home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
C!T ROM 2
/
ctrom_ii_b.zip
/
ctrom_ii_b
/
PROGRAM
/
PASCAL
/
TPL60N19
/
ARISOURC
/
F48FSRT.ASM
< prev
next >
Wrap
Assembly Source File
|
1993-01-24
|
10KB
|
200 lines
; *******************************************************
; * *
; * Turbo Pascal Runtime Library Version 6.0 *
; * Real Square Root *
; * *
; * Copyright (C) 1989-1992 Norbert Juffa *
; * *
; *******************************************************
TITLE F48FSRT
INCLUDE SE.ASM
CODE SEGMENT BYTE PUBLIC
ASSUME CS:CODE
; Externals
EXTRN HaltError:NEAR
; Publics
PUBLIC RSqrt
;-------------------------------------------------------------------------------
; RSqrt computes the square root of it argument. For a negative argument,
; runtime error 207 is invoked. The routine uses a estimate-and-correct method
; similar to that used in the division routine. This algorithm is based on the
; longhand method taught in school. Since there can be no tie case in rounding
; when computing the square root, no guard and sticky flags are needed to round
; to nearest or even in compliance with the IEEE floating point standard.
;
; INPUT: DX:BX:AX argument
;
; OUTPUT: DX:BX:AX square root of argument
;
; DESTROYS: AX,BX,CX,DX,SI,DI,Flags
;-------------------------------------------------------------------------------
ROOT_EXT PROC FAR
$zero_sqrt: RET ; return argument
$sqrt_err: MOV AX, 0CFh ; load error code
JMP HaltError ; execute error handler
ROOT_EXT ENDP
ALIGN 4
RSqrt PROC FAR
OR AL, AL ; argument zero ?
JZ $zero_sqrt ; yes, return zero
OR DH, DH ; argument negative ?
JS $sqrt_err ; yes, error
PUSH BP ; save TURBO-Pascal frame pointer
SHR AL, 1 ; divide biased exponent by 2
SBB CL, CL ; CL = 0, if expo even, else CL = -1
ADC AL, 40h ; make new biased exponent
PUSH AX ; save new exponent
XOR AL, AL ; clear LSB of a3
OR DH, 80h ; set hidden bit
NEG CL ; CL = 0, if expo even, else CL = 1
SHR DX, CL ; divide argument
RCR BX, CL ; by 2 if
RCR AX, CL ; expo odd
XCHG AX, CX ; argument in DX:BX:CX
MOV SI, DX ; save a1
MOV DI, BX ; save a2
MOV BP, CX ; save a3
MOV BH, DH ; get MSB of a1
STC ; generate 4 bit approximation
RCR BH, 1 ; in hi-nibble of BH
NEG AL ; adjust approximation (subtract 10)
AND AL, 10 ; for arguments
SUB BH, AL ; between 4000 0000 00 and 7FFF FFFF FF
MOV AL, 0FFh ; default quotient = FFh
CMP DH, BH ; division overflow ?
JNB $no_div0 ; yes, use default quotient
MOV AX, DX ; get a1
DIV BH ; compute a1 / approximation
$no_div0: ADD BH, AL ; add result to approximation
RCR BH, 1 ; and divide by 2 yields 8 bit approx.
MOV BL, 0FFh ; BX >= Trunc(Sqrt(a1))
MOV AX, 0FFFFh ; default quotient
CMP DX, BX ; division overflow ?
JNB $no_div1 ; yes, use default quotient
MOV AX, DI ; get a2
DIV BX ; compute a1:a2 / approximation
$no_div1: ADD AX, BX ; add result to approximation
RCR AX, 1 ; and divide by 2 yields 16 bit approx.
MOV BX, AX ; save q1
MUL AX ; DX:AX = q1*q1
SUB DI, AX ; compute
SBB SI, DX ; remainder (SI:DI)
JNC $quot1_ok ; remainder must be positive
ALIGN 4
$corr_quot1: DEC BX ; try next smaller quotient q1
STC ; adjust
ADC DI, BX ; remainder
ADC SI, 0 ; to new
ADD DI, BX ; value
ADC SI, 0 ; of quotient
JS $corr_quot1 ; until remainder becomes positive
$quot1_ok: XCHG AX, CX ; concat rest of argument to remainder
MOV DX, DI ; get remainder lo-word
SHR SI, 1 ; divide remainder (from here SI=0 !!!)
RCR DX, 1 ; by two so it fits into 32 bits
RCR AX, 1 ; DX:AX = remainder / 2
MOV CX, 0FFFFh ; load default quotient
CMP DX, BX ; division overflow ?
JNB $no_div2 ; yes, skip division and use default quot
DIV BX ; AX = q2
XCHG AX, CX ; BX:CX = q1:q2
$no_div2: MOV AX, CX ; get q2
MUL BX ; q1*q2
SUB BP, AX ; subtract product
SBB DI, DX ; from
SUB BP, AX ; old
SBB DI, DX ; remainder
MOV AX, CX ; get q2
MUL AX ; q2*q2
NEG AX ; compute
SBB BP, DX ; new
SBB DI, SI ; remainder (DI:BP:AX)
JNS $quot2_ok ; remainder must be positive
$corr_quot2: DEC CX ; try next smaller value for q2
STC ; adjust
ADC AX, CX ; value
ADC BP, BX ; of remainder
ADC DI, SI ; according
ADD AX, CX ; to changed
ADC BP, BX ; value
ADC DI, SI ; of q2
JS $corr_quot2 ; until remainder positive
$quot2_ok: MOV SI, AX ; DI:BP:SI = remainder, BX:CX = quot
MOV DX, BP ; divide
SHR DI, 1 ; remainder by two and
RCR DX, 1 ; stuff 32 most significant bits
RCR AX, 1 ; into DX:AX
MOV DI, 0FFFFh ; load default quotient q3
CMP DX, BX ; division overflow ?
JNB $no_div3 ; yes, use default quotient and skip div.
DIV BX ; AX = q3
XCHG AX, DI ; BX:CX:DI = q1:q2:q3, BP:SI:0:0 = rem
$no_div3: MOV AX, DI ; get q3
MUL BX ; q1*q3
SUB SI, AX ; subtract
SBB BP, DX ; 2*q1*q3
SUB SI, AX ; from
SBB BP, DX ; remainder
MOV AX, DI ; get q3
MUL CX ; q2*q3
PUSH BX ; save q1
XOR BX, BX ; BP:SI:BX:0 = remainder
SUB BX, AX ; subtract
SBB SI, DX ; 2*q2*q3
SBB BP, 0 ; from
SUB BX, AX ; remainder
SBB SI, DX ; "
SBB BP, 0 ; "
MOV AX, DI ; get q3
MUL AX ; q3*q3
NEG AX ; subtract
SBB BX, DX ; q3*q3
SBB SI, 0 ; from remainder
SBB BP, 0 ; BP:SI:BX:AX = remainder
POP DX ; DX:CX:DI = q1:q2:q3
JNS $quot3_ok ; remainder must be positive
$corr_quot3: DEC DI ; try next smaller value for q3
STC ; adjust
ADC AX, DI ; value
ADC BX, CX ; of
ADC SI, DX ; remainder
ADC BP, 0 ; according
ADD AX, DI ; to
ADC BX, CX ; changed
ADC SI, DX ; value of
ADC BP, 0 ; quotient
JS $corr_quot3 ; until remainder positive
$quot3_ok: XCHG AX, DI ; get result
MOV BX, CX ; into DX:BX:AX
ADD AX, 80h ; round result
ADC BX, 0 ; (no tie case and
ADC DX, 0 ; no mantissa overflow possible)
POP CX ; get saved exponent
MOV AL, CL ; stuff exponent into result
AND DH, 7Fh ; clear sign bit
POP BP ; restore TURBO-Pascal frame pointer
RET ; done
RSqrt ENDP
ALIGN 4
CODE ENDS
END