home *** CD-ROM | disk | FTP | other *** search
- Path: erinews.ericsson.se!eritel!usenet
- From: Chris Ryder <ryder@eritel.se>
- Newsgroups: comp.lang.pascal.borland,comp.lang.pascal.mac,comp.lang.pascal.ansi-iso,comp.lang.pascal.misc,comp.sys.amiga.programmer,comp.graphics.algorithms,comp.os.ms-windows.programmer.graphics,comp.sys.amiga.graphics
- Subject: Re: 3d programming
- Date: 8 Feb 1996 06:59:41 GMT
- Organization: Eritel AB
- Message-ID: <4fc70t$pe0@pravda.eritel.se>
- References: <4f3od9$2jg@zeus.tcp.co.uk> <jderrick-0502961551360001@slip037.csc.cuhk.hk> <3118310E.52F@psu.edu> <SCHUMM.96Feb7101350@sdp13dj.der.edf.fr>
- NNTP-Posting-Host: holly.eritel.se
- Mime-Version: 1.0
- Content-Type: text/plain; charset=us-ascii
- Content-Transfer-Encoding: 7bit
- X-Mailer: Mozilla 1.1N (X11; I; SunOS 4.1.3_U1 sun4m)
- X-URL: news:SCHUMM.96Feb7101350@sdp13dj.der.edf.fr
-
- schumm@sdp13dj.der.edf.fr (andreas schumm) wrote:
- >
- >I have a more difficult problem: How to find the rays connecting
- >two points, satisfying Snell's law at the interface(s) between the
- >points. Any hints? I could figure it out for a plane or a sphere,
- >but in the general case of say a tessellated triangularized
- >surface between the points?
- >
-
- This is a real pain - there's no quick and easy way. As you say,
- spheres are simple - hence you see them a lot in ray-traced drawings.
- My suggestion is to consult a decent maths book.
-
- Good luck,
-
- ChrisR:
-
-