolishissue1998.iso
/
coders
/
jËzyki_programowania
/
clisp
/
src
/
archive
/
clisp.faslsp.lha
/
clos.lsp
< prev
next >
Wrap
Lisp/Scheme
|
1996-05-30
|
175KB
|
4,077 lines
;;;; Common Lisp Object System für CLISP
;;;; Bruno Haible 21.8.1993
; Zur Benutzung reicht ein einfaches (USE-PACKAGE "CLOS").
(in-package "LISP")
(export '(clos))
(pushnew 'clos *features*)
(in-package "SYSTEM") ; Trotz DEFPACKAGE nötig!
(defpackage "CLOS"
(:import-from "SYSTEM"
;; Import:
sys::error-of-type ; in error.d definiert
sys::function-name-p ; in control.d definiert
sys::block-name ; in init.lsp definiert
; clos::generic-function-p ; in predtype.d definiert
; clos::class-p clos:class-of clos:find-class ; in predtype.d definiert
; clos::std-instance-p clos::allocate-std-instance ; in record.d definiert
; clos:slot-value clos::set-slot-value ; in record.d definiert
; clos:slot-boundp clos:slot-makunbound ; in record.d definiert
; clos:slot-exists-p ; in record.d definiert
; clos::class-gethash clos::class-tuple-gethash ; in hashtabl.d definiert
compiler::memq compiler::*keyword-package* ; in compiler.lsp definiert
compiler::%generic-function-lambda ; in compiler.lsp definiert
compiler::%optimize-function-lambda ; in compiler.lsp definiert
; clos:generic-flet clos:generic-labels ; in compiler.lsp behandelt
;; Export:
; clos::class ; als Property in predtype.d und type.lsp, compiler.lsp benutzt
; clos:standard-generic-function ; in predtype.d, type.lsp, compiler.lsp benutzt
; clos:slot-missing clos:slot-unbound ; von record.d aufgerufen
; clos::*make-instance-table* ; von record.d benutzt
; clos::*reinitialize-instance-table* ; von record.d benutzt
; clos::initial-reinitialize-instance ; von record.d aufgerufen
; clos::initial-initialize-instance ; von record.d aufgerufen
; clos::initial-make-instance ; von record.d aufgerufen
; clos:print-object ; von io.d aufgerufen
; clos:describe-object ; von user2.lsp aufgerufen
; clos::define-structure-class ; von defstruc.lsp aufgerufen
; clos::built-in-class-p ; von type.lsp aufgerufen
; clos::subclassp ; von type.lsp aufgerufen, in compiler.lsp benutzt
; clos:class-name ; in type.lsp, compiler.lsp benutzt
; clos:find-class ; in compiler.lsp benutzt
; clos::defgeneric-lambdalist-callinfo ; von compiler.lsp aufgerufen
; clos::make-generic-function-form ; von compiler.lsp aufgerufen
)
) ; defpackage
(in-package "CLOS")
;;; Exportierungen: ** auch in init.lsp ** !
(export '(
;; Namen von Funktionen und Macros:
slot-value slot-boundp slot-makunbound slot-exists-p with-slots with-accessors
find-class class-of defclass defmethod call-next-method next-method-p
defgeneric generic-function generic-flet generic-labels
class-name
no-applicable-method no-primary-method no-next-method
find-method add-method remove-method
compute-applicable-methods method-qualifiers function-keywords
slot-missing slot-unbound
print-object describe-object
make-instance initialize-instance reinitialize-instance shared-initialize
;; Namen von Klassen:
standard-class structure-class built-in-class
standard-object standard-generic-function standard-method
;; andere Symbole:
standard ; Methoden-Kombination
))
;;; Vorbemerkungen:
;; Abkürzungen:
;; std = standard
;; gf = generic function
;; <...> = (class ...), meist = (find-class '...)
;; em = effective method
;;; Vordefinierte Klassen:
; Metaklassen:
(defvar <standard-class>) ; hier <structure-class>
(defvar <structure-class>) ; hier <structure-class>
(defvar <built-in-class>) ; hier <structure-class>
; Klassen:
(defvar <standard-object>) ; <standard-class>
(defvar <standard-generic-function>) ; <built-in-class>
(defvar <standard-method>) ; hier <structure-class>
(defvar <array>) ; <built-in-class>
(defvar <bit-vector>) ; <built-in-class>
(defvar <character>) ; <built-in-class>
(defvar <complex>) ; <built-in-class>
(defvar <cons>) ; <built-in-class>
(defvar <float>) ; <built-in-class>
(defvar <function>) ; <built-in-class>
(defvar <hash-table>) ; <built-in-class>
(defvar <integer>) ; <built-in-class>
(defvar <list>) ; <built-in-class>
(defvar <null>) ; <built-in-class>
(defvar <number>) ; <built-in-class>
(defvar <package>) ; <built-in-class>
(defvar <pathname>) ; <built-in-class>
#+LOGICAL-PATHNAMES
(defvar <logical-pathname>) ; <built-in-class>
(defvar <random-state>) ; <built-in-class>
(defvar <ratio>) ; <built-in-class>
(defvar <rational>) ; <built-in-class>
(defvar <readtable>) ; <built-in-class>
(defvar <real>) ; <built-in-class>
(defvar <sequence>) ; <built-in-class>
(defvar <stream>) ; <built-in-class>
(defvar <file-stream>) ; <built-in-class>
(defvar <synonym-stream>) ; <built-in-class>
(defvar <broadcast-stream>) ; <built-in-class>
(defvar <concatenated-stream>) ; <built-in-class>
(defvar <two-way-stream>) ; <built-in-class>
(defvar <echo-stream>) ; <built-in-class>
(defvar <string-stream>) ; <built-in-class>
(defvar <string>) ; <built-in-class>
(defvar <symbol>) ; <built-in-class>
(defvar <t>) ; <built-in-class>
(defvar <vector>) ; <built-in-class>
;;; Low-Level-Repräsentation:
;; Im Runtime-System gibt es den Typ "CLOS-Instanz".
;; Erste Komponente ist die Klasse.
;; Klassen sind Structures vom Typ CLASS,
;; erste Komponente ist die Metaklasse, zweite Komponente der Name.
;; Der "Wert" eines Slots, der unbound ist, ist #<UNBOUND> - was sonst?
;; siehe RECORD.D :
; (STD-INSTANCE-P obj) testet, ob ein Objekt eine CLOS-Instanz ist.
; (ALLOCATE-STD-INSTANCE class n) liefert eine CLOS-Instanz mit Klasse class
; und n-1 zusätzlichen Slots.
;; siehe IO.D :
; CLOS-Instanzen werden via (PRINT-OBJECT object stream) ausgegeben.
; Eine Instanz für ein Objekt der Metaklasse <standard-class> besorgen:
(defmacro std-allocate-instance (class)
`(allocate-std-instance ,class (class-instance-slot-count ,class))
)
;;; globale Verwaltung von Klassen und ihren Namen:
#| ; siehe PREDTYPE.D
(defun find-class (symbol &optional (errorp t) environment)
(declare (ignore environment)) ; was sollte das Environment bedeuten?
(unless (symbolp symbol)
(error-of-type 'type-error
:datum symbol :expected-type 'symbol
#L{
DEUTSCH "~S: Argument ~S ist kein Symbol."
ENGLISH "~S: argument ~S is not a symbol"
FRANCAIS "~S : L'argument ~S n'est pas un symbole."
}
'find-class symbol
) )
(let ((class (get symbol 'CLASS)))
(if (not (class-p class))
(if errorp
(error-of-type 'error
#L{
DEUTSCH "~S: ~S benennt keine Klasse."
ENGLISH "~S: ~S does not name a class"
FRANCAIS "~S : ~S n'est pas le nom d'une classe."
}
'find-class symbol
)
nil
)
class
) ) )
|#
(defun (setf find-class) (new-value symbol &optional errorp environment)
(declare (ignore errorp environment)) ; was sollte das Environment bedeuten?
(unless (symbolp symbol)
(error-of-type 'type-error
:datum symbol :expected-type 'symbol
#L{
DEUTSCH "~S: Argument ~S ist kein Symbol."
ENGLISH "~S: argument ~S is not a symbol"
FRANCAIS "~S : L'argument ~S n'est pas un symbole."
}
'(setf find-class) symbol
) )
(unless (class-p new-value)
(error-of-type 'type-error
:datum new-value :expected-type 'class
#L{
DEUTSCH "~S: ~S ist keine Klasse."
ENGLISH "~S: ~S is not a class"
FRANCAIS "~S : ~S n'est pas une classe."
}
'(setf find-class) new-value
) )
(let ((h (get symbol 'CLASS)))
(when (class-p h)
(when (and (built-in-class-p h) (eq (class-name h) symbol)) ; auch Structure-Klassen schützen??
(error-of-type 'error
#L{
DEUTSCH "~S: Built-In-Klasse ~S kann nicht umdefiniert werden."
ENGLISH "~S: cannot redefine built-in class ~S"
FRANCAIS "~S : La classe prédéfinie ~S ne peut être redéfinie."
}
'(setf find-class) h
) )
(when (sys::exported-lisp-symbol-p symbol)
(cerror
#L{
DEUTSCH "Die alte Definition wird weggeworfen."
ENGLISH "The old definition will be lost"
FRANCAIS "L'ancienne définition sera perdue."
}
#L{
DEUTSCH "~S: Die COMMON-LISP-Klasse ~S wird umdefiniert."
ENGLISH "~S: Redefining the COMMON LISP class ~S"
FRANCAIS "~S : La classe ~S de COMMON-LISP va être redéfinie."
}
'(setf find-class) symbol
) ) ) )
(setf (get symbol 'CLASS) new-value)
)
; (CLASS-OF object) siehe PREDTYPE.D, benutzt Property CLASS.
;;; Slots:
#|
;; So könnten die Zugriffsfunktionen aussehen, wenn man SLOT-VALUE-USING-CLASS
;; verwendet.
; Zugriff auf Slots von Objekten der Metaklasse <standard-class>:
(defun std-slot-value (instance slot-name)
(declare (compile))
(let* ((class (class-of instance))
(slot-location (gethash slot-name (class-slot-location-table class))))
((lambda (value)
(if (eq value unbound)
(slot-unbound class instance slot-name)
value
) )
(cond ((null slot-location)
(slot-missing class instance slot-name 'slot-value)
)
((atom slot-location)
; access local slot
(sys::%record-ref instance slot-location)
)
(t
; access shared slot
(svref (class-shared-slots (car slot-location)) (cdr slot-location))
)
))
) )
(defun std-setf-slot-value (instance slot-name new-value)
(let* ((class (class-of instance))
(slot-location (gethash slot-name (class-slot-location-table class))))
(cond ((null slot-location)
(slot-missing class instance slot-name 'setf new-value)
)
((atom slot-location)
; access local slot
(sys::%record-store instance slot-location new-value)
)
(t
; access shared slot
(setf (svref (class-shared-slots (car slot-location)) (cdr slot-location))
new-value
))
) ) )
(defun std-slot-boundp (instance slot-name)
(declare (compile))
(let* ((class (class-of instance))
(slot-location (gethash slot-name (class-slot-location-table class))))
(cond ((null slot-location)
(slot-missing class instance slot-name 'slot-boundp)
)
((atom slot-location)
; access local slot
(not (eq (sys::%record-ref instance slot-location) unbound))
)
(t
; access shared slot
(not (eq (svref (class-shared-slots (car slot-location)) (cdr slot-location)) unbound))
)
) ) )
(defun std-slot-makunbound (instance slot-name)
(declare (compile))
(let* ((class (class-of instance))
(slot-location (gethash slot-name (class-slot-location-table class))))
(cond ((null slot-location)
(slot-missing class instance slot-name 'slot-makunbound)
)
((atom slot-location)
; access local slot
(sys::%record-store instance slot-location unbound)
)
(t
; access shared slot
(setf (svref (class-shared-slots (car slot-location)) (cdr slot-location))
unbound
))
) ) )
(defun std-slot-exists-p (instance slot-name)
(and (gethash slot-name (class-slot-location-table (class-of instance))) t)
)
;; Zugriff auf Slots allgemein:
(defun slot-value (object slot-name)
(let ((class (class-of object)))
; Metaklasse <standard-class> gesondert betrachten
; aus Effizienzgründen und wegen Bootstrapping
(if (eq (class-of class) <standard-class>)
(std-slot-value object slot-name)
(slot-value-using-class class object slot-name)
) ) )
(defun (setf slot-value) (new-value object slot-name)
(let ((class (class-of object)))
; Metaklasse <standard-class> gesondert betrachten
; aus Effizienzgründen und wegen Bootstrapping
(if (eq (class-of class) <standard-class>)
(std-setf-slot-value object slot-name new-value)
(setf-slot-value-using-class new-value class object slot-name)
) ) )
(defun slot-boundp (object slot-name)
(let ((class (class-of object)))
; Metaklasse <standard-class> gesondert betrachten
; aus Effizienzgründen und wegen Bootstrapping
(if (eq (class-of class) <standard-class>)
(std-slot-boundp object slot-name)
(slot-boundp-using-class class object slot-name)
) ) )
(defun slot-makunbound (object slot-name)
(let ((class (class-of object)))
; Metaklasse <standard-class> gesondert betrachten
; aus Effizienzgründen und wegen Bootstrapping
(if (eq (class-of class) <standard-class>)
(std-slot-makunbound object slot-name)
(slot-makunbound-using-class class object slot-name)
) ) )
(defun slot-exists-p (object slot-name)
(let ((class (class-of object)))
; Metaklasse <standard-class> gesondert betrachten
; aus Effizienzgründen und wegen Bootstrapping
(if (eq (class-of class) <standard-class>)
(std-slot-exists-p object slot-name)
(slot-exists-p-using-class class object slot-name)
) ) )
(defun slot-value-using-class (class object slot-name)
(no-slot-error class object slot-name)
)
(defun setf-slot-value-using-class (new-value class object slot-name)
(declare (ignore new-value))
(no-slot-error class object slot-name)
)
(defun slot-boundp-using-class (class object slot-name)
(no-slot-error class object slot-name)
)
(defun slot-makunbound-using-class (class object slot-name)
(no-slot-error class object slot-name)
)
(defun slot-exists-p-using-class (class object slot-name)
(no-slot-error class object slot-name)
)
(defun no-slot-error (class object slot-name)
(declare (ignore slot-name))
(error-of-type 'error
#L{
DEUTSCH "Instanz ~S der Klasse ~S hat keine Slots (falsche Metaklasse)"
ENGLISH "instance ~S of class ~S has no slots (wrong metaclass)"
FRANCAIS "L'objet ~S appartenant à la classe ~S n'a pas de composants (mauvaise classe méta)"
}
object class
) )
|#
;; Der Effizienz halber - wir wollen den Test auf <standard-class> umgehen -
;; bekommen alle Klassen (egal ob standard- oder built-in-) eine
;; slot-location-table. Außerdem können wir hier mit unbound schlecht umgehen.
;; Daher sind
;; slot-value, set-slot-value, slot-boundp, slot-makunbound, slot-exists-p
;; nun bereits in RECORD.D enthalten.
(defsetf slot-value set-slot-value)
;; WITH-SLOTS
(defmacro with-slots (slot-entries instance-form &body body &environment env)
(let ((vars '())
(slots '()))
(unless (listp slot-entries)
(error-of-type 'program-error
#L{
DEUTSCH "~S: Das ist keine Liste von Slots: ~S"
ENGLISH "~S: not a list of slots: ~S"
FRANCAIS "~S : Pas une liste de composants: ~S"
}
'with-slots slot-entries
) )
(dolist (slot slot-entries)
(let ((var slot))
(when (consp slot)
(unless (eql (length slot) 2)
(error-of-type 'program-error
#L{
DEUTSCH "~S: unzulässige Slot/Variablen-Bezeichnung ~S"
ENGLISH "~S: invalid slot and variable specification ~S"
FRANCAIS "~S : spécification invalide de composant et variable: ~S"
}
'with-slots slot
) )
(setq var (first slot) slot (second slot))
(unless (symbolp var)
(error-of-type 'program-error
#L{
DEUTSCH "~S: Variable ~S sollte ein Symbol sein."
ENGLISH "~S: variable ~S should be a symbol"
FRANCAIS "~S : La variable ~S devrait être un symbole."
}
'with-slots var
) )
)
(unless (symbolp slot)
(error-of-type 'program-error
#L{
DEUTSCH "~S: Slot-Name ~S sollte ein Symbol sein."
ENGLISH "~S: slot name ~S should be a symbol"
FRANCAIS "~S : Le nom de composant ~S devrait être un symbole."
}
'with-slots slot
) )
(push var vars)
(push slot slots)
) )
(multiple-value-bind (body-rest declarations) (sys::parse-body body nil env)
(let ((instance-var (gensym)))
`(LET ((,instance-var ,instance-form))
(SYMBOL-MACROLET
,(mapcar #'(lambda (var slot)
`(,var (SLOT-VALUE ,instance-var ',slot))
)
(nreverse vars) (nreverse slots)
)
,@(if declarations `((DECLARE ,@declarations)))
,@body-rest
) )
) ) ) )
;; WITH-ACCESSORS
(defmacro with-accessors (slot-entries instance-form &body body &environment env)
(unless (listp slot-entries)
(error-of-type 'program-error
#L{
DEUTSCH "~S: Das ist keine Liste von Slots: ~S"
ENGLISH "~S: not a list of slots: ~S"
FRANCAIS "~S : Pas une liste de composants: ~S"
}
'with-accessors slot-entries
) )
(dolist (slot-entry slot-entries)
(unless (and (consp slot-entry) (eql (length slot-entry) 2))
(error-of-type 'program-error
#L{
DEUTSCH "~S: unzulässige Slot/Accessor-Bezeichnung ~S"
ENGLISH "~S: invalid slot and accessor specification ~S"
FRANCAIS "~S : spécification invalide de composant et accesseur: ~S"
}
'with-accessors slot-entry
) )
(unless (symbolp (first slot-entry))
(error-of-type 'program-error
#L{
DEUTSCH "~S: Variable ~S sollte ein Symbol sein."
ENGLISH "~S: variable ~S should be a symbol"
FRANCAIS "~S : La variable ~S devrait être un symbole."
}
'with-accessors (first slot-entry)
) )
(unless (symbolp (second slot-entry))
(error-of-type 'program-error
#L{
DEUTSCH "~S: Accessor-Name ~S sollte ein Symbol sein."
ENGLISH "~S: accessor name ~S should be a symbol"
FRANCAIS "~S : Le nom d'accesseur ~S devrait être un symbole."
}
'with-accessors (second slot-entry)
) )
)
(multiple-value-bind (body-rest declarations) (sys::parse-body body nil env)
(let ((instance-var (gensym)))
`(LET ((,instance-var ,instance-form))
(SYMBOL-MACROLET
,(mapcar #'(lambda (slot-entry)
`(,(first slot-entry) (,(second slot-entry) ,instance-var))
)
slot-entries
)
,@(if declarations `((DECLARE ,@declarations)))
,@body-rest
) )
) ) )
;;; Klassen
; zum Bootstrappen
(eval-when (compile load eval)
(defun define-structure-class (name) (declare (ignore name)) ) ; vorläufig
)
; alle Spuren eines früher geladenen CLOS ausmerzen
(eval-when (load eval)
(do-all-symbols (s) (remprop s 'CLASS))
)
(defconstant empty-ht (make-hash-table :test #'eq :size 0))
(defstruct (class (:predicate nil) (:print-function print-class))
metaclass ; (class-of class) = (class-metaclass class), eine Klasse
classname ; (class-name class) = (class-classname class), ein Symbol
direct-superclasses ; Liste aller direkten Oberklassen
all-superclasses ; Hash-Tabelle aller Oberklassen (inkl. der Klasse selbst)
precedence-list ; angeordnete Liste aller Oberklassen (Klasse selbst zuerst)
(slot-location-table empty-ht) ; Hashtabelle Slotname -> wo der Slot sitzt
)
(defstruct (built-in-class (:inherit class) (:conc-name "CLASS-") (:print-function print-class))
)
(proclaim '(notinline built-in-class-p))
(defstruct (structure-class (:inherit class) (:conc-name "CLASS-") (:print-function print-class))
)
(defstruct (standard-class (:inherit class) (:conc-name "CLASS-") (:print-function print-class))
direct-slots ; Liste der neu hinzugekommenen Slots (als Plisten)
slots ; Liste aller Slots (als Slot-Definitionen)
instance-slot-count ; Anzahl der Slots der direkten Instanzen + 1
shared-slots ; Simple-Vector mit den Werten aller Shared Slots
direct-default-initargs ; Neu hinzugekommene Default-Initargs (als Pliste)
default-initargs ; Default-Initargs (als Aliste Initarg -> Initer)
valid-initargs ; Liste der gültigen Initargs
)
; Zugriff auf Slots von Instanzen der Klasse <class> mittels der
; defstruct-Accessoren, daher hier keine Bootstrapping-Probleme.
; Weiter Bootstrapping
(%defclos
; Erkennungszeichen für CLASS-P
(svref (get 'class 'sys::defstruct-description) 0)
; Built-In-Klassen für CLASS-OF
(vector 'array 'bit-vector 'character 'complex 'cons 'float 'function
'hash-table 'integer 'null 'package 'pathname
#+LOGICAL-PATHNAMES 'logical-pathname
'random-state 'ratio 'readtable 'standard-generic-function
'stream 'file-stream 'synonym-stream 'broadcast-stream
'concatenated-stream 'two-way-stream 'echo-stream 'string-stream
'string 'symbol 't 'vector
) )
(defun print-class (class stream depth)
(declare (ignore depth))
(print-unreadable-object (class stream :type t)
(write (class-classname class) :stream stream)
) )
;;; DEFCLASS
(defmacro defclass (name superclass-specs slot-specs &rest options)
(unless (symbolp name)
(error-of-type 'program-error
#L{
DEUTSCH "~S: Klassenname muß ein Symbol sein, nicht ~S"
ENGLISH "~S: class name ~S should be a symbol"
FRANCAIS "~S : Le nom de classe ~S devrait être un symbole."
}
'defclass name
) )
(let* ((superclass-forms
(progn
(unless (listp superclass-specs)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Superklassen-Liste erwartet statt ~S"
ENGLISH "~S ~S: expecting list of superclasses instead of ~S"
FRANCAIS "~S ~S : on s'attend à une liste de classes supérieures au lieu de ~S"
}
'defclass name superclass-specs
) )
(mapcar #'(lambda (superclass)
(unless (symbolp superclass)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Oberklassenname muß ein Symbol sein, nicht ~S"
ENGLISH "~S ~S: superclass name ~S should be a symbol"
FRANCAIS "~S ~S : Le nom d'une classe supérieure doit être un symbole et non ~S"
}
'defclass name superclass
) )
`(FIND-CLASS ',superclass)
)
superclass-specs
) ) )
(accessor-def-forms '())
(slot-forms
(let ((slot-names '()))
(unless (listp slot-specs)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Slotspezifikationen-Liste erwartet statt ~S"
ENGLISH "~S ~S: expecting list of slot specifications instead of ~S"
FRANCAIS "~S ~S : on s'attend à une liste de spécifications de composants au lieu de ~S"
}
'defclass name slot-specs
) )
(mapcar #'(lambda (slot-spec)
(let ((slot-name slot-spec) (slot-options '()))
(when (consp slot-spec)
(setq slot-name (car slot-spec) slot-options (cdr slot-spec))
)
(unless (symbolp slot-name)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Slotname muß ein Symbol sein, nicht ~S"
ENGLISH "~S ~S: slot name ~S should be a symbol"
FRANCAIS "~S ~S : Le nom de composant ~S doit être un symbole et non ~S"
}
'defclass name slot-name
) )
(if (member slot-name slot-names :test #'eq)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Es kann nicht mehrere direkte Slots mit demselben Namen ~S geben."
ENGLISH "~S ~S: There may be only one direct slot with the name ~S."
FRANCAIS "~S ~S : Il ne peut pas y avoir plusieurs composants directs avec le même nom ~S."
}
'defclass name slot-name
)
(push slot-name slot-names)
)
(let ((accessors '())
(readers '())
(writers '())
(allocation '())
(initargs '())
(initform nil) (initer nil)
(types '())
(documentation nil))
(when (oddp (length slot-options))
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Slot-Optionen zu Slot ~S sind nicht paarig."
ENGLISH "~S ~S: slot options for slot ~S don't come in pairs"
FRANCAIS "~S ~S : Les options pour le composant ~S ne viennent pas deux à deux."
}
'defclass name slot-name
) )
(do ((optionsr slot-options (cddr optionsr)))
((atom optionsr))
(let ((optionkey (first optionsr))
(argument (second optionsr)))
(case optionkey
((:READER :WRITER)
(unless (function-name-p argument)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option zu Slot ~S: ~S ist kein Funktionsname."
ENGLISH "~S ~S, slot option for slot ~S: ~S is not a function name"
FRANCAIS "~S ~S, option pour composant ~S : ~S n'est pas le nom d'une fonction."
}
'defclass name slot-name argument
) )
(case optionkey
(:READER (push argument readers))
(:WRITER (push argument writers))
))
(:ACCESSOR
(unless (symbolp argument)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option zu Slot ~S: ~S ist kein Symbol."
ENGLISH "~S ~S, slot option for slot ~S: ~S is not a symbol"
FRANCAIS "~S ~S, option pour composant ~S : ~S n'est pas un symbole."
}
'defclass name slot-name argument
) )
(push argument accessors)
(push argument readers)
(push `(SETF ,argument) writers)
)
(:ALLOCATION
(when allocation
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option ~S zu Slot ~S darf nur einmal angegeben werden."
ENGLISH "~S ~S, slot option ~S for slot ~S may only be given once"
FRANCAIS "~S ~S, l'option ~S pour le composant ~S ne peut être spécifiée qu'une seule fois."
}
'defclass name ':allocation slot-name
) )
(case argument
((:INSTANCE :CLASS) (setq allocation argument))
(t (error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option zu Slot ~S muß den Wert ~S oder ~S haben, nicht ~S"
ENGLISH "~S ~S, slot option for slot ~S must have the value ~S or ~S, not ~S"
FRANCAIS "~S ~S, l'option ~S pour le composant ~S doit avoir la valeur ~S ou ~S et non ~S"
}
'defclass name slot-name ':instance ':class argument
)) ) )
(:INITARG
(unless (symbolp argument)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option zu Slot ~S: ~S ist kein Symbol."
ENGLISH "~S ~S, slot option for slot ~S: ~S is not a symbol"
FRANCAIS "~S ~S, option pour composant ~S : ~S n'est pas un symbole."
}
'defclass name slot-name argument
) )
(push argument initargs)
)
(:INITFORM
(when initform
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option ~S zu Slot ~S darf nur einmal angegeben werden."
ENGLISH "~S ~S, slot option ~S for slot ~S may only be given once"
FRANCAIS "~S ~S, l'option ~S pour le composant ~S ne peut être spécifiée qu'une seule fois."
}
'defclass name ':initform slot-name
) )
(setq initform `(QUOTE ,argument)
initer (make-initer argument)
))
(:TYPE
(when types
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option ~S zu Slot ~S darf nur einmal angegeben werden."
ENGLISH "~S ~S, slot option ~S for slot ~S may only be given once"
FRANCAIS "~S ~S, l'option ~S pour le composant ~S ne peut être spécifiée qu'une seule fois."
}
'defclass name ':type slot-name
) )
(setq types (list argument))
)
(:DOCUMENTATION
(when documentation
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option ~S zu Slot ~S darf nur einmal angegeben werden."
ENGLISH "~S ~S, slot option ~S for slot ~S may only be given once"
FRANCAIS "~S ~S, l'option ~S pour le composant ~S ne peut être spécifiée qu'une seule fois."
}
'defclass name ':documentation slot-name
) )
(unless (stringp argument)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option zu Slot ~S: ~S ist kein String."
ENGLISH "~S ~S, slot option for slot ~S: ~S is not a string"
FRANCAIS "~S ~S, option pour composant ~S : ~S n'est pas une chaîne."
}
'defclass name slot-name argument
) )
(setq documentation argument)
)
(t
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Slot-Option zu Slot ~S: ~S ist keine gültige Slot-Option."
ENGLISH "~S ~S, slot option for slot ~S: ~S is not a valid slot option"
FRANCAIS "~S ~S, option pour composant ~S : ~S n'est pas une option valable."
}
'defclass name slot-name optionkey
) )
) ) )
(setq readers (nreverse readers))
(setq writers (nreverse writers))
(dolist (funname readers)
(push `(DEFMETHOD ,funname ((OBJECT ,name))
(SLOT-VALUE OBJECT ',slot-name)
)
accessor-def-forms
) )
(dolist (funname writers)
(push `(DEFMETHOD ,funname (NEW-VALUE (OBJECT ,name))
(SETF (SLOT-VALUE OBJECT ',slot-name) NEW-VALUE)
)
accessor-def-forms
) )
`(LIST
:NAME ',slot-name
,@(when accessors `(:ACCESSORS ',(nreverse accessors)))
,@(when readers `(:READERS ',readers))
,@(when writers `(:WRITERS ',writers))
,@(when (eq allocation ':class) `(:ALLOCATION :CLASS))
,@(when initargs `(:INITARGS ',(nreverse initargs)))
,@(when initform `(#| :INITFORM ,initform |# :INITER ,initer))
,@(when types `(:TYPE ',(first types)))
,@(when documentation `(:DOCUMENTATION ',documentation))
)
) ) )
slot-specs
)) ) )
`(LET ()
(EVAL-WHEN (COMPILE LOAD EVAL)
(ENSURE-CLASS
',name
:DIRECT-SUPERCLASSES (LIST ,@superclass-forms)
:DIRECT-SLOTS (LIST ,@slot-forms)
,@(let ((metaclass nil)
(direct-default-initargs nil)
(documentation nil))
(dolist (option options)
(block nil
(when (listp option)
(let ((optionkey (first option)))
(when (case optionkey
(:METACLASS metaclass)
(:DEFAULT-INITARGS direct-default-initargs)
(:DOCUMENTATION documentation)
)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Option ~S darf nur einmal angegeben werden."
ENGLISH "~S ~S, option ~S may only be given once"
FRANCAIS "~S ~S, l'option ~S ne peut être spécifiée qu'une seule fois."
}
'defclass name optionkey
) )
(case optionkey
(:METACLASS
(when (eql (length option) 2)
(let ((argument (second option)))
(unless (symbolp argument)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Option ~S: ~S ist kein Symbol."
ENGLISH "~S ~S, option ~S: ~S is not a symbol"
FRANCAIS "~S ~S, option ~S : ~S n'est pas un symbole."
}
'defclass name option argument
) )
(setq metaclass `(:METACLASS (FIND-CLASS ',argument)))
)
(return)
))
(:DEFAULT-INITARGS
(let ((list (rest option)))
(when (and (consp list) (null (cdr list)) (listp (car list)))
(setq list (car list))
(warn
#L{
DEUTSCH "~S ~S: Option ~S sollte als ~S geschrieben werden."
ENGLISH "~S ~S: option ~S should be written ~S"
FRANCAIS "~S ~S : L'option ~S devrait être écrite ~S."
}
'defclass name option (cons ':DEFAULT-INITARGS list)
) )
(when (oddp (length list))
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Option ~S: Argumente sind nicht paarig."
ENGLISH "~S ~S, option ~S: arguments don't come in pairs"
FRANCAIS "~S ~S, option ~S : Les arguments ne viennent pas deux à deux."
}
'defclass name option
) )
(setq direct-default-initargs
`(:DIRECT-DEFAULT-INITARGS
(LIST
,@(let ((arglist nil) (formlist nil))
(do ((list list (cddr list)))
((atom list))
(unless (symbolp (first list))
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Option ~S: ~S ist kein Symbol."
ENGLISH "~S ~S, option ~S: ~S is not a symbol"
FRANCAIS "~S ~S, option ~S : ~S n'est pas un symbole."
}
'defclass name option (first list)
) )
(when (member (first list) arglist)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Option ~S: ~S darf nur einmal angegeben werden."
ENGLISH "~S ~S, option ~S: ~S may only be given once"
FRANCAIS "~S ~S, option ~S : ~S ne peut être spécifié qu'une seule fois."
}
'defclass name option (first list)
) )
(push (first list) arglist)
(push (second list) formlist)
)
(mapcan #'(lambda (arg form)
`(',arg ,(make-initer form))
)
(nreverse arglist) (nreverse formlist)
) )
))
) )
(return)
)
(:DOCUMENTATION
(when (eql (length option) 2)
(let ((argument (second option)))
(unless (stringp argument)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S, Option ~S: ~S ist kein String."
ENGLISH "~S ~S, option ~S: ~S is not a string"
FRANCAIS "~S ~S, option ~S : ~S n'est pas une chaîne."
}
'defclass name option argument
) )
(setq documentation `(:DOCUMENTATION ',argument))
)
(return)
))
) ) )
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Ungültige Option ~S"
ENGLISH "~S ~S: invalid option ~S"
FRANCAIS "~S ~S : option invalide ~S"
}
'defclass name option
) ) )
`(,@metaclass ,@direct-default-initargs ,@documentation)
)
) )
,@(nreverse accessor-def-forms) ; die DEFMETHODs
(FIND-CLASS ',name)
)
) )
; Ein Initer zur Laufzeit ist - um Funktionsaufrufe zu sparen -
; i.a. ein Cons (init-function . nil), bei Konstanten aber (nil . init-value).
(defun make-initer (form)
(if (constantp form)
`(CONS 'NIL ,form)
`(CONS (FUNCTION (LAMBDA () ,form)) 'NIL)
) )
; DEFCLASS-Ausführung:
; Zur Laufzeit noch bedeutsame Information eines Slots:
(defstruct (slot-definition
(:conc-name "SLOTDEF-")
(:type vector) (:predicate nil)
(:constructor make-slot-definition (name allocation initargs location initer)))
(name nil :type symbol)
(allocation :instance :type (or (member :class :instance) class))
(initargs '() :type list)
(location nil :type (or null integer cons))
(initer nil :type (or null cons))
)
(defun make-slotdef (&key name (allocation ':instance) (initargs '()) location (initer nil) (initform nil) (accessors '()) (readers '()) (writers '()) type documentation)
(declare (ignore initform accessors readers writers type documentation))
(make-slot-definition name allocation initargs location initer)
)
(defun ensure-class (name &rest all-keys
&key (metaclass <standard-class>)
(direct-superclasses '())
(direct-slots '())
(direct-default-initargs '())
(documentation nil)
&allow-other-keys
)
(let ((class (find-class name nil)))
(if class
; Die einzige Modifikationen, die wir bei Klassen zulassen, sind die,
; die bei doppeltem Laden desselben Codes auftreten können:
; veränderte Slot-Optionen :initform, :documentation,
; veränderte Klassen-Optionen :default-initargs, :documentation.
(if (and (eq metaclass <standard-class>)
(eq metaclass (class-of class))
(equal direct-superclasses (class-direct-superclasses class))
(equal-slots direct-slots (class-direct-slots class))
(equal-default-initargs direct-default-initargs (class-direct-default-initargs class))
)
(progn
; neue Slot-Inits eintragen:
(do ((l-old (class-direct-slots class) (cdr l-old))
(l-new direct-slots (cdr l-new)))
((null l-new))
(let ((old (getf (car l-old) ':initer))
(new (getf (car l-new) ':initer)))
(when old
; Slot-Initer new destruktiv in den Slot-Initer old umfüllen:
(setf (car old) (car new))
(setf (cdr old) (cdr new))
) ) )
; neue Default-Initargs eintragen:
(do ((l-old (class-direct-default-initargs class) (cddr l-old))
(l-new direct-default-initargs (cddr l-new)))
((null l-new))
(let ((old (second l-old))
(new (second l-new)))
; Initer new destruktiv in den Initer old umfüllen:
(setf (car old) (car new))
(setf (cdr old) (cdr new))
) )
; NB: Diese Modifikationen vererben sich auch automatisch auf die
; Unterklassen von class!
; neue Dokumentation eintragen:
(when documentation (setf (documentation name 'TYPE) documentation))
; modifizierte Klasse als Wert:
class
)
(error-of-type 'error
#L{
DEUTSCH "~S: Klasse ~S kann nicht umdefiniert werden."
ENGLISH "~S: Cannot redefine class ~S"
FRANCAIS "~S : La classe ~S ne peut pas être redéfinie."
}
'defclass name
) )
(progn
(when documentation (setf (documentation name 'TYPE) documentation))
(setf (find-class name)
(apply (cond ((eq metaclass <standard-class>) #'make-instance-standard-class)
((eq metaclass <built-in-class>) #'make-instance-built-in-class) ; ??
((eq metaclass <structure-class>) #'make-instance-structure-class)
(t #'make-instance)
)
metaclass
:name name
all-keys
) ) )
) ) )
(defun equal-slots (slots1 slots2)
(or (and (null slots1) (null slots2))
(and (consp slots1) (consp slots2)
(equal-slot (first slots1) (first slots2))
(equal-slots (rest slots1) (rest slots2))
) ) )
(defun equal-slot (slot1 slot2) ; slot1, slot2 Plisten
(or (and (null slot1) (null slot2))
(and #| (consp slot1) (consp slot2) |#
(eq (first slot1) (first slot2))
(or (memq (first slot1) '(#| :initform |# :initer #| :documentation |# ))
(equal (second slot1) (second slot2))
)
(equal-slot (cddr slot1) (cddr slot2))
) ) )
(defun equal-default-initargs (initargs1 initargs2)
(or (and (null initargs1) (null initargs2))
(and (consp initargs1) (consp initargs2)
(eq (first initargs1) (first initargs2))
(equal-default-initargs (cddr initargs1) (cddr initargs2))
) ) )
(defun add-default-superclass (direct-superclasses default-superclass)
; Manchmal will man eine bestimmte Oberklasse erzwingen.
; Sie darf aber nicht zweimal angegeben werden.
(if (member default-superclass direct-superclasses :test #'eq)
direct-superclasses
(append direct-superclasses (list default-superclass))
) )
; Erzeugung einer Instanz von <standard-class>:
(let (unbound) (declare (compile)) ; unbound = #<unbound>
(defun def-unbound (x) (declare (compile)) (setq unbound x))
(defun make-instance-standard-class
(metaclass &key name (direct-superclasses '()) (direct-slots '())
(direct-default-initargs '())
&allow-other-keys
)
; metaclass = <standard-class>
(unless (every #'standard-class-p direct-superclasses)
(error-of-type 'error
#L{
DEUTSCH "~S ~S: Oberklasse ~S sollte zur Klasse STANDARD-CLASS gehören."
ENGLISH "~S ~S: superclass ~S should belong to class STANDARD-CLASS"
FRANCAIS "~S ~S : La classe supérieure ~S n'appartient pas à la classe STANDARD-CLASS."
}
'defclass name (find-if-not #'standard-class-p direct-superclasses)
) )
(let ((class (make-standard-class :classname name :metaclass metaclass)))
(setf (class-direct-superclasses class) (copy-list direct-superclasses))
(setf (class-precedence-list class)
(std-compute-cpl class
(add-default-superclass direct-superclasses <standard-object>)
) )
(setf (class-all-superclasses class)
(std-compute-superclasses (class-precedence-list class))
)
(setf (class-direct-slots class) direct-slots)
(setf (class-slots class) (std-compute-slots class))
(let ((ht (make-hash-table :test #'eq))
(local-index 1) ; Index 0 wird von der Klasse belegt
(shared-index 0))
(mapc #'(lambda (slot)
(let* ((name (slotdef-name slot))
(allocation (slotdef-allocation slot))
(location
(cond ((eq allocation ':instance) ; local slot
(prog1 local-index (incf local-index))
)
((eq allocation class) ; new shared slot
(prog1 (cons class shared-index) (incf shared-index))
)
(t ; inherited shared slot
(gethash name (class-slot-location-table allocation))
)) ) )
(setf (slotdef-location slot) location)
(setf (gethash name ht) location)
) )
(class-slots class)
)
(setf (class-slot-location-table class) ht)
(setf (class-instance-slot-count class) local-index)
(when (plusp shared-index)
(setf (class-shared-slots class)
(let ((v (make-array shared-index))
(i 0))
(mapc #'(lambda (slot)
(when (eq (slotdef-allocation slot) class)
(setf (svref v i)
(let ((init (slotdef-initer slot)))
(if init
(if (car init) (funcall (car init)) (cdr init))
unbound
) ) )
(incf i)
) )
(class-slots class)
)
v
) ) )
)
(setf (class-direct-default-initargs class) direct-default-initargs)
(setf (class-default-initargs class) ; 28.1.3.3.
(remove-duplicates
(mapcan
#'(lambda (c)
(when (standard-class-p c)
(plist-to-alist (class-direct-default-initargs c))
) )
(class-precedence-list class)
)
:key #'car
:from-end t
) )
(setf (class-valid-initargs class)
(remove-duplicates (mapcap #'slotdef-initargs (class-slots class)))
)
class
) )
) ; let
;; 28.1.5. Determining the Class Precedence List
;
; Die Menge aller Klassen bildet einen gerichteten Graphen: Klasse C sitzt
; unterhalb der direkten Oberklassen von C. Dieser Graph ist azyklisch, weil
; zum Zeitpunkt Definition der Klasse C alle direkten Oberklassen bereits
; vorhanden sein müssen.
;
; Man kann daher noethersche Induktion (Induktion von oben nach unten im
; Klassengraphen) verwenden.
;
; Zu einer Klasse C sei DS(n) die Liste aller direkten Oberklassen von C.
; Die Menge aller Oberklassen (inkl. C selbst) ist induktiv definiert als
; S(C) := {C} union union_{D in DS(C)} S(D).
;
; Anders ausgedrückt:
; S(C) = { C_n : C_n in DS(C_{n-1}), ..., C_1 in DS(C_0), C_0 = C }
;
; Lemma 1: (a) C in S(C).
; (b) DS(C) subset S(C).
; (c) D in DS(C) ==> S(D) subset S(C).
; (d) D in S(C) ==> S(D) subset S(C).
; Beweis: (a) Aus der Definition.
; (b) Aus (a) und der Definition.
; (c) Aus der Definition.
; (d) Aus (c) bei festem D mit Induktion über C.
;
; Die CPL einer Klasse C ist eine Anordnung der Menge S(C).
; Falls CPL(C) = (... D1 ... D2 ...), schreibt man D1 < D2. Die so eingeführte
; Relation ist eine Totalordnung auf S(C).
; Dabei ist die folgende Menge von Restriktionen zu berücksichtigen:
; R(C) := union_{D in S(C)} DR(D) mit
; DR(C) := { C < C1, C1 < C2, ..., C{n-1} < C_n } falls DS(C) = (C1, ..., Cn).
; Falls R(C) einen Zyklus enthält, kann natürlich R(C) nicht zu einer
; Totalordnung vervollständigt werden. Dann heißt R(C) inkonsistent.
; CPL(C) wird folgendermaßen konstruiert:
; L := (), R := R(C).
; L := (L | C), entferne alle (C < ..) aus R.
; Solange R /= {}, betrachte die Menge M aller minimalen Elemente von R
; (das sind diejenigen Klassen, die man, ohne R(C) zu verletzen, zu L
; hinzufügen könnte). Ist M leer, so hat man einen Zyklus in R(C) und
; bricht den Algorithmus ab. Sonst wähle unter den Elementen E von M
; dasjenige aus, das ein möglichst weit rechts in L gelegenes D mit
; E in DS(D) besitzt.
; L := (L | E), entferne alle (E < ..) aus R.
; CPL(C) := L.
; L wird schrittweise um ein Element verlängert, R wird schrittweise
; verkleinert, und R besteht immer nur aus Relationen zwischen Elementen
; von S(C)\L.
;
; Lemma 2: (a) CPL(C) = (C ...).
; (b) Ist DS(C) = (C1, ..., Cn), so ist
; CPL(C) = (C ... C1 ... C2 ... ... Cn ...).
; Beweis: (a) Klar nach Konstruktion.
; (b) Wenn Ci in die CPL aufgenommen wird, kann die Restriktion
; C{i-1} < Ci nicht mehr in R sein, also muß C{i-1} schon in
; der CPL sein.
;
; Folgende Aussage ist falsch:
; (*) Ist D in DS(C) und CPL(D) = (D1, ..., Dn), so ist
; CPL(C) = (C ... D1 ... D2 ... ... Dn ...).
; Beispiel:
; z
; /|\ CPL(z) = (z)
; / | \ CPL(x) = (x z)
; x | x CPL(y) = (y z)
; | | | CPL(d) = (d x z)
; d y e CPL(e) = (e x z)
; \/ \/ CPL(b) = (b d x y z)
; b c CPL(c) = (c y e x z)
; \ / CPL(a) = (a b d c y e x z)
; a
; CPL(a) enthält CPL(b) nicht!
;
#|
(defclass z () ())
(defclass x (z) ())
(defclass y (z) ())
(defclass d (x z) ())
(defclass e (x z) ())
(defclass b (d y) ())
(defclass c (y e) ())
(defclass a (b c) ())
(mapcar #'find-class '(z x y d e b c a))
|#
(defun std-compute-cpl (class direct-superclasses)
(let* ((superclasses ; Liste aller Oberklassen in irgendeiner Reihenfolge
(remove-duplicates
(mapcap #'class-precedence-list direct-superclasses)
) )
(L '())
(R1 (list (cons class direct-superclasses)))
(R2 (mapcar #'(lambda (D) (cons D (class-direct-superclasses D)))
superclasses
)) )
(loop
; L ist die umgedrehte bisher konstruierte CPL.
; R1 ist die Liste der bisher relevanten Restriktionen, in der Form
; R1 = (... (Dj ... Dn) ...) wenn aus DR(D) = (D1 ... Dn) nur noch
; Dj,...,Dn übrig sind. Die Reihenfolge in R1 entspricht der in L.
; R2 ist die Liste der bisher irrelevanten Restriktionen.
(when (null R1)
(return) ; R1 = R2 = () -> fertig
)
(let ((M (remove-duplicates (mapcar #'first R1) :from-end t)))
(setq M
(remove-if
#'(lambda (E)
(or (dolist (r R1 nil) (when (member E (cdr r)) (return t)))
(dolist (r R2 nil) (when (member E (cdr r)) (return t)))
) )
M
) )
(when (null M)
(error-of-type 'error
#L{
DEUTSCH "~S ~S: Inkonsistenter Präzedenz-Graph, Zyklus ~S"
ENGLISH "~S ~S: inconsistent precedence graph, cycle ~S"
FRANCAIS "~S ~S : graphe de précédences contradictoire, cycle ~S"
}
'defclass (class-classname class)
; Zyklus finden: mit Hilfe der Restriktionen zu immer
; kleineren Elementen voranschreiten.
(let* ((R0 (append R1 R2))
(cycle (list (car (first R0)))))
(loop
(let* ((last (car cycle))
(next (dolist (r R0 nil)
(when (member last (cdr r))
(return (nth (position last (cdr r)) r))
)) ) )
(when (null next)
; Offenbar ist last nun doch ein minimales Element!
(return '??)
)
(when (member next cycle)
(setf (cdr (member next cycle)) nil)
(return cycle)
)
(push next cycle)
) ) )
) )
(let ((E (first M)))
(push E L)
(push (assoc E R2) R1)
(setq R2 (delete E R2 :key #'first))
(mapl #'(lambda (r) (when (eq (first (car r)) E) (pop (car r)))) R1)
(setq R1 (delete-if #'null R1))
) ) )
(setq L (nreverse L))
; Teste, ob L mit den CPL(D), D in direct-superclasses, verträglich ist:
(mapc #'(lambda (D)
(unless ; Ist (class-precedence-list D) Teil-Liste von L ?
(do ((CL L)
(DL (class-precedence-list D) (cdr DL)))
((null DL) t)
(when (null (setq CL (member (car DL) CL))) (return nil))
)
(warn
#L{
DEUTSCH "(class-precedence-list ~S) und (class-precedence-list ~S) sind nicht verträglich."
ENGLISH "(class-precedence-list ~S) and (class-precedence-list ~S) are inconsistent"
FRANCAIS "(class-precedence-list ~S) et (class-precedence-list ~S) sont contradictoires."
}
class D
) ) )
direct-superclasses
)
L
) )
; Stopft alle Oberklassen (aus der precedence-list) in eine Hash-Tabelle.
(defun std-compute-superclasses (precedence-list)
(let ((ht (make-hash-table :test #'eq)))
(mapc #'(lambda (superclass) (setf (gethash superclass ht) t))
precedence-list
)
ht
) )
; Hilfsfunktion (p1 v1 ... pn vn) -> ((p1 . v1) ... (pn . vn))
(defun plist-to-alist (pl &aux (al '()))
(loop
(when (null pl) (return))
(setq al (acons (first pl) (second pl) al))
(setq pl (cddr pl))
)
(nreverse al)
)
; Hilfsfunktion ((p1 . v1) ... (pn . vn)) -> (p1 v1 ... pn vn)
(defun alist-to-plist (al)
(mapcan #'(lambda (pv) (list (car pv) (cdr pv))) al)
)
;; 28.1.3.2. Inheritance of Slots and Slot Options
(defun std-compute-slots (class)
; Alle Slot-Specifier sammeln, geordnet nach Präzedenz:
(let ((all-slots
(mapcan
#'(lambda (c)
(if (standard-class-p c)
(mapcar #'(lambda (slot)
(setq slot (plist-to-alist slot))
(when (eq (cdr (assoc ':allocation slot)) ':class)
(setf (cdr (assoc ':allocation slot)) c)
)
slot
)
(class-direct-slots c)
) ) )
(class-precedence-list class)
)) )
; Aufspalten nach Slot-Namen:
(setq all-slots
(let ((ht (make-hash-table :test #'eq)))
(dolist (slot all-slots)
(assert (eq (caar slot) ':name))
(push (cdr slot) (gethash (cdar slot) ht nil))
)
(let ((L nil))
(maphash #'(lambda (name slots) (push (cons name (nreverse slots)) L)) ht)
L ; nicht (nreverse L), da maphash die Reihenfolge umdreht
) ) )
; all-slots ist nun eine Liste von Listen der Form
; (name most-specific-slotspec ... least-specific-slotspec).
(mapcar #'(lambda (slot)
(let ((name (car slot))
(slotspecs (cdr slot)))
(apply #'make-slotdef
:name name
(alist-to-plist
`(,(or (assoc ':allocation (first slotspecs))
`(:allocation . :instance)
)
#|
,@(let ((accessors
(mapcap #'(lambda (slotspec) (cdr (assoc ':accessors slotspec)))
slotspecs
)) )
(if accessors `((:accessors . ,accessors)))
)
|#
,@(let ((initargs
(remove-duplicates
(mapcap #'(lambda (slotspec) (cdr (assoc ':initargs slotspec)))
slotspecs
)
:from-end t
)) )
(if initargs `((:initargs . ,initargs)))
)
,@(dolist (slotspec slotspecs '())
(when (assoc ':initer slotspec)
(return `(#| ,(assoc ':initform slotspec) |# ,(assoc ':initer slotspec)))
) )
#|
,(let ((types '()))
(dolist (slotspec slotspecs)
(when (assoc ':type slotspec)
(push (cdr (assoc ':type slotspec)) types)
) )
`(:type . ,(if types `(AND ,@(nreverse types)) 'T))
)
|#
#|
,@(dolist (slotspec slotspecs '())
(when (assoc ':documentation slotspec)
(return `(,(assoc ':documentation slotspec)))
) )
|#
)
) ) ) )
all-slots
)
) )
; Erzeugung einer Instanz von <built-in-class>:
(defun make-instance-built-in-class
(metaclass &key name (direct-superclasses '())
&allow-other-keys
)
; metaclass = <built-in-class>
(unless (every #'built-in-class-p direct-superclasses)
(error-of-type 'error
#L{
DEUTSCH "~S: Oberklasse ~S sollte zur Klasse BUILT-IN-CLASS gehören."
ENGLISH "~S: superclass ~S should belong to class BUILT-IN-CLASS"
FRANCAIS "~S : La classe supérieure ~S n'appartient pas à la classe BUILT-IN-CLASS."
}
name (find-if-not #'built-in-class-p direct-superclasses)
) )
(let ((class (make-built-in-class :classname name :metaclass metaclass)))
(setf (class-direct-superclasses class) (copy-list direct-superclasses))
(setf (class-precedence-list class)
(std-compute-cpl class direct-superclasses)
)
(setf (class-all-superclasses class)
(std-compute-superclasses (class-precedence-list class))
)
class
) )
; Erzeugung einer Instanz von <structure-class>:
(defun make-instance-structure-class
(metaclass &key name (direct-superclasses '()) (slots '())
&allow-other-keys
)
; metaclass = <structure-class>
(unless (null (cdr direct-superclasses))
(error-of-type 'error
#L{
DEUTSCH "~S: Metaklasse STRUCTURE-CLASS läßt nur eine direkte Oberklasse zu."
ENGLISH "~S: metaclass STRUCTURE-CLASS forbids more than one direct superclass"
FRANCAIS "~S : La classe méta STRUCTURE-CLASS ne permet qu'une seule classe supérieure."
}
name
) )
(unless (every #'structure-class-p direct-superclasses)
(error-of-type 'error
#L{
DEUTSCH "~S: Oberklasse ~S sollte zur Klasse STRUCTURE-CLASS gehören."
ENGLISH "~S: superclass ~S should belong to class STRUCTURE-CLASS"
FRANCAIS "~S : La classe supérieure ~S n'appartient pas à la classe STRUCTURE-CLASS."
}
name (first direct-superclasses)
) )
(let ((class (make-structure-class :classname name :metaclass metaclass)))
(setf (class-direct-superclasses class) (copy-list direct-superclasses))
(setf (class-precedence-list class)
(std-compute-cpl class
(add-default-superclass direct-superclasses <t>)
) )
(setf (class-all-superclasses class)
(std-compute-superclasses (class-precedence-list class))
)
(setf (class-slot-location-table class)
(make-hash-table :test #'eq :initial-contents slots)
)
class
) )
; DEFSTRUCT-Hook
(defun define-structure-class (name)
(let ((descr (get name 'sys::defstruct-description)))
(when descr
(let ((names (svref descr 0)))
(setf (find-class name)
(make-instance-structure-class <structure-class>
:name name
:direct-superclasses
(if (cdr names) (list (find-class (second names))) '())
:slots
(mapcan #'(lambda (slot)
(if (first slot)
(list (cons (first slot) (second slot)))
) )
(svref descr 3)
)
) ) ) ) ) )
;; Bootstrapping
(progn
; 1. Klasse <t>
(setq <t>
(make-instance-built-in-class nil :name 't :direct-superclasses '())
)
; 2. Klasse <structure-class>
(setq <structure-class> (make-structure-class)) ; Dummy, damit (setf find-class) geht
(let ((<class> (define-structure-class 'class)))
(setq <structure-class> (define-structure-class 'structure-class))
(setf (class-metaclass <class>) <structure-class>)
(setf (class-metaclass <structure-class>) <structure-class>)
)
; 3. Alle structure-Klassen
(labels ((define-structure-class-with-includes (name)
(when (get name 'sys::defstruct-description)
(unless (find-class name nil)
(let ((names (svref (get name 'sys::defstruct-description) 0)))
(when (cdr names)
(define-structure-class-with-includes (second names))
) )
(define-structure-class name)
)) ) )
(do-all-symbols (s) (define-structure-class-with-includes s))
)
; 4. Klassen <standard-class>, <built-in-class>
(setq <standard-class> (find-class 'standard-class))
(setq <built-in-class> (find-class 'built-in-class))
; 5. Klasse <t> zu Ende
(setf (class-metaclass <t>) <built-in-class>)
(setf (find-class 't) <t>)
; 6. Klasse <standard-object>
(setq <standard-object>
(make-standard-class
:classname 'standard-object
:metaclass <standard-class>
:direct-superclasses `(,<t>)
:direct-slots '()
:slots '()
:slot-location-table empty-ht
:instance-slot-count 1
:direct-default-initargs nil
:default-initargs nil
) )
(setf (class-all-superclasses <standard-object>)
(std-compute-superclasses
(setf (class-precedence-list <standard-object>)
`(,<standard-object> ,<t>)
) ) )
(setf (find-class 'standard-object) <standard-object>)
; 7. Wert #<unbound>
(def-unbound
(sys::%record-ref (allocate-std-instance <standard-object> 2) 1)
)
)
;; 28.1.4. Integrating Types and Classes
(defun subclassp (class1 class2)
(values
(gethash class2 (class-all-superclasses class1)) ; T oder (Default) NIL
) )
;; Built-In-Klassen installieren
; Table 28-1, CLtL2 p. 783
(macrolet ((def (&rest classes &aux (new (car (last classes))))
(let ((name (intern (string-trim "<>" (symbol-name new)))))
`(setf (find-class ',name)
(setq ,new
(make-instance-built-in-class <built-in-class>
:name ',name
:direct-superclasses (list ,@(cdr (reverse classes)))
) ) )
)) )
;(def <t>)
(def <t> <character>)
(def <t> <function>)
(def <function> <standard-generic-function>)
(def <t> <hash-table>)
(def <t> <package>)
(def <t> <pathname>)
#+LOGICAL-PATHNAMES
(def <pathname> <logical-pathname>)
(def <t> <random-state>)
(def <t> <readtable>)
(def <t> <stream>)
(def <stream> <file-stream>)
(def <stream> <synonym-stream>)
(def <stream> <broadcast-stream>)
(def <stream> <concatenated-stream>)
(def <stream> <two-way-stream>)
(def <stream> <echo-stream>)
(def <stream> <string-stream>)
(def <t> <symbol>)
(def <t> <sequence>)
(def <sequence> <list>)
(def <list> <cons>)
(def <list> <symbol> <null>)
(def <t> <array>)
(def <sequence> <array> <vector>)
(def <vector> <bit-vector>)
(def <vector> <string>)
(def <t> <number>)
(def <number> <complex>)
(def <number> <real>)
(def <real> <float>)
(def <real> <rational>)
(def <rational> <ratio>)
(def <rational> <integer>)
)
; Weiter Bootstrapping
(%defclos
; Erkennungszeichen für CLASS-P
(svref (get 'class 'sys::defstruct-description) 0)
; Built-In-Klassen für CLASS-OF
(vector <array> <bit-vector> <character> <complex> <cons> <float> <function>
<hash-table> <integer> <null> <package> <pathname>
#+LOGICAL-PATHNAMES <logical-pathname>
<random-state> <ratio> <readtable> <standard-generic-function>
<stream> <file-stream> <synonym-stream> <broadcast-stream>
<concatenated-stream> <two-way-stream> <echo-stream> <string-stream>
<string> <symbol> <t> <vector>
) )
;; Schnitt zweier Built-In-Klassen:
; Abweichungen von der Single-Inheritance sind nur
; (AND <sequence> <array>) = <vector> und (AND <list> <symbol>) = <null>.
(defun bc-p (class)
(or (built-in-class-p class) (eq class <standard-object>))
)
(defun bc-and (class1 class2) ; liefert (AND class1 class2)
(cond ((subclassp class1 class2) class1)
((subclassp class2 class1) class2)
((or (and (subclassp <sequence> class1) (subclassp <array> class2))
(and (subclassp <sequence> class2) (subclassp <array> class1))
)
<vector>
)
((or (and (subclassp <list> class1) (subclassp <symbol> class2))
(and (subclassp <list> class2) (subclassp <symbol> class1))
)
<null>
)
(t nil)
) )
(defun bc-and-not (class1 class2) ; liefert eine Klasse c mit
; (AND class1 (NOT class2)) <= c <= class1
(cond ((subclassp class1 class2) nil)
((and (eq class1 <sequence>) (subclassp <vector> class2)) <list>)
((and (eq class1 <sequence>) (subclassp <list> class2)) <vector>)
((and (eq class1 <list>) (subclassp <null> class2)) <cons>)
(t class1)
) )
;;; Methoden
(defstruct (standard-method (:conc-name "STD-METHOD-") (:print-function print-std-method))
function ; die Funktion
wants-next-method-p ; Flag, ob als erstes Argument die NEXT-METHOD (als
; Funktion mit allen Argumenten) bzw. NIL übergeben
; werden soll (= NIL bei :BEFORE- und :AFTER-Methoden)
parameter-specializers ; Liste ({class | (EQL object)}*)
qualifiers ; Liste von Symbolen, z.B. (:before)
signature ; Liste (reqanz optanz restp keyp keywords allowp)
gf ; die generische Funktion, zu der diese Methode
; gehört (nur für den Bedarf von NO-NEXT-METHOD)
initfunction ; liefert, wenn aufgerufen, die Funktion
; (nur für den Bedarf von ADD-METHOD)
)
; Bei NO-NEXT-METHOD muß die generische Funktion bekannt sein. Da allerdings
; im Prinzip Methoden nicht bestimmten generischen Funktionen zugehörig sind
; (wegen ADD-METHOD), müssen wir die Methode bei ADD-METHOD kopieren. Die
; Identität zweier Kopien derselben Methode stellen wir durch Blick auf
; std-method-initfunction fest. (Man könnte stattdessen auch die generische
; Funktion bei jedem Aufruf mitgeben, als erstes Argument an die effektive
; Methode, aber das ist sicher ineffizienter.)
(defun print-std-method (method stream depth)
(declare (ignore depth))
(print-unreadable-object (method stream :type t)
(dolist (q (std-method-qualifiers method))
(write q :stream stream)
(write-char #\Space stream)
)
(write (std-method-parameter-specializers method) :stream stream)
) )
; Hilfsfunktion: Liefert eine Liste von n Gensyms.
(defun n-gensyms (n)
(do ((l '() (cons (gensym) l))
(i n (1- i)))
((eql i 0) l)
) )
; Hilfsfunktion: Testet auf Lambda-Listen-Marker.
(defun lambda-list-keyword-p (x)
(memq x lambda-list-keywords)
)
;; Für DEFMETHOD, DEFGENERIC, GENERIC-FUNCTION, GENERIC-FLET, GENERIC-LABELS,
;; WITH-ADDED-METHODS
; caller: Symbol
; funname: Funktionsname, Symbol oder (SETF symbol)
; description: (qualifier* spec-lambda-list {declaration|docstring}* form*)
; ==> method-building-form
(defun analyze-method-description (caller funname description env)
(let ((qualifiers nil))
(loop
(when (atom description)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Lambdaliste fehlt."
ENGLISH "~S ~S: missing lambda list"
FRANCAIS "~S ~S : la liste lambda manque."
}
caller funname
) )
(when (listp (car description)) (return))
(push (pop description) qualifiers)
)
; Nur STANDARD Methodenkombination ist implementiert.
(cond ((equal qualifiers '()))
((equal qualifiers '(:before)))
((equal qualifiers '(:after)))
((equal qualifiers '(:around)))
(t (error-of-type 'program-error
#L{
DEUTSCH "Bei STANDARD Methodenkombination dürfen die Methodenbestimmer nicht ~S lauten."
ENGLISH "STANDARD method combination doesn't allow the method qualifiers to be ~S"
FRANCAIS "La combinaison STANDARD de méthodes ne permet pas de qualifier des méthodes comme ~S."
}
(nreverse qualifiers)
) ) )
; Lambdaliste bilden, Parameter-Specializer und Signatur extrahieren:
(let ((specialized-lambda-list (car description))
(body (cdr description)))
(let ((req-vars '())
(ignorable-req-vars '())
(req-specializer-forms '()))
(do ()
((or (atom specialized-lambda-list)
(lambda-list-keyword-p (car specialized-lambda-list))
))
(let* ((item (pop specialized-lambda-list))
(specializer-name
(if (atom item)
(progn (push item req-vars) 't)
(progn
(push (first item) req-vars)
(push (first item) ignorable-req-vars) ; CLtL2 S. 840 oben
(second item)
)) ) )
(push (if (and (consp specializer-name)
(eq (car specializer-name) 'EQL)
)
`(LIST 'EQL ,(second specializer-name))
`(FIND-CLASS ',specializer-name)
)
req-specializer-forms
) ) )
(let* ((reqanz (length req-vars))
(lambda-list (nreconc req-vars specialized-lambda-list))
(optanz
(let ((h (cdr (member '&OPTIONAL lambda-list :test #'eq))))
(or (position-if #'lambda-list-keyword-p h) (length h))
) )
(keyp (not (null (member '&KEY lambda-list :test #'eq))))
(restp (or keyp (not (null (member '&REST lambda-list :test #'eq)))))
(keywords
(mapcar
#'(lambda (item)
(when (consp item) (setq item (first item)))
(if (consp item)
(first item)
(intern (symbol-name item) *keyword-package*)
) )
(let ((h (cdr (member '&KEY lambda-list :test #'eq))))
(subseq h 0 (position-if #'lambda-list-keyword-p h))
) ) )
(allowp (and keyp (not (null (member '&ALLOW-OTHER-KEYS lambda-list :test #'eq)))))
)
; Methoden haben ein implizites &allow-other-keys (28.1.6.4.):
(when (and keyp (not allowp))
(let ((index (+ (position '&KEY lambda-list :test #'eq) 1 (length keywords))))
(setq lambda-list
`(,@(subseq lambda-list 0 index) &ALLOW-OTHER-KEYS
,@(subseq lambda-list index)
)
) ) )
(let* ((self (gensym))
(wants-next-method-p
(or (equal qualifiers '()) (equal qualifiers '(:around)))
)
(compile nil)
(lambdabody
(multiple-value-bind (body-rest declarations docstring)
(sys::parse-body body t env)
(declare (ignore docstring))
(setq compile (member '(COMPILE) declarations :test #'equal))
(when ignorable-req-vars
(push `(IGNORABLE ,@(nreverse ignorable-req-vars))
declarations
) )
(let ((lambdabody-part1
`(,lambda-list
,@(if declarations `((DECLARE ,@declarations)))
)
)
(lambdabody-part2
(if (eq caller 'generic-function)
body-rest
; impliziter Block
`((BLOCK ,(block-name funname) ,@body-rest))
)) )
(if wants-next-method-p
(let ((cont (gensym)) ; Variable für die Continuation
(req-dummies ; Liste von reqanz Dummies
(n-gensyms reqanz)
)
(rest-dummy (if (or restp (> optanz 0)) (gensym)))
(lambda-expr `(LAMBDA ,@lambdabody-part1 ,@lambdabody-part2)))
`(; neue Lambda-Liste:
(,cont
,@req-dummies
,@(if rest-dummy `(&REST ,rest-dummy) '())
)
(MACROLET
((CALL-NEXT-METHOD (&REST NEW-ARG-EXPRS)
(IF NEW-ARG-EXPRS
(LIST 'IF ',cont
(LIST* 'FUNCALL ',cont NEW-ARG-EXPRS)
(LIST* '%NO-NEXT-METHOD ',self NEW-ARG-EXPRS)
)
,(if rest-dummy
`(LIST 'IF ',cont
(LIST 'APPLY ',cont
,@(mapcar #'(lambda (x) `',x) req-dummies)
',rest-dummy
)
(LIST 'APPLY '(FUNCTION %NO-NEXT-METHOD)
',self
,@(mapcar #'(lambda (x) `',x) req-dummies)
',rest-dummy
) )
`(LIST 'IF ',cont
(LIST 'FUNCALL ',cont
,@(mapcar #'(lambda (x) `',x) req-dummies)
)
(LIST '%NO-NEXT-METHOD
',self
,@(mapcar #'(lambda (x) `',x) req-dummies)
) )
)
) )
(NEXT-METHOD-P () ',cont)
)
; neuer Body:
,(if rest-dummy
`(APPLY (FUNCTION ,lambda-expr)
,@req-dummies ,rest-dummy
)
`(,lambda-expr ,@req-dummies)
)
))
)
`(,@lambdabody-part1
(MACROLET
((CALL-NEXT-METHOD ()
(ERROR-OF-TYPE 'PROGRAM-ERROR
#L{
DEUTSCH "~S ~S: ~S ist in ~S-Methoden nicht erlaubt."
ENGLISH "~S ~S: ~S is invalid within ~S methods"
FRANCAIS "~S ~S : ~S n'est pas permit dans des méthodes ~S."
}
',caller ',funname 'CALL-NEXT-METHOD ',(first qualifiers)
) )
(NEXT-METHOD-P ()
(ERROR-OF-TYPE 'PROGRAM-ERROR
#L{
DEUTSCH "~S ~S: ~S ist in ~S-Methoden nicht erlaubt."
ENGLISH "~S ~S: ~S is invalid within ~S methods"
FRANCAIS "~S ~S : ~S n'est pas permit dans des méthodes ~S."
}
',caller ',funname 'NEXT-METHOD-P ',(first qualifiers)
)) )
,@lambdabody-part2
))
)) ) ) )
`(MAKE-STANDARD-METHOD
:INITFUNCTION
#'(LAMBDA (,self)
,@(if compile '((DECLARE (COMPILE))))
(%OPTIMIZE-FUNCTION-LAMBDA
,(if wants-next-method-p `(T) `())
,@lambdabody
) )
:WANTS-NEXT-METHOD-P ',wants-next-method-p
:PARAMETER-SPECIALIZERS (LIST ,@(nreverse req-specializer-forms))
:QUALIFIERS ',qualifiers
:SIGNATURE '(,reqanz ,optanz ,restp ,keyp ,keywords ,allowp)
)
) ) ) ) ) )
;; 28.1.6.3. agreement on parameter specializers and qualifiers
(defun methods-agree-p (method1 method2)
(and (equal (std-method-qualifiers method1) (std-method-qualifiers method2))
(specializers-agree-p (std-method-parameter-specializers method1)
(std-method-parameter-specializers method2)
) ) )
(defun specializers-agree-p (specializers1 specializers2)
(and (eql (length specializers1) (length specializers2))
(every #'(lambda (parspec1 parspec2)
(or ; zwei gleiche Klassen?
(eq parspec1 parspec2)
; zwei gleiche EQL-Specializer?
(and (consp parspec1) (consp parspec2)
(eql (second parspec1) (second parspec2))
) ) )
specializers1 specializers2
) ) )
;; 28.1.6.2. applicable methods
(defun method-applicable-p (method required-arguments)
(every #'typep required-arguments (std-method-parameter-specializers method))
)
;; 28.1.7.1. sorting the applicable methods by precedence order
(defun sort-applicable-methods (methods required-arguments argument-order)
(sort (copy-list methods)
#'(lambda (method1 method2) ; method1 < method2 ?
(let ((specializers1 (std-method-parameter-specializers method1))
(specializers2 (std-method-parameter-specializers method2)))
(dolist (arg-index argument-order nil)
(let ((arg (nth arg-index required-arguments))
(psp1 (nth arg-index specializers1))
(psp2 (nth arg-index specializers2)))
(if (consp psp1)
(if (consp psp2)
nil ; (EQL x) = (EQL x)
(return t) ; (EQL x) < <class> ==> method1 < method2
)
(if (consp psp2)
(return nil) ; <class> > (EQL x) ==> method1 > method2
; Zwei Klassen: vergleiche die Position in der CPL von arg:
(let* ((cpl (class-precedence-list (class-of arg)))
(pos1 (position psp1 cpl))
(pos2 (position psp2 cpl)))
(cond ((< pos1 pos2) (return t)) ; method1 < method2
((> pos1 pos2) (return nil)) ; method1 > method2
) )
) ) ) ) ) )
) )
; Für STANDARD Methodenkombination: Aufspalten der Methoden nach Qualifiern
(defun partition-method-list (methods)
(let ((primary-methods '())
(before-methods '())
(after-methods '())
(around-methods '()))
(dolist (method methods)
(let ((quals (std-method-qualifiers method)))
(cond ((equal quals '()) (push method primary-methods))
((equal quals '(:before)) (push method before-methods))
((equal quals '(:after)) (push method after-methods))
((equal quals '(:around)) (push method around-methods))
) ) )
(values
(nreverse primary-methods)
(nreverse before-methods)
(nreverse after-methods)
(nreverse around-methods)
) ) )
;;; Generische Funktionen
; Low-Level-Repräsentation:
; Compilierte Funktionen (Cclosures), bei denen im Flag-Byte des Code-Vektors
; ein bestimmtes Bit gesetzt ist. Hintendran zusätzlich:
; - die Signatur, eine Liste (reqanz optanz restp keywords allowp),
; - die Argument-Precedence-Order, als Liste der Zahlen von 0 bis reqanz-1,
; - die Liste aller Methoden.
; Der Compiler benutzt (bei GENERIC-FLET, GENERIC-LABELS) und der Evaluator
; setzt ebenfalls voraus, daß eine generische Funktion ihre Aufrufkonvention
; nicht ändert.
; Eine generische Funktion mit Signatur (reqanz optanz restp keywords allowp)
; ist von Anfang an (!) eine compilierte Funktion mit
; reqanz required-Parametern
; 0 optionalen Parametern
; &rest genau dann wenn (or (> optanz 0) restp),
; ohne &key.
(defun callinfo (reqanz optanz restp keywords allowp)
(declare (ignore keywords allowp))
(list reqanz 0 (or (> optanz 0) restp) nil nil nil)
)
(defun gf-signature (gf)
(sys::%record-ref gf 3)
)
(defun (setf gf-signature) (new gf)
(setf (sys::%record-ref gf 3) new)
)
(defun gf-argorder (gf)
(sys::%record-ref gf 4)
)
(defun (setf gf-argorder) (new gf)
(setf (sys::%record-ref gf 4) new)
)
(defun gf-methods (gf)
(sys::%record-ref gf 5)
)
(defun (setf gf-methods) (new gf)
(setf (sys::%record-ref gf 5) new)
)
; Der Dispatch-Code für generische Funktionen wird mit
; `(%GENERIC-FUNCTION-LAMBDA ,@lambdabody)
; - ähnlich zu `(FUNCTION (LAMBDA ,@lambdabody)) - gebildet.
; Es dürfen darin nicht vorkommen:
; - Zugriff auf dynamische Variablen, Binden von dynamischen Variablen,
; - nichttriviale BLOCK, RETURN-FROM, TAGBODY, GO Konstrukte,
; - Aufruf globaler Funktionen, die nicht inline sind,
; - Bildung von nicht-autonomen Funktionen (Closures).
; Nötig ist also:
; (declare (inline case eql eq typep
; arrayp bit-vector-p characterp complexp consp floatp
; functionp clos::generic-function-p hash-table-p integerp
; listp null numberp packagep pathnamep sys::logical-pathname-p
; random-state-p rationalp readtablep realp sys::sequencep
; clos::std-instance-p streamp sys::file-stream-p
; sys::synonym-stream-p sys::broadcast-stream-p
; sys::concatenated-stream-p sys::two-way-stream-p
; sys::echo-stream-p sys::string-stream-p stringp symbolp
; vectorp
; class-of cons gethash funcall apply ...
; ) )
; Das Ergebnis ist nicht(!) als eigenständige Funktion aufrufbar, sondern
; bedarf der Nachbearbeitung: Die Konstanten C_0 ... C_(k-1) C_k müssen zu
; #(C_0 ... C_(k-1) . [Rest von C_k]) zusammengefaßt werden, k = 0 oder 1.
; Liefert eine generische Funktion ohne Dispatch-Code. Nicht aufrufbar!!
(let* ((prototype ; eine sinnlose Funktion
#'(lambda (&rest args) (declare (compile) (ignore args))
(tagbody 1 (go 1))
)
)
(prototype-code (sys::%record-ref prototype 1)))
(defun %make-gf (name signature argorder methods)
(sys::%make-closure name prototype-code
(list nil signature argorder methods)
) )
)
#|
; Besser in compiler.lsp??
(defun make-gf (name lambdabody signature argorder methods)
(let ((preliminary
(eval `(LET ()
(DECLARE (COMPILE))
(%GENERIC-FUNCTION-LAMBDA ,@lambdabody)
)
)) )
(sys::%make-closure
name
(sys::closure-codevec preliminary)
(list
(case (sys::%record-length preliminary)
(3 (sys::%record-ref preliminary 2))
(4 (let ((consts (sys::%record-ref preliminary 3)))
(setf (svref consts 0) (sys::%record-ref preliminary 2))
consts
) ) )
signature
argorder
methods
) ) ) )
|#
#|
;; Generische Funktionen mit primitivem Dispatch:
(defun make-slow-gf (name signature argorder methods)
(let* ((final (%make-gf name signature argorder methods))
(preliminary
(eval `(LET ((GF ',final))
(DECLARE (COMPILE))
(%GENERIC-FUNCTION-LAMBDA (&REST ARGS)
(DECLARE (INLINE APPLY))
(APPLY 'SLOW-FUNCALL-GF GF ARGS)
) )
)) )
(setf (sys::%record-ref final 1) (sys::closure-codevec preliminary))
(setf (sys::%record-ref final 2)
(case (sys::%record-length preliminary)
(3 (sys::%record-ref preliminary 2))
(4 (let ((consts (sys::%record-ref preliminary 3)))
(setf (svref consts 0) (sys::%record-ref preliminary 2))
consts
) ) )
)
final
) )
(let* ((prototype
(let ((gf 'magic))
(declare (compile))
(%generic-function-lambda (&rest args)
(declare (inline apply))
(apply 'slow-funcall-gf gf args)
) ) )
(prototype-code (sys::%record-ref prototype 1))
(prototype-consts (sys::%record-ref prototype 3)))
(defun finalize-slow-gf (gf)
(setf (sys::%record-ref gf 1) prototype-code)
(setf (sys::%record-ref gf 2) (substitute gf 'magic prototype-consts))
)
(defun gf-never-called-p (gf) (eq (sys::%record-ref gf 1) prototype-code))
(defun warn-if-gf-already-called (gf) )
)
; Aufruf einer generischen Funktion
(defun slow-funcall-gf (gf &rest args)
(let ((reqanz (first (gf-signature gf)))
(arg-order (gf-argorder gf))
(methods (gf-methods gf)))
(unless (>= (length args) reqanz)
(error-of-type 'error
#L{
DEUTSCH "Zu wenig Argumente für ~S: ~S"
ENGLISH "Too few arguments to ~S: ~S"
FRANCAIS "Trop peu d'arguments pour ~S : ~S"
}
gf args
) )
(let ((req-args (subseq args 0 reqanz)))
; Determine the effective method:
; 1. Select the applicable methods:
(setq methods
(remove-if-not #'(lambda (method) (method-applicable-p method req-args))
methods
) )
(when (null methods)
(return-from slow-funcall-gf (apply #'no-applicable-method gf args))
)
; 2. Sort the applicable methods by precedence order:
(setq methods (sort-applicable-methods methods req-args arg-order))
; 3. Apply method combination:
; Nur STANDARD Methoden-Kombination ist implementiert.
; Aufspalten in einzelne Methoden-Typen:
(multiple-value-bind (primary-methods before-methods after-methods around-methods)
(partition-method-list methods)
(when (null primary-methods)
(return-from slow-funcall-gf (apply #'no-primary-method gf args))
)
; Methoden zu einer "effektiven Methode" kombinieren:
(labels ((ef-1 (primary-methods before-methods after-methods around-methods)
(if (null around-methods)
(ef-2 primary-methods before-methods after-methods)
(let* ((1method (first around-methods))
(1function (std-method-function 1method)))
(if (std-method-wants-next-method-p 1method)
(let ((next-ef
(ef-1 primary-methods before-methods after-methods (rest around-methods))
))
#'(lambda (&rest args) (apply 1function next-ef args))
)
#'(lambda (&rest args) (apply 1function args))
) ) ) )
(ef-2 (primary-methods before-methods after-methods)
(if (null after-methods)
(ef-3 primary-methods before-methods)
(let* ((1method (first after-methods))
(1function (std-method-function 1method)))
(let ((next-ef (ef-2 primary-methods before-methods (rest after-methods))))
#'(lambda (&rest args) (multiple-value-prog1 (apply next-ef args) (apply 1function args)))
) ) ) )
(ef-3 (primary-methods before-methods)
(if (null before-methods)
(ef-4 primary-methods)
(let* ((1method (first before-methods))
(1function (std-method-function 1method)))
(let ((next-ef (ef-3 primary-methods (rest before-methods))))
#'(lambda (&rest args) (progn (apply 1function args) (apply next-ef args)))
) ) ) )
(ef-4 (primary-methods)
(if (null primary-methods)
nil ; keine Funktion, NEXT-METHOD-P reagiert darauf
(let* ((1method (first primary-methods))
(1function (std-method-function 1method)))
(if (std-method-wants-next-method-p 1method)
(let ((next-ef (ef-4 (rest primary-methods))))
#'(lambda (&rest args) (apply 1function next-ef args))
)
#'(lambda (&rest args) (apply 1function args))
)) ) ) )
(let ((ef (ef-1 primary-methods before-methods after-methods around-methods)))
; Keyword-Check (28.1.6.4., 28.1.6.5.) ??
; Effektive Methode aufrufen:
(funcall ef args)
) ) ) ) ) )
|#
;; Generische Funktionen mit optimiertem Dispatch:
(defun make-fast-gf (name signature argorder)
(let ((gf (%make-gf name signature argorder '())))
(finalize-fast-gf gf)
gf
) )
(let ((prototype-table (make-hash-table :test #'equal)))
(defun finalize-fast-gf (gf)
(let* ((signature (gf-signature gf))
(reqanz (first signature))
(restp (or (third signature) (> (second signature) 0)))
(hash-key (cons reqanz restp))
(prototype
(or (gethash hash-key prototype-table)
(setf (gethash hash-key prototype-table)
(let* ((reqvars (n-gensyms reqanz))
(proto-gf
(eval `(LET ((GF 'MAGIC))
(DECLARE (COMPILE))
(%GENERIC-FUNCTION-LAMBDA (,@reqvars ,@(if restp '(&REST ARGS) '()))
(DECLARE (INLINE APPLY))
(APPLY 'INITIAL-FUNCALL-GF GF ,@reqvars ,(if restp `ARGS `'NIL))
) )
)) )
; (sys::%record-ref proto-gf 1) müssen wir aufbewahren.
; (sys::%record-ref proto-gf 3) = #(NIL INITIAL-FUNCALL-GF MAGIC)
(sys::%record-ref proto-gf 1)
)) ) ) )
(setf (sys::%record-ref gf 1) prototype)
(setf (sys::%record-ref gf 2) (vector 'NIL 'INITIAL-FUNCALL-GF gf))
) )
(defun gf-never-called-p (gf)
(let* ((signature (gf-signature gf))
(reqanz (first signature))
(restp (or (third signature) (> (second signature) 0)))
(hash-key (cons reqanz restp))
(prototype (gethash hash-key prototype-table)))
(eq (sys::%record-ref gf 1) prototype)
) )
(defun warn-if-gf-already-called (gf)
(unless (gf-never-called-p gf)
(warn
#L{
DEUTSCH "Die generische Funktion ~S wird modifiziert, wurde aber bereits aufgerufen."
ENGLISH "The generic function ~S is being modified, but has already been called."
FRANCAIS "On change la fonction générique ~S qui a déjà été appelée."
}
gf
) ) )
)
; Der eigentliche Dispatch-Code wird erst beim ersten Aufruf der funktion
; berechnet, um aufeinanderfolgende Methoden-Definitionen nicht zu teuer
; zu machen.
; Erster Aufruf einer generischen Funktion:
(defun initial-funcall-gf (gf &rest args)
(install-dispatch gf)
(apply gf args)
)
; Installiert den endgültigen Dispatch-Code in eine generische Funktion.
(defun install-dispatch (gf)
(multiple-value-bind (bindings lambdabody) (compute-dispatch gf)
(let ((preliminary
(eval `(LET ,bindings
(DECLARE (COMPILE))
(%GENERIC-FUNCTION-LAMBDA ,@lambdabody)
)
)) )
(setf (sys::%record-ref gf 1) (sys::%record-ref preliminary 1))
(setf (sys::%record-ref gf 2)
(let ((consts (sys::%record-ref preliminary 3)))
(setf (svref consts 0) (sys::%record-ref preliminary 2))
consts
) )
) ) )
; Berechnet den Dispatch-Code einer generischen Funktion.
; Er hat folgendes Aussehen:
; (LAMBDA (variablen) ; die required einzeln, alles andere mit &rest
; (DECLARE (INLINE ...)) ; alles inline wegen %GENERIC-FUNCTION-LAMBDA
; If-Kaskaden, dabei werden EQL-Parameter-Specializer und die meisten
; Builtin-Klassen per TYPEP inline abgefragt.
; Für die anderen required-Parameter wird CLASS-OF aufgerufen, die Ergebnisse
; gesammelt und als Index in eine Hash-Tabelle genommen. Dort steht die
; effektive Methode:
; (LET ((EM (GETHASH (CONS (CLASS-OF ...) ...) ht1)))
; (WHEN EM (RETURN-FROM block (APPLY EM Argumente)))
; )
; Wenn das nicht gelungen ist:
; (APPLY 'COMPUTE-AND-ADD-EFFECTIVE-METHOD gf Argumente)
; )
(defun compute-dispatch (gf)
(let* ((signature (gf-signature gf))
(req-anz (first signature))
(req-vars (n-gensyms req-anz))
(restp (or (third signature) (> (second signature) 0)))
(rest-var (if restp (gensym)))
(apply-fun (if restp 'APPLY 'FUNCALL))
(apply-args `(,@req-vars ,@(if restp `(,rest-var) '())))
(arg-order (gf-argorder gf))
(methods (gf-methods gf))
(block-name (gensym))
(maybe-no-applicable nil)
(ht-vars '())) ; Liste von Hashtabellen-Variablen und ihren Inits
; Wir machen eine Rekursion über die Argumente.
(labels
((recursion (remaining-args ; ein nthcdr von arg-order
remaining-methods ; Teilliste von methods
class-of-exprs ; Liste von CLASS-OF Expressions
)
(if (null remaining-methods)
(progn
(setq maybe-no-applicable t)
'NIL ; nichts tun, später NO-APPLICABLE-METHOD aufrufen
)
(if (null remaining-args)
; alle Argumente abgearbeitet
#| ; benutze GETHASH :
(let ((ht-var (gensym))
(n (length class-of-exprs)) ; indiziere mit n-Tupeln
ht-init ; Expression zum Initialisieren von ht-var
ht-key-binding ; Bindung einer Variablen an ein n-Tupel
em-expr ; Expression zum Auffinden der EM
setf-em-expr ; Expression-Teil zum Setzen der EM
)
(if (eql n 0)
(setq ht-init 'NIL
ht-key-binding '()
em-expr ht-var
setf-em-expr `(SETQ ,ht-var)
)
(let ((tuple-var (gensym)))
(setq ht-init
`(MAKE-HASH-TABLE
:TEST (FUNCTION ,(if (eql n 1) 'EQ 'EQUAL))
)
ht-key-binding
`((,tuple-var
,(let ((tuple-fun (hash-tuple-function n)))
(if (member '&rest (second tuple-fun))
`(,tuple-fun ,@(reverse class-of-exprs))
; kein &rest -> kann optimieren
; (der Compiler kann's noch nicht so gut)
(sublis (mapcar #'cons (second tuple-fun) (reverse class-of-exprs))
(third tuple-fun)
) ) )
))
em-expr
`(GETHASH ,tuple-var ,ht-var)
setf-em-expr
; `(SETF (GETHASH ,tuple-var ,ht-var)) ginge auch;
; das Folgende spart aber zwei temporäre Variablen:
`(SYSTEM::PUTHASH ,tuple-var ,ht-var)
) ) )
(push (list ht-var ht-init) ht-vars)
`(LET ,ht-key-binding
(RETURN-FROM ,block-name
(,apply-fun
(OR ,em-expr
(,@setf-em-expr
(,apply-fun 'COMPUTE-EFFECTIVE-METHOD ',gf nil
,@apply-args
) ) )
,@apply-args
) ) )
)
|# ; benutze CLASS-GETHASH und CLASS-TUPLE-GETHASH :
(let ((ht-var (gensym))
(n (length class-of-exprs)) ; indiziere mit n-Tupeln
ht-init ; Expression zum Initialisieren von ht-var
em-expr ; Expression zum Auffinden der EM
setf-em-expr ; Expression-Teil zum Setzen der EM
)
(if (eql n 0)
(setq ht-init 'NIL
em-expr ht-var
setf-em-expr `(SETQ ,ht-var)
)
(setq class-of-exprs
(reverse class-of-exprs)
ht-init
`(MAKE-HASH-TABLE
:TEST (FUNCTION ,(if (eql n 1) 'EQ 'EQUAL))
)
em-expr
(if (eql n 1) ; je nachdem welches schneller ist
; `(GETHASH ,@class-of-exprs ,ht-var) ==
`(CLASS-GETHASH ,ht-var ,(second (first class-of-exprs)))
`(CLASS-TUPLE-GETHASH ,ht-var ,@(mapcar #'second class-of-exprs))
)
setf-em-expr
`(SYSTEM::PUTHASH
,(let ((tuple-fun (hash-tuple-function n)))
(if (member '&rest (second tuple-fun))
`(,tuple-fun ,@class-of-exprs)
; kein &rest -> kann optimieren
; (der Compiler kann's noch nicht so gut)
(sublis (mapcar #'cons (second tuple-fun) class-of-exprs)
(third tuple-fun)
) ) )
,ht-var
)
) )
(push (list ht-var ht-init) ht-vars)
`(RETURN-FROM ,block-name
(,apply-fun
(OR ,em-expr
(,@setf-em-expr
(,apply-fun 'COMPUTE-EFFECTIVE-METHOD ',gf nil
,@apply-args
) ) )
,@apply-args
) )
)
; nächstes Argument abarbeiten:
(let* ((arg-index (first remaining-args))
(arg-var (nth arg-index req-vars))
(eql-cases ; alle EQL-Specializer für dieses Argument
(remove-duplicates
(mapcar #'second
(remove-if-not #'consp
(mapcar #'(lambda (m)
(nth arg-index
(std-method-parameter-specializers m)
) )
remaining-methods
) ) )
:test #'eql
) )
(eql-caselist ; Fall-Liste für CASE
(mapcar
#'(lambda (object)
`((,object)
,(recursion
(cdr remaining-args)
(remove-if-not
#'(lambda (m)
(typep object
(nth arg-index
(std-method-parameter-specializers m)
) ) )
remaining-methods
)
class-of-exprs
)
)
)
eql-cases
)) )
; Fürs weitere brauchen wir die EQL-Methoden nicht mehr zu
; betrachten.
(setq remaining-methods
(remove-if
#'(lambda (m)
(consp
(nth arg-index
(std-method-parameter-specializers m)
) ) )
remaining-methods
) )
((lambda (other-cases)
(if eql-caselist
`(CASE ,arg-var ,@eql-caselist (T ,other-cases))
other-cases
) )
(let ((classes
(delete <t>
(delete-duplicates
(mapcar #'(lambda (m)
(nth arg-index
(std-method-parameter-specializers m)
) )
remaining-methods
)) ) ) )
; Falls alle Klassen, auf die zu testen ist,
; Built-In-Klassen sind, machen wir den Typ-Dispatch
; inline. Denn in der Hierarchie der Built-In-Klassen
; (die außer NULL und VECTOR keine mehrfache Vererbung
; kennt) sind alle CPLs konsistent. Man kann daher mit
; (subclassp (class-of obj) class) == (typep obj class)
; arbeiten.
; Im anderen Fall ist sowieso ein Hash-Tabellen-Zugriff
; nötig, dann sparen wir uns den Test auf die Built-In-
; Klassen und beziehen ihn in die Hash-Tabelle ein.
(if (and (every #'bc-p classes)
(<= (length classes) 5) ; zu viele Fälle -> hashen
)
(labels
((built-in-subtree (class remaining-classes remaining-methods)
; behandelt die Fälle, daß das Argument der Klasse
; class angehört und auf Zugehörigkeit zu einer der
; remaining-classes abgeprüft werden muß.
; (Man kann voraussetzen, daß (bc-and class x) /= nil
; für alle x aus remaining-classes.)
(if (null remaining-classes)
; Keine Fallunterscheidung mehr nötig
(recursion
(cdr remaining-args)
(remove-if-not
#'(lambda (m)
(bc-and class
(nth arg-index
(std-method-parameter-specializers m)
) ) )
remaining-methods
)
class-of-exprs
)
; Fallunterscheidung mittels TYPEP
(let ((test-class (first remaining-classes)))
; besser test-class maximal wählen:
(loop
(let ((other-class
(find-if
#'(lambda (x)
(and (subclassp test-class x)
(not (eq test-class x))
) )
remaining-classes
)) )
(unless other-class (return))
(setq test-class other-class)
) )
`(IF (TYPEP ,arg-var ',(class-classname test-class))
,(built-in-subtree
(bc-and class test-class) ; /= nil !
(remove 'nil
(mapcar
#'(lambda (x) (bc-and x test-class))
(remove test-class remaining-classes)
) )
(remove-if-not
#'(lambda (m)
(bc-and
(nth arg-index
(std-method-parameter-specializers m)
)
test-class
) )
remaining-methods
) )
,(built-in-subtree
(bc-and-not class test-class) ; /= nil !
(remove 'nil
(mapcar
#'(lambda (x) (bc-and-not x test-class))
remaining-classes
) )
(remove-if-not
#'(lambda (m)
(bc-and-not
(nth arg-index
(std-method-parameter-specializers m)
)
test-class
) )
remaining-methods
) )
)
)) ) )
(built-in-subtree <t> classes remaining-methods)
)
(recursion
(cdr remaining-args)
remaining-methods
(cons `(CLASS-OF ,arg-var) class-of-exprs)
)) ) )
)) ) ) )
(let ((form (recursion arg-order methods '())))
(values
; bindings
(nreverse ht-vars)
; lambdabody
`((,@req-vars ,@(if restp `(&REST ,rest-var) '()))
(DECLARE
(INLINE ; für die Fallunterscheidungen:
CASE EQL EQ TYPEP
; bei der Inline-Expansion von TYPEP auf Built-In-Klassen:
ARRAYP BIT-VECTOR-P CHARACTERP COMPLEXP CONSP FLOATP
FUNCTIONP CLOS::GENERIC-FUNCTION-P HASH-TABLE-P INTEGERP
LISTP NULL NUMBERP PACKAGEP PATHNAMEP SYS::LOGICAL-PATHNAME-P
RANDOM-STATE-P RATIONALP READTABLEP REALP SYS::SEQUENCEP
CLOS::STD-INSTANCE-P STREAMP SYS::FILE-STREAM-P
SYS::SYNONYM-STREAM-P SYS::BROADCAST-STREAM-P
SYS::CONCATENATED-STREAM-P SYS::TWO-WAY-STREAM-P
SYS::ECHO-STREAM-P SYS::STRING-STREAM-P STRINGP SYMBOLP
VECTORP
; Finden und Aufruf der effektiven Methode:
CLASS-OF CONS GETHASH CLASS-GETHASH CLASS-TUPLE-GETHASH
SYS::PUTHASH FUNCALL APPLY
) )
(BLOCK ,block-name
,form
,@(if maybe-no-applicable
`((,apply-fun 'NO-APPLICABLE-METHOD ',gf ,@apply-args))
)
))
) ) ) ) )
; Unsere EQUAL-Hashfunktion schaut in Cons-Bäume nur bis Tiefe 4 hinein.
; Ein Tupel aus maximal 16 Elementen kann zu einem solchen Baum gemacht werden.
(defun hash-tuple-function (n) ; n>0
(case n
(1 '(lambda (t1) t1))
(2 '(lambda (t1 t2) (cons t1 t2)))
(3 '(lambda (t1 t2 t3) (cons t1 (cons t2 t3))))
(4 '(lambda (t1 t2 t3 t4) (cons (cons t1 t2) (cons t3 t4))))
(5 '(lambda (t1 t2 t3 t4 t5) (cons (cons t1 t2) (cons t3 (cons t4 t5)))))
(6 '(lambda (t1 t2 t3 t4 t5 t6)
(cons (cons t1 t2) (cons (cons t3 t4) (cons t5 t6))) ))
(7 '(lambda (t1 t2 t3 t4 t5 t6 t7)
(cons (cons t1 (cons t2 t3)) (cons (cons t4 t5) (cons t6 t7))) ))
(8 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8)
(cons (cons (cons t1 t2) (cons t3 t4)) (cons (cons t5 t6) (cons t7 t8))) ))
(9 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9)
(cons (cons (cons t1 t2) (cons t3 t4)) (cons (cons t5 t6) (cons t7 (cons t8 t9)))) ))
(10 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10)
(cons (cons (cons t1 t2) (cons t3 t4)) (cons (cons t5 t6) (cons (cons t7 t8) (cons t9 t10)))) ))
(11 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11)
(cons (cons (cons t1 t2) (cons t3 t4)) (cons (cons t5 (cons t6 t7)) (cons (cons t8 t9) (cons t10 t11)))) ))
(12 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12)
(cons (cons (cons t1 t2) (cons t3 t4)) (cons (cons (cons t5 t6) (cons t7 t8)) (cons (cons t9 t10) (cons t11 t12)))) ))
(13 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13)
(cons (cons (cons t1 t2) (cons t3 (cons t4 t5))) (cons (cons (cons t6 t7) (cons t8 t9)) (cons (cons t10 t11) (cons t12 t13)))) ))
(14 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14)
(cons (cons (cons t1 t2) (cons (cons t3 t4) (cons t5 t6))) (cons (cons (cons t7 t8) (cons t9 t10)) (cons (cons t11 t12) (cons t13 t14)))) ))
(15 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15)
(cons (cons (cons t1 (cons t2 t3)) (cons (cons t4 t5) (cons t6 t7))) (cons (cons (cons t8 t9) (cons t10 t11)) (cons (cons t12 t13) (cons t14 t15)))) ))
(16 '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16)
(cons (cons (cons (cons t1 t2) (cons t3 t4)) (cons (cons t5 t6) (cons t7 t8))) (cons (cons (cons t9 t10) (cons t11 t12)) (cons (cons t13 t14) (cons t15 t16)))) ))
(t '(lambda (t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 &rest more-t)
(cons (cons (cons (cons t1 t2) (cons t3 t4)) (cons (cons t5 t6) (cons t7 t8))) (cons (cons (cons t9 t10) (cons t11 t12)) (cons (cons t13 t14) more-t))) ))
) )
; Berechnet die effektive Methode zu gegebenen Argumenten.
; Es ist eigentlich die effektive Methode zu allen Argumenten, die dieselben
; EQL- und Klassen-Einschränkungen haben wie die gegebenen Argumente, aber
; darum hat sich compute-dispatch schon gekümmert.
(defun compute-effective-method (gf probe &rest args)
(let* ((signature (gf-signature gf))
(req-anz (first signature))
(req-vars (n-gensyms req-anz))
(req-args (subseq args 0 req-anz))
(restp (or (third signature) (> (second signature) 0)))
(rest-var (if restp (gensym)))
(apply-fun (if restp 'APPLY 'FUNCALL))
(apply-args `(,@req-vars ,@(if restp `(,rest-var) '())))
(lambdalist `(,@req-vars ,@(if restp `(&REST ,rest-var) '())))
(opt-vars '())
(key-vars '())
(lambdalist-keypart '())
(arg-order (gf-argorder gf))
(methods (gf-methods gf)))
; Determine the effective method:
; 1. Select the applicable methods:
(setq methods
(remove-if-not #'(lambda (method) (method-applicable-p method req-args))
methods
) )
(when (null methods)
(apply #'no-applicable-method gf args)
(if probe
(error-of-type 'error
#L{
DEUTSCH ""
ENGLISH "No method for generic function: ~S"
FRANCAIS ""
}
gf)
(return-from compute-effective-method
(progn
(install-dispatch gf)
(apply #'compute-effective-method gf t args)
))))
; 28.1.6.4., 28.1.6.5.: Keyword arguments in generic functions
(when restp
; Die generische Funktion hat &REST oder &KEY, also auch alle Methoden.
; "If the lambda-list of ... the generic function definition contains
; &allow-other-keys, all keyword arguments are accepted."
(unless (fifth signature)
; "The specific set of keyword arguments accepted ... varies according
; to the applicable methods."
(let ((signatures (mapcar #'std-method-signature methods)))
; "A method that has &rest but not &key does not affect the set of
; acceptable keyword srguments."
(setq signatures (delete-if-not #'fourth signatures))
; Keine Methode mit &key -> keine Einschränkung der Argumente.
(unless (null signatures)
; "If the lambda-list of any applicable method ... contains
; &allow-other-keys, all keyword arguments are accepted."
(unless (some #'sixth signatures)
; "The set of keyword arguments accepted for a particular call
; is the union of the keyword arguments accepted by all
; applicable methods and the keyword arguments mentioned after
; &key in the generic function definition."
(let ((keywords
(remove-duplicates
(append (fourth signature) (mapcap #'fifth signatures))
:from-end t
)) )
(setq opt-vars (n-gensyms (second signature)))
(setq key-vars (n-gensyms (length keywords)))
(setq lambdalist-keypart
`(&KEY
,@(mapcar #'(lambda (kw var) `((,kw ,var)))
keywords key-vars
)
)
) ) ) ) ) ) )
; 2. Sort the applicable methods by precedence order:
(setq methods (sort-applicable-methods methods req-args arg-order))
; 3. Apply method combination:
; Nur STANDARD Methoden-Kombination ist implementiert.
; Aufspalten in einzelne Methoden-Typen:
(multiple-value-bind (primary-methods before-methods after-methods around-methods)
(partition-method-list methods)
(when (null primary-methods)
(apply #'no-primary-method gf args)
(if probe
(error-of-type 'error
#L{
DEUTSCH ""
ENGLISH "No primary method for generic function: ~S"
FRANCAIS ""
}
gf)
(return-from compute-effective-method
(progn
(install-dispatch gf)
(apply #'compute-effective-method gf t args)
))))
; Methoden zu einer "effektiven Methode" kombinieren:
(labels ((ef-1 (primary-methods before-methods after-methods around-methods)
(if (null around-methods)
(ef-2 primary-methods before-methods after-methods)
(let* ((1method (first around-methods))
(1function (std-method-function 1method)))
(if (std-method-wants-next-method-p 1method)
(let ((next-ef
(ef-1 primary-methods before-methods after-methods (rest around-methods))
))
`(,apply-fun ',1function
#'(LAMBDA ,lambdalist ,next-ef)
,@apply-args
)
)
`(,apply-fun ',1function ,@apply-args)
) ) ) )
(ef-2 (primary-methods before-methods after-methods)
(let ((next-ef (ef-3 primary-methods after-methods)))
(if (null before-methods)
next-ef
`(PROGN
,@(mapcar
#'(lambda (method)
`(,apply-fun ',(std-method-function method)
,@apply-args
)
)
before-methods ; most-specific-first
)
,next-ef
)
) ) )
(ef-3 (primary-methods after-methods)
(let ((next-ef (ef-4 primary-methods)))
(if (null after-methods)
next-ef
`(MULTIPLE-VALUE-PROG1
,next-ef
,@(mapcar
#'(lambda (method)
`(,apply-fun ',(std-method-function method)
,@apply-args
)
)
(reverse after-methods) ; most-specific-last
)
)
) ) )
(ef-4 (primary-methods)
(let* ((1method (first primary-methods))
(1function (std-method-function 1method)))
(if (std-method-wants-next-method-p 1method)
(let ((next-ef-fun (ef-5 (rest primary-methods))))
`(,apply-fun ',1function ,next-ef-fun ,@apply-args)
)
`(,apply-fun ',1function ,@apply-args)
) ) )
(ef-5 (primary-methods)
(if (null primary-methods)
'NIL ; keine Funktion, NEXT-METHOD-P reagiert darauf
`#'(LAMBDA ,lambdalist ,(ef-4 primary-methods))
)) )
(let* ((ef-form (ef-1 primary-methods before-methods after-methods around-methods))
(ef-fun (if (and (eq (car ef-form) apply-fun)
(equal (cddr ef-form) apply-args)
(null lambdalist-keypart)
)
(cadr ef-form)
`#'(LAMBDA
,@(if (null opt-vars)
`(,(append lambdalist lambdalist-keypart)
,@(if key-vars `((DECLARE (IGNORE ,@key-vars))))
)
`(,lambdalist
(APPLY #'(LAMBDA (&OPTIONAL ,@opt-vars ,@lambdalist-keypart)
(DECLARE (IGNORE ,@opt-vars ,@key-vars))
)
,rest-var
))
)
,ef-form
)
)) )
; (eval ef-fun) ; interpretiert
; (eval `(LOCALLY (DECLARE (COMPILE)) ,ef-fun)) ; compiliert
(eval `(LET () (DECLARE (COMPILE) (INLINE FUNCALL APPLY)) ,ef-fun))
) ) ) ) )
; Grausamer Hack (28.1.9.2.):
; MAKE-INSTANCE muß über die Methoden von INITIALIZE-INSTANCE und
; SHARED-INITIALIZE Bescheid wissen.
; REINITIALIZE-INSTANCE muß über die Methoden von REINITIALIZE-INSTANCE und
; SHARED-INITIALIZE Bescheid wissen.
(defvar |#'initialize-instance| nil)
(defvar |#'reinitialize-instance| nil)
(defvar |#'shared-initialize| nil)
; Hinzufügen einer Methode zu einer generischen Funktion:
(defun std-add-method (gf method)
; 28.1.6.4. congruent lambda lists
(let ((gf-sign (gf-signature gf)) ; (reqanz optanz restp keywords allowp)
(m-sign (std-method-signature method))) ; (reqanz optanz restp keyp keywords allowp)
(unless (= (first m-sign) (first gf-sign))
(error-of-type 'error
#L{
DEUTSCH "~S hat ~S, ~S hat aber ~S Required-Parameter."
ENGLISH "~S has ~S, but ~S has ~S required parameters"
FRANCAIS "~S reçoit ~S arguments obligatoires, mais ~S en reçoit ~S."
}
method (first m-sign) gf (first gf-sign)
) )
(unless (= (second m-sign) (second gf-sign))
(error-of-type 'error
#L{
DEUTSCH "~S hat ~S, ~S hat aber ~S optionale Parameter."
ENGLISH "~S has ~S, but ~S has ~S optional parameters"
FRANCAIS "~S reçoit ~S arguments facultatifs, mais ~S en reçoit ~S."
}
method (second m-sign) gf (second gf-sign)
) )
(when (and (third m-sign) (not (third gf-sign)))
(error-of-type 'error
#L{
DEUTSCH "~S hat &REST oder &KEY, ~S jedoch nicht."
ENGLISH "~S has &REST or &KEY, but ~S hasn't."
FRANCAIS "~S spécifie &REST ou &KEY, mais ~S pas."
}
method gf
) )
(when (and (third gf-sign) (not (third m-sign)))
(error-of-type 'error
#L{
DEUTSCH "~S hat &REST oder &KEY, ~S jedoch nicht."
ENGLISH "~S has &REST or &KEY, but ~S hasn't."
FRANCAIS "~S spécifie &REST ou &KEY, mais ~S pas."
}
gf method
) )
(when (fourth gf-sign) ; gf hat Keywords?
; ja -> Methode muß sie akzeptieren:
(unless (if (fourth m-sign) ; Methode hat &key ?
(or (sixth m-sign) ; Methode muß &allow-other-keys haben oder
(subsetp (fourth gf-sign) (fifth m-sign)) ; die Keywords aufzählen
)
(third m-sign) ; Methode muß &rest haben!
)
(error-of-type 'error
#L{
DEUTSCH "~S akzeptiert die Keywords ~S von ~S nicht."
ENGLISH "~S doesn't accept the keywords ~S of ~S"
FRANCAIS "~S n'accepte pas les mots clé ~S de ~S."
}
method (fourth gf-sign) gf
) ) )
)
; method kopieren, damit man gf eintragen kann:
(when (std-method-wants-next-method-p method)
(setq method (copy-standard-method method))
(setf (std-method-function method) nil)
(setf (std-method-gf method) gf)
)
; function aus initfunction bestimmen:
(when (null (std-method-function method))
(let ((h (funcall (std-method-initfunction method) method)))
(setf (std-method-function method) (car h))
(when (car (cdr h)) ; konnte die Variable ",cont" wegoptimiert werden?
(setf (std-method-wants-next-method-p method) nil)
) ) )
; Methode ist fertig. Eintragen:
(warn-if-gf-already-called gf)
(let ((old-method (find method (gf-methods gf) :test #'methods-agree-p)))
(cond ((eq gf |#'initialize-instance|) (note-ii-change method))
((eq gf |#'reinitialize-instance|) (note-ri-change method))
((eq gf |#'shared-initialize|) (note-si-change method))
)
(setf (gf-methods gf)
(cons method
(if old-method
(progn
(warn
#L{
DEUTSCH "Methode ~S in ~S wird ersetzt."
ENGLISH "Replacing method ~S in ~S"
FRANCAIS "On remplace la méthode ~S dans ~S."
}
old-method gf
)
(remove old-method (gf-methods gf))
)
(gf-methods gf)
) ) )
(finalize-fast-gf gf)
)
gf
)
; Entfernen einer Methode von einer generischen Funktion:
(defun std-remove-method (gf method)
(let ((old-method (find (std-method-initfunction method) (gf-methods gf)
:key #'std-method-initfunction)))
(when old-method
(warn-if-gf-already-called gf)
(warn
#L{
DEUTSCH "Methode ~S in ~S wird entfernt."
ENGLISH "Removing method ~S in ~S"
FRANCAIS "On retire la méthode ~S de ~S."
}
old-method gf
)
(cond ((eq gf |#'initialize-instance|) (note-ii-change method))
((eq gf |#'reinitialize-instance|) (note-ri-change method))
((eq gf |#'shared-initialize|) (note-si-change method))
)
(setf (gf-methods gf) (remove old-method (gf-methods gf)))
(finalize-fast-gf gf)
) )
gf
)
; Aufsuchen einer Methode in einer generischen Funktion:
(defun std-find-method (gf qualifiers specializers &optional (errorp t))
; sozusagen
; (find hypothetical-method (gf-methods gf) :test #'methods-agree-p)
; vgl. methods-agree-p
(dolist (method (gf-methods gf))
(when (and (equal (std-method-qualifiers method) qualifiers)
(specializers-agree-p (std-method-parameter-specializers method)
specializers
) )
(return-from std-find-method method)
) )
(if errorp
(error-of-type 'error
#L{
DEUTSCH "~S hat keine Methode mit Bestimmern ~:S und Spezialierung ~S."
ENGLISH "~S has no method with qualifiers ~:S and specializers ~S"
FRANCAIS "~S n'a pas de méthode qualifiée ~:S qui est spécialisée sur ~S."
}
gf qualifiers specializers
)
nil
) )
;;; DEFMETHOD
(defmacro defmethod (funname &rest method-description &environment env)
(unless (function-name-p funname)
(error-of-type 'program-error
#L{
DEUTSCH "~S: Der Name einer Funktion muß ein Symbol sein, nicht: ~S"
ENGLISH "~S: the name of a function must be a symbol, not ~S"
FRANCAIS "~S : Le nom d'une fonction doit être un symbole et non ~S"
}
'defmethod funname
) )
`(LET ()
(EVAL-WHEN (COMPILE) (COMPILER::C-DEFUN ',funname))
(DO-DEFMETHOD ',funname
,(analyze-method-description 'defmethod funname method-description env)
) )
)
(defun do-defmethod (funname method)
(std-add-method
(if (fboundp funname)
(let ((gf (fdefinition funname)))
(if (clos::generic-function-p gf)
gf
(error-of-type 'error
#L{
DEUTSCH "~S bezeichnet keine generische Funktion."
ENGLISH "~S doesn't name a generic function"
FRANCAIS "~S n'est pas ne nom d'une fonction générique."
}
funname
) ) )
(setf (fdefinition funname)
(let ((signature (std-method-signature method)))
(make-fast-gf funname
; GF-Signatur aus der Methoden-Signatur bestimmen:
(list (first signature) ; reqanz
(second signature) ; optanz
(third signature) ; restp
'() ; keywords
nil ; allowp
)
; argorder := (0 ... reqanz-1)
(countup (first signature))
) ) )
)
method
)
method
)
; n --> Liste (0 ... n-1)
(defun countup (n)
(do* ((count n (1- count))
(l '() (cons count l)))
((eql count 0) l)
) )
;; Für DEFGENERIC, GENERIC-FUNCTION, GENERIC-FLET, GENERIC-LABELS,
;; WITH-ADDED-METHODS
; caller: Symbol
; funname: Funktionsname, Symbol oder (SETF symbol)
; lambdalist: Lambdaliste der generischen Funktion
; options: (option*)
; --> signature, argorder, method-forms, docstring
(defun analyze-defgeneric (caller funname lambdalist options env)
(unless (function-name-p funname)
(error-of-type 'program-error
#L{
DEUTSCH "~S: Der Name einer Funktion muß ein Symbol sein, nicht: ~S"
ENGLISH "~S: the name of a function must be a symbol, not ~S"
FRANCAIS "~S : Le nom d'une fonction doit être un symbole et non ~S"
}
caller funname lambdalist
) )
; Lambdaliste parsen:
(multiple-value-bind (reqanz req-vars optanz restp keywords allowp)
(analyze-defgeneric-lambdalist caller funname lambdalist)
; Optionen abarbeiten:
(let ((method-forms '())
(argorders nil)
(docstrings nil))
(dolist (option options)
(unless (listp option)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Das ist keine ~S-Option: ~S"
ENGLISH "~S ~S: not a ~S option: ~S"
FRANCAIS "~S ~S : Ceci n'est pas une option ~S: ~S"
}
caller funname 'defgeneric option
) )
(case (first option)
(DECLARE
(unless (every
#'(lambda (x) (and (consp x) (eq (first x) 'OPTIMIZE)))
(rest option)
)
(warn
#L{
DEUTSCH "~S ~S: Erlaubt sind nur ~S-Deklarationen: ~S"
ENGLISH "~S ~S: Only ~S declarations are permitted: ~S"
FRANCAIS "~S ~S : Seules les déclarations ~S sont permises: ~S"
}
caller funname 'optimize option
) )
; Die Deklaration wird ignoriert.
; Der Compiler ignoriert sie sowieso.
)
(:ARGUMENT-PRECEDENCE-ORDER
(when argorders
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: ~S darf nur einmal angegeben werden."
ENGLISH "~S ~S: ~S may only be specified once."
FRANCAIS "~S ~S : ~S ne peut être spécifié qu'une seule fois."
}
caller funname ':argument-precedence-order
) )
(setq argorders option)
)
(:DOCUMENTATION
(unless (and (eql (length option) 2) (stringp (second option)))
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Nach ~S muß ein String angegeben werden: ~S"
ENGLISH "~S ~S: A string must be specified after ~S : ~S"
FRANCAIS "~S ~S : Il faut une chaîne après ~S : ~S"
}
caller funname ':documentation option
) )
(when docstrings
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Es ist höchstens ein ~S-String erlaubt."
ENGLISH "~S ~S: Only one ~S string is allowed"
FRANCAIS "~S ~S : Il faut qu'une seule chaîne ~S."
}
caller funname ':documentation
) )
(setq docstrings (rest option))
)
(:METHOD-COMBINATION
(unless (equal (rest option) '(STANDARD))
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Als Methodenkombination ist nur ~S zugelassen: ~S"
ENGLISH "~S ~S: The only valid method combination is ~S : ~S"
FRANCAIS "~S ~S : La seule combinaison de méthodes valable est ~S : ~S"
}
caller funname 'standard option
) )
; Die Methodenkombination wird ignoriert.
)
(:GENERIC-FUNCTION-CLASS
(unless (equal (rest option) '(STANDARD-GENERIC-FUNCTION))
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Als Name der Klasse der generischen Funktion ist nur ~S zugelassen: ~S"
ENGLISH "~S ~S: The only valid generic function class name is ~S : ~S"
FRANCAIS "~S ~S : Le seul nom valable d'une classe de fonction générique est ~S : ~S"
}
caller funname 'standard-generic-function option
) )
; Die Klasse der generischen Funktion wird ignoriert.
)
(:METHOD-CLASS
(unless (equal (rest option) '(STANDARD-METHOD))
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Als Name der Klasse der Methoden ist nur ~S zugelassen: ~S"
ENGLISH "~S ~S: The only valid method class name is ~S : ~S"
FRANCAIS "~S ~S : Le seul nom valable d'une classe de méthodes est ~S : ~S"
}
caller funname 'standard-method option
) )
; Die Klasse der Methoden wird ignoriert.
)
(:METHOD
(push (analyze-method-description caller funname (rest option) env)
method-forms
) )
(t (error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Falsche Syntax in ~S-Option: ~S"
ENGLISH "~S ~S: invalid syntax in ~S option: ~S"
FRANCAIS "~S ~S : Mauvaise syntaxe dans l'option ~S: ~S"
}
caller funname 'defstruct option
) ) ) )
; :argument-precedence-order überprüfen:
(let ((argorder
(if argorders
(let ((l (mapcar #'(lambda (x)
(or (position x req-vars)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: ~S ist keiner der notwendigen Parameter: ~S"
ENGLISH "~S ~S: ~S is not one of the required parameters: ~S"
FRANCAIS "~S ~S : ~S n'est pas parmi les noms d'arguments obligatoires: ~S"
}
caller funname x argorders
) ) )
(rest argorders)
)) )
; Ist (rest argorders) eine Permutation von req-vars ?
; Anders ausgedrückt: Ist die Abbildung
; (rest argorders) --> req-vars
; bzw. l --> {0, ..., reqanz-1}
; bijektiv?
(unless (apply #'/= l) ; injektiv?
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: eine Variable taucht in ~S doppelt auf."
ENGLISH "~S ~S: some variable occurs twice in ~S"
FRANCAIS "~S ~S : une variable apparaît plusieurs fois dans ~S."
}
caller funname argorders
) )
(unless (eql (length l) reqanz) ; surjektiv?
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: ~S enthält nicht alle notwendigen Parameter."
ENGLISH "~S ~S: ~S is missing some required parameter"
FRANCAIS "~S ~S : ~S ne contient pas tous les noms d'arguments obligatoires."
}
caller funname argorders
) )
l
)
(countup reqanz)
)) )
(values ; Signatur
`(,reqanz ,optanz ,restp ,keywords ,allowp)
; argorder
argorder
; Liste der Methoden-Formen
(nreverse method-forms)
; docstring oder nil
(car docstrings)
)
) ) ) )
; Lambdaliste parsen:
; lambdalist --> reqanz, req-vars, optanz, restp, keywords, allowp
(defun analyze-defgeneric-lambdalist (caller funname lambdalist)
(let ((req-vars '())
(optanz 0)
(restp nil)
(keyp nil)
(keywords '())
(allowp nil))
(when (some #'(lambda (item) (and (consp item) (cdr item))) lambdalist)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: In der Lambda-Liste einer generischen Funktion sind keine Initialisierungen erlaubt: ~S"
ENGLISH "~S ~S: No initializations are allowed in a generic function lambda-list: ~S"
FRANCAIS "~S ~S : Des initialisations ne sont pas permises dans la liste lambda d'une fonction générique: ~S"
}
caller funname lambdalist
) )
(flet ((check-varname (var)
(unless (symbolp var)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Variablenname muß ein Symbol sein, nicht ~S"
ENGLISH "~S ~S: variable name ~S should be a symbol"
FRANCAIS "~S ~S : le nom de variable ~S devrait être un symbole."
}
caller funname var
) )
(when (member var req-vars :test #'eq)
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Variablenname ~S darf nicht mehrfach auftreten."
ENGLISH "~S ~S: duplicate variable name ~S"
FRANCAIS "~S ~S : le nom de variable ~S apparaît plusieurs fois."
}
caller funname var
) )
var
))
(loop
(when (or (atom lambdalist) (lambda-list-keyword-p (first lambdalist)))
(return)
)
(push (check-varname (pop lambdalist)) req-vars)
)
(when (and (consp lambdalist) (eq (first lambdalist) '&optional))
(pop lambdalist)
(loop
(when (or (atom lambdalist) (lambda-list-keyword-p (first lambdalist)))
(return)
)
(let ((item (pop lambdalist)))
(check-varname (if (consp item) (first item) item))
(incf optanz)
) ) )
(when (and (consp lambdalist) (eq (first lambdalist) '&rest)
(consp (rest lambdalist))
)
(pop lambdalist)
(check-varname (pop lambdalist))
(setq restp t)
)
(when (and (consp lambdalist) (eq (first lambdalist) '&key))
(pop lambdalist)
(setq restp t) ; &key impliziert &rest
(loop
(when (or (atom lambdalist) (lambda-list-keyword-p (first lambdalist)))
(return)
)
(let ((item (pop lambdalist)))
(when (consp item) (setq item (first item)))
(check-varname (if (consp item) (second item) item))
(push (if (consp item)
(first item)
(intern (symbol-name item) *keyword-package*)
)
keywords
) ) )
(when (and (consp lambdalist) (eq (first lambdalist) '&allow-other-keys))
(pop lambdalist)
(setq allowp t)
) )
)
(when lambdalist
(error-of-type 'program-error
#L{
DEUTSCH "~S ~S: Lambda-Liste enthält Unzulässiges: ~S"
ENGLISH "~S ~S: invalid lambda list portion: ~S"
FRANCAIS "~S ~S : liste lambda partiellement invalide: ~S"
}
caller funname lambdalist
) )
(values (length req-vars) (nreverse req-vars) optanz
(or restp keyp) keywords allowp
) ) )
; Lambdaliste in Aufrufkonvention umrechnen:
(defun defgeneric-lambdalist-callinfo (caller funname lambdalist)
(multiple-value-bind (reqanz req-vars optanz restp keywords allowp)
(analyze-defgeneric-lambdalist caller funname lambdalist)
(declare (ignore req-vars))
(callinfo reqanz optanz restp keywords allowp)
) )
;;; DEFGENERIC
(defmacro defgeneric (funname lambda-list &rest options &environment env)
(multiple-value-bind (signature argorder method-forms docstring)
(analyze-defgeneric 'defgeneric funname lambda-list options env)
`(LET ()
(EVAL-WHEN (COMPILE) (COMPILER::C-DEFUN ',funname))
; NB: Kein (SYSTEM::REMOVE-OLD-DEFINITIONS ',funname)
,@(if docstring
(let ((symbolform
(if (atom funname)
`',funname
`(LOAD-TIME-VALUE (SYSTEM::GET-SETF-SYMBOL ',(second funname)))
)) )
`((SYSTEM::%SET-DOCUMENTATION ,symbolform 'FUNCTION ',docstring))
) )
(DO-DEFGENERIC ',funname ',signature ',argorder ,@method-forms)
)
) )
(defun make-generic-function (funname signature argorder &rest methods)
(let ((gf (make-fast-gf funname signature argorder)))
(dolist (method methods) (std-add-method gf method))
(finalize-fast-gf gf)
gf
) )
(defun do-defgeneric (funname signature argorder &rest methods)
(if (fboundp funname)
(let ((gf (fdefinition funname)))
(if (clos::generic-function-p gf)
; Umdefinition einer generischen Funktion
(progn
(warn-if-gf-already-called gf)
(unless (null (gf-methods gf))
(warn
#L{
DEUTSCH "Alle Methoden von ~S werden entfernt."
ENGLISH "Removing all methods of ~S"
FRANCAIS "On enlève toutes les méthodes de ~S."
}
gf
)
(setf (gf-methods gf) nil)
)
(unless (and (equal signature (gf-signature gf))
(equal argorder (gf-argorder gf))
)
(warn
#L{
DEUTSCH "Das Parameter-Profil von ~S wird modifiziert."
ENGLISH "Modifying the parameter profile of ~S"
FRANCAIS "On change le nombre / l'ordre des arguments de ~S."
}
gf
)
(setf (gf-signature gf) signature)
(setf (gf-argorder gf) argorder)
)
(dolist (method methods) (std-add-method gf method))
(finalize-fast-gf gf)
gf
)
(error-of-type 'error ; 'program-error ??
#L{
DEUTSCH "~S bezeichnet keine generische Funktion."
ENGLISH "~S doesn't name a generic function"
FRANCAIS "~S n'est pas le nom d'une fonction générique."
}
funname
) ) )
(setf (fdefinition funname)
(apply #'make-generic-function funname signature argorder methods)
) ) )
#|
;; Für GENERIC-FLET, GENERIC-LABELS
; Wie make-generic-function, nur daß der Dispatch-Code gleich installiert wird.
(defun make-generic-function-now (funname signature argorder &rest methods)
(let ((gf (make-fast-gf funname signature argorder)))
(dolist (method methods) (std-add-method gf method))
(install-dispatch gf)
gf
) )
|#
;; Für GENERIC-FUNCTION, GENERIC-FLET, GENERIC-LABELS
(defun make-generic-function-form (caller funname lambda-list options env)
(multiple-value-bind (signature argorder method-forms docstring)
(analyze-defgeneric caller funname lambda-list options env)
(declare (ignore docstring))
`(MAKE-GENERIC-FUNCTION ',funname ',signature ',argorder ,@method-forms)
) )
;;; GENERIC-FUNCTION
(defmacro generic-function (lambda-list &rest options &environment env)
(make-generic-function-form 'generic-function 'LAMBDA lambda-list options env)
)
;; Für GENERIC-FLET, GENERIC-LABELS
(defun analyze-generic-fundefs (caller fundefs env)
(let ((names '())
(funforms '()))
(dolist (fundef fundefs)
(unless (and (consp fundef) (consp (cdr fundef)))
(error-of-type 'program-error
#L{
DEUTSCH "~S: ~S ist keine Spezifikation einer generischen Funktion."
ENGLISH "~S: ~S is not a generic function specification"
FRANCAIS "~S: ~S n'est pas une spécification de fonction générique."
}
caller fundef
) )
(push (first fundef) names)
(push (make-generic-function-form caller (first fundef) (second fundef) (cddr fundef) env) funforms)
)
(values (nreverse names) (nreverse funforms))
) )
;;; GENERIC-FLET
(defmacro generic-flet (fundefs &body body &environment env)
(multiple-value-bind (funnames funforms)
(analyze-generic-fundefs 'generic-flet fundefs env)
(let ((varnames (n-gensyms (length funnames))))
`(LET ,(mapcar #'list varnames funforms)
(FLET ,(mapcar #'(lambda (varname funname)
`(,funname (&rest args) (apply ,varname args))
)
varnames funnames
)
,@body
) )
) ) )
;;; GENERIC-LABELS
(defmacro generic-labels (fundefs &body body &environment env)
(multiple-value-bind (funnames funforms)
(analyze-generic-fundefs 'generic-labels fundefs env)
(let ((varnames (n-gensyms (length funnames))))
`(LET ,varnames
(FLET ,(mapcar #'(lambda (varname funname)
`(,funname (&rest args) (apply ,varname args))
)
varnames funnames
)
,@(mapcar #'(lambda (varname funform) `(SETQ ,varname ,funform))
varnames funforms
)
,@body
) )
) ) )
;;; WITH-ADDED-METHODS
; ist vermurkst und wird deshalb nicht implementiert.
;;; Verschiedene generische Funktionen, die wir bis jetzt hinausgezögert haben:
(defgeneric class-name (class)
(:method ((class class))
(class-classname class)
) )
(defgeneric (setf class-name) (new-value class)
(:method (new-value (class class))
(unless (symbolp new-value)
(error-of-type 'type-error
:datum new-value :expected-type 'symbol
#L{
DEUTSCH "~S: Der Name einer Klasse muß ein Symbol sein, nicht ~S"
ENGLISH "~S: The name of a class must be a symbol, not ~S"
FRANCAIS "~S : Le nom d'une classe doit être un symbole et non ~S."
}
'(setf class-name) new-value
) )
(when (built-in-class-p class)
(error-of-type 'error
#L{
DEUTSCH "~S: Der Name der Built-In-Klasse ~S kann nicht verändert werden."
ENGLISH "~S: The name of the built-in class ~S cannot be modified"
FRANCAIS "~S : Le nom de la classe prédéfinie ~S ne peut pas être changée."
}
'(setf class-name) class
) )
(setf (class-classname class) new-value)
) )
(defgeneric no-applicable-method (gf &rest args)
(:method ((gf t) &rest args)
(error-of-type 'error
#L{
DEUTSCH "~S: Beim Aufruf von ~S mit Argumenten ~S ist keine Methode anwendbar."
ENGLISH "~S: When calling ~S with arguments ~S, no method is applicable."
FRANCAIS "~S : À l'appel de ~S avec les arguments ~S, aucune méthode ne s'applique."
}
'no-applicable-method gf args
) ) )
(defgeneric no-primary-method (gf &rest args)
(:method ((gf t) &rest args)
(error-of-type 'error
#L{
DEUTSCH "~S: Beim Aufruf von ~S mit Argumenten ~S ist keine primäre Methode anwendbar."
ENGLISH "~S: When calling ~S with arguments ~S, no primary method is applicable."
FRANCAIS "~S : À l'appel de ~S avec les arguments ~S, aucune méthode primaire ne s'applique."
}
'no-primary-method gf args
) ) )
(defun %no-next-method (method &rest args)
(apply #'no-next-method (std-method-gf method) method args)
)
(defgeneric no-next-method (gf method &rest args)
(:method ((gf standard-generic-function) (method standard-method) &rest args)
(error-of-type 'error
#L{
DEUTSCH "~S: Beim Aufruf von ~S mit Argumenten ~S gibt es nach ~S keine weitere Methode, und ~S wurde aufgerufen."
ENGLISH "~S: When calling ~S with arguments ~S, there is no next method after ~S, and ~S was called."
FRANCAIS "~S : À l'appel de ~S avec les arguments ~S, il n'y a plus de méthode après ~S, et ~S a été appelé."
}
'no-next-method gf args method '(call-next-method)
) ) )
(defgeneric find-method (gf qualifiers specializers &optional errorp)
(:method ((gf standard-generic-function) qualifiers specializers &optional (errorp t))
(std-find-method gf qualifiers specializers errorp)
) )
(defgeneric add-method (gf method)
(:method ((gf standard-generic-function) (method standard-method))
(std-add-method gf method)
) )
(defgeneric remove-method (gf method)
(:method ((gf standard-generic-function) (method standard-method))
(std-remove-method gf method)
) )
(defun compute-applicable-methods (gf args)
(let ((reqanz (first (gf-signature gf)))
(methods (gf-methods gf)))
(if (>= (length args) reqanz)
(let ((req-args (subseq args 0 reqanz)))
; 1. Select the applicable methods:
(setq methods
(remove-if-not
#'(lambda (method) (method-applicable-p method req-args))
methods
) )
; 2. Sort the applicable methods by precedence order:
(sort-applicable-methods methods req-args (gf-argorder gf))
)
nil ; lieber kein Error
) ) )
(defgeneric method-qualifiers (method)
(:method ((method standard-method))
(std-method-qualifiers method)
) )
(defgeneric function-keywords (method)
(:method ((method standard-method))
(values-list (cddddr (std-method-signature method)))
) )
(defgeneric slot-missing (class instance slot-name operation &optional new-value)
(:method ((class t) instance slot-name operation &optional new-value)
(declare (ignore instance new-value))
(error-of-type 'error
#L{
DEUTSCH "~S: Die Klasse ~S hat keinen Slot mit Namen ~S."
ENGLISH "~S: The class ~S has no slot named ~S"
FRANCAIS "~S : La classe ~S n'a pas de composant de nom ~S."
}
operation class slot-name
) ) )
(defgeneric slot-unbound (class instance slot-name)
(:method ((class t) instance slot-name)
(declare (ignore class))
(error-of-type 'error
#L{
DEUTSCH "~S: Der Slot ~S von ~S hat keinen Wert."
ENGLISH "~S: The slot ~S of ~S has no value"
FRANCAIS "~S : Le composant ~S de ~S n'a pas de valeur."
}
'slot-value slot-name instance
) ) )
(defgeneric print-object (object stream)
(:method ((object standard-object) stream)
(print-unreadable-object (object stream :type t :identity t))
) )
(defgeneric describe-object (object stream)
(:method ((object standard-object) s)
(let ((slotnames (mapcar #'slotdef-name (class-slots (class-of object)))))
(if slotnames
(let* ((slotstrings (mapcar #'write-to-string slotnames))
(tabpos (+ 4 (reduce #'max (mapcar #'length slotstrings)))))
(format s
#L{
DEUTSCH "~%Slots:"
ENGLISH "~%Slots:"
FRANCAIS "~%Composants:"
}
)
(mapc #'(lambda (slotname slotstring)
(format s "~% ~A~VT" slotstring tabpos)
(if (slot-boundp object slotname)
(format s "= ~S" (slot-value object slotname))
(format s
#L{
DEUTSCH "ohne Wert"
ENGLISH "unbound"
FRANCAIS "aucune valeur"
}
) ) )
slotnames slotstrings
) )
(format s
#L{
DEUTSCH "~%Keine Slots."
ENGLISH "~%No slots."
FRANCAIS "~%Aucun composant."
}
) ) ) )
)
;; 28.1.9. Object creation and initialization
; Grausamer Hack (28.1.9.2.):
; MAKE-INSTANCE muß über die Methoden von INITIALIZE-INSTANCE und
; SHARED-INITIALIZE Bescheid wissen.
; REINITIALIZE-INSTANCE muß über die Methoden von REINITIALIZE-INSTANCE und
; SHARED-INITIALIZE Bescheid wissen.
(defparameter *make-instance-table* (make-hash-table :test #'eq))
; Hashtabelle, die einer Klasse zuordnet ein List* aus
; - einer Liste der zulässigen Keyword-Argumente,
; - der effektiven Methode von initialize-instance,
; - der effektiven Methode von shared-initialize.
(defparameter *reinitialize-instance-table* (make-hash-table :test #'eq))
; Hashtabelle, die einer Klasse zuordnet ein Cons aus
; - einer Liste der zulässigen Keyword-Argumente,
; - der effektiven Methode von shared-initialize.
(defun note-i-change (specializer table)
(maphash #'(lambda (class value) (declare (ignore value))
(when (subclassp class specializer)
(remhash class table)
) )
table
) )
(defun note-ii-change (method)
(let ((specializer (first (std-method-parameter-specializers method))))
; EQL-Methoden auf INITIALIZE-INSTANCE sind eh wertlos
(unless (consp specializer)
; Entferne die Einträge von *make-instance-table*, für welche die
; besagte Methode anwendbar wäre:
(note-i-change specializer *make-instance-table*)
) ) )
(defun note-ri-change (method)
(let ((specializer (first (std-method-parameter-specializers method))))
; EQL-Methoden auf REINITIALIZE-INSTANCE sind im wesentlichen wertlos
(unless (consp specializer)
; Entferne die Einträge von *reinitialize-instance-table*, für welche die
; besagte Methode anwendbar wäre:
(note-i-change specializer *reinitialize-instance-table*)
) ) )
(defun note-si-change (method)
(let* ((specializers (std-method-parameter-specializers method))
(specializer1 (first specializers))
(specializer2 (second specializers)))
; EQL-Methoden auf SHARED-INITIALIZE sind im wesentlichen wertlos
(unless (consp specializer1)
; Als zweites Argument wird von INITIALIZE-INSTANCE immer nur T übergeben.
(when (typep 'T specializer2)
; Entferne die Einträge von *make-instance-table*, für welche die
; besagte Methode anwendbar wäre:
(note-i-change specializer1 *make-instance-table*)
)
; Als zweites Argument wird von REINITIALIZE-INSTANCE nur NIL übergeben.
(when (typep 'NIL specializer2)
; Entferne die Einträge von *reinitialize-instance-table*, für welche die
; besagte Methode anwendbar wäre:
(note-i-change specializer1 *reinitialize-instance-table*)
)
) ) )
; Aus einer Liste von anwendbaren Methoden alle Keywords sammeln:
(defun valid-initarg-keywords (class methods)
(let ((signatures (mapcar #'std-method-signature methods)))
; "A method that has &rest but not &key does not affect the set of
; acceptable keyword srguments."
(setq signatures (delete-if-not #'fourth signatures))
; "The keyword name of each keyword parameter specified in the method's
; lambda-list becomes an initialization argument for all classes for
; which the method is applicable."
(remove-duplicates
(append (class-valid-initargs class) (mapcap #'fifth signatures))
:from-end t
) ) )
; NB: Beim Berechnen einer effektiven Methode kommt es auf die restlichen
; Argumente nicht an.
; Beim ersten INITIALIZE-INSTANCE- oder MAKE-INSTANCE-Aufruf einer jeden Klasse
; merkt man sich die benötigte Information in *make-instance-table*.
; Bei MAKE-INSTANCE sind als Keys gültig:
; - die Initargs, die zur Initialisierung von Slots benutzt werden,
; - die Keywords von Methoden von SHARED-INITIALIZE,
; - die Keywords von Methoden von INITIALIZE-INSTANCE.
(defun valid-make-instance-keywords (class)
(valid-initarg-keywords
class
(append
; Liste aller anwendbaren Methoden von SHARED-INITIALIZE
(remove-if-not
#'(lambda (method)
(let* ((specializers (std-method-parameter-specializers method))
(specializer1 (first specializers))
(specializer2 (second specializers)))
(and (atom specializer1) (subclassp class specializer1)
(typep 'T specializer2)
) ) )
(gf-methods |#'shared-initialize|)
)
; Liste aller anwendbaren Methoden von INITIALIZE-INSTANCE
(remove-if-not
#'(lambda (method)
(let ((specializer (first (std-method-parameter-specializers method))))
(and (atom specializer) (subclassp class specializer))
) )
(gf-methods |#'initialize-instance|)
)
) ) )
(defun make-instance-table-entry2 (instance)
(cons (compute-effective-method |#'initialize-instance| nil instance)
(compute-effective-method |#'shared-initialize| nil instance 'T)
) )
; 28.1.9.5., 28.1.9.4.
(defgeneric shared-initialize (instance slot-names &rest initargs))
(setq |#'shared-initialize| #'shared-initialize)
#|
(defmethod shared-initialize ((instance standard-object) slot-names &rest initargs &key &allow-other-keys)
(dolist (slot (class-slots (class-of instance)))
(let ((slotname (slotdef-name slot)))
(multiple-value-bind (init-key init-value foundp)
(get-properties initargs (slotdef-initargs slot))
(declare (ignore init-key))
(if foundp
(setf (slot-value instance slotname) init-value)
(unless (slot-boundp instance slotname)
(let ((init (slotdef-initer slot)))
(when init
(when (or (eq slot-names 'T) (member slotname slot-names :test #'eq))
(setf (slot-value instance slotname)
(if (car init) (funcall (car init)) (cdr init))
) ) ) ) ) ) ) ) )
instance
)
|#
; die Haupt-Arbeit erledigt ein SUBR:
(do-defmethod 'shared-initialize
(make-standard-method
:initfunction #'(lambda (gf) (declare (ignore gf))
(cons #'clos::%shared-initialize '(T))
)
:wants-next-method-p nil
:parameter-specializers (list (find-class 'standard-object) (find-class 't))
:qualifiers '()
:signature '(2 0 t t () t)
) )
; 28.1.12.
(defgeneric reinitialize-instance (instance &rest initargs))
(setq |#'reinitialize-instance| #'reinitialize-instance)
#|
(defmethod reinitialize-instance ((instance standard-object) &rest initargs &key &allow-other-keys)
(apply #'shared-initialize instance 'NIL initargs)
)
|#
#|
; optimiert:
(defmethod reinitialize-instance ((instance standard-object) &rest initargs &key &allow-other-keys)
(let ((h (gethash (class-of instance) *reinitialize-instance-table*)))
(if h
(progn
; 28.1.9.2. validity of initialization arguments
(let ((valid-keywords (car h)))
(sys::keyword-test initargs valid-keywords)
)
(if (not (eq (cdr h) #'clos::%shared-initialize))
; effektive Methode von shared-initialize anwenden:
(apply (cdr h) instance 'NIL initargs)
; clos::%shared-initialize mit slot-names=NIL läßt sich vereinfachen:
(progn
(dolist (slot (class-slots (class-of instance)))
(let ((slotname (slotdef-name slot)))
(multiple-value-bind (init-key init-value foundp)
(get-properties initargs (slotdef-initargs slot))
(declare (ignore init-key))
(if foundp
(setf (slot-value instance slotname) init-value)
) ) ) )
instance
) ) )
(apply #'initial-reinitialize-instance instance initargs)
) ) )
|#
; die Haupt-Arbeit erledigt ein SUBR:
(do-defmethod 'reinitialize-instance
(make-standard-method
:initfunction #'(lambda (gf) (declare (ignore gf))
(cons #'clos::%reinitialize-instance '(T))
)
:wants-next-method-p nil
:parameter-specializers (list (find-class 'standard-object))
:qualifiers '()
:signature '(1 0 t t () t)
) )
; Beim ersten REINITIALIZE-INSTANCE-Aufruf einer jeden Klasse merkt man sich die
; benötigte Information in *reinitialize-instance-table*.
(defun initial-reinitialize-instance (instance &rest initargs)
(let* ((class (class-of instance))
(valid-keywords
(valid-initarg-keywords
class
; Liste aller anwendbaren Methoden von SHARED-INITIALIZE
(remove-if-not
#'(lambda (method)
(let* ((specializers (std-method-parameter-specializers method))
(specializer1 (first specializers))
(specializer2 (second specializers)))
(and (atom specializer1) (subclassp class specializer1)
(typep 'NIL specializer2)
) ) )
(gf-methods |#'shared-initialize|)
)) ) )
; 28.1.9.2. validity of initialization arguments
(sys::keyword-test initargs valid-keywords)
(let ((si-ef (compute-effective-method |#'shared-initialize| nil instance 'NIL)))
(setf (gethash class *reinitialize-instance-table*) (cons valid-keywords si-ef))
(apply si-ef instance 'NIL initargs)
) ) )
; 28.1.9.6.
(defgeneric initialize-instance (instance &rest initargs))
(setq |#'initialize-instance| #'initialize-instance)
#|
(defmethod initialize-instance ((instance standard-object) &rest initargs &key &allow-other-keys)
(apply #'shared-initialize instance 'T initargs)
)
|#
#|
; optimiert:
(defmethod initialize-instance ((instance standard-object) &rest initargs &key &allow-other-keys)
(let ((h (gethash class *make-instance-table*)))
(if h
(if (not (eq (cddr h) #'clos::%shared-initialize))
; effektive Methode von shared-initialize anwenden:
(apply (cddr h) instance 'T initargs)
; clos::%shared-initialize mit slot-names=T läßt sich vereinfachen:
(progn
(dolist (slot (class-slots (class-of instance)))
(let ((slotname (slotdef-name slot)))
(multiple-value-bind (init-key init-value foundp)
(get-properties initargs (slotdef-initargs slot))
(declare (ignore init-key))
(if foundp
(setf (slot-value instance slotname) init-value)
(unless (slot-boundp instance slotname)
(let ((init (slotdef-initer slot)))
(when init
(setf (slot-value instance slotname)
(if (car init) (funcall (car init)) (cdr init))
) ) ) ) ) ) ) )
instance
) )
(apply #'initial-initialize-instance instance initargs)
) ) )
|#
; die Haupt-Arbeit erledigt ein SUBR:
(do-defmethod 'initialize-instance
(make-standard-method
:initfunction #'(lambda (gf) (declare (ignore gf))
(cons #'clos::%initialize-instance '(T))
)
:wants-next-method-p nil
:parameter-specializers (list (find-class 'standard-object))
:qualifiers '()
:signature '(1 0 t t () t)
) )
(defun initial-initialize-instance (instance &rest initargs)
(let* ((class (class-of instance))
(valid-keywords (valid-make-instance-keywords class))
(efs (make-instance-table-entry2 instance)))
(setf (gethash class *make-instance-table*) (cons valid-keywords efs))
; effektive Methode von SHARED-INITIALIZE anwenden:
(apply (cdr efs) instance 'T initargs)
) )
; 28.1.9.7.
(defgeneric make-instance (class &rest initargs)
(:method ((class symbol) &rest initargs)
(apply #'make-instance (find-class class) initargs)
)
)
#|
(defmethod make-instance ((class standard-class) &rest initargs &key &allow-other-keys)
; 28.1.9.3., 28.1.9.4. default-initargs zur Kenntnis nehmen:
(dolist (default-initarg (class-default-initargs class))
(let ((nothing default-initarg))
(when (eq (getf initargs (car default-initarg) nothing) nothing)
(setq initargs
(append initargs
(list (car default-initarg)
(let ((init (cdr default-initarg)))
(if (car init) (funcall (car init)) (cdr init))
) ) ) ) ) ) )
#|
; 28.1.9.2. validity of initialization arguments
(sys::keyword-test initargs
(union (class-valid-initargs class)
(applicable-keywords #'initialize-instance class) ; ??
) )
(let ((instance (std-allocate-instance class)))
(apply #'initialize-instance instance initargs)
)
|#
(let ((h (gethash class *make-instance-table*)))
(if h
(progn
; 28.1.9.2. validity of initialization arguments
(let ((valid-keywords (car h)))
(sys::keyword-test initargs valid-keywords)
)
(let ((instance (std-allocate-instance class)))
(if (not (eq (cadr h) #'clos::%initialize-instance))
; effektive Methode von initialize-instance anwenden:
(apply (cadr h) instance initargs)
; clos::%initialize-instance läßt sich vereinfachen (man braucht
; nicht nochmal in *make-instance-table* nachzusehen):
(if (not (eq (cddr h) #'clos::%shared-initialize))
; effektive Methode von shared-initialize anwenden:
(apply (cddr h) instance 'T initargs)
...
)
) ) )
(apply #'initial-make-instance class initargs)
) ) )
|#
; die Haupt-Arbeit erledigt ein SUBR:
(do-defmethod 'make-instance
(make-standard-method
:initfunction #'(lambda (gf) (declare (ignore gf))
(cons #'clos::%make-instance '(T))
)
:wants-next-method-p nil
:parameter-specializers (list (find-class 'standard-class))
:qualifiers '()
:signature '(1 0 t t () t)
) )
(defun initial-make-instance (class &rest initargs)
(let ((valid-keywords (valid-make-instance-keywords class)))
; 28.1.9.2. validity of initialization arguments
(sys::keyword-test initargs valid-keywords)
(let ((instance (std-allocate-instance class)))
(let ((efs (make-instance-table-entry2 instance)))
(setf (gethash class *make-instance-table*) (cons valid-keywords efs))
; effektive Methode von INITIALIZE-INSTANCE anwenden:
(apply (car efs) instance initargs)
) ) ) )