home *** CD-ROM | disk | FTP | other *** search
/ OS/2 Shareware BBS: 10 Tools / 10-Tools.zip / wvis0626.zip / warpvision_20020626.zip / libavcodec / ratecontrol.c < prev    next >
C/C++ Source or Header  |  2002-06-19  |  15KB  |  403 lines

  1. /*
  2.  * Rate control for video encoders
  3.  *
  4.  * Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
  5.  *
  6.  * This library is free software; you can redistribute it and/or
  7.  * modify it under the terms of the GNU Lesser General Public
  8.  * License as published by the Free Software Foundation; either
  9.  * version 2 of the License, or (at your option) any later version.
  10.  *
  11.  * This library is distributed in the hope that it will be useful,
  12.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14.  * Lesser General Public License for more details.
  15.  *
  16.  * You should have received a copy of the GNU Lesser General Public
  17.  * License along with this library; if not, write to the Free Software
  18.  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  19.  */
  20. #include "avcodec.h"
  21. #include "dsputil.h"
  22. #include "mpegvideo.h"
  23.  
  24. #define STATS_FILE "lavc_stats.txt"
  25.  
  26. static int init_pass2(MpegEncContext *s);
  27.  
  28. void ff_write_pass1_stats(MpegEncContext *s){
  29.     RateControlContext *rcc= &s->rc_context;
  30. //    fprintf(c->stats_file, "type:%d q:%d icount:%d pcount:%d scount:%d itex:%d ptex%d mv:%d misc:%d fcode:%d bcode:%d\")
  31.     fprintf(rcc->stats_file, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d\n",
  32.             s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type, 
  33.             s->qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits, s->f_code, s->b_code);
  34. }
  35.  
  36. int ff_rate_control_init(MpegEncContext *s)
  37. {
  38.     RateControlContext *rcc= &s->rc_context;
  39.     emms_c();
  40.  
  41.     if(s->flags&CODEC_FLAG_PASS1){
  42.         rcc->stats_file= fopen(STATS_FILE, "w");
  43.         if(!rcc->stats_file){
  44.             fprintf(stderr, "failed to open " STATS_FILE "\n");
  45.             return -1;
  46.         }
  47.     } else if(s->flags&CODEC_FLAG_PASS2){
  48.         int size;
  49.         int i;
  50.  
  51.         rcc->stats_file= fopen(STATS_FILE, "r");
  52.         if(!rcc->stats_file){
  53.             fprintf(stderr, "failed to open " STATS_FILE "\n");
  54.             return -1;
  55.         }
  56.  
  57.         /* find number of pics without reading the file twice :) */
  58.         fseek(rcc->stats_file, 0, SEEK_END);
  59.         size= ftell(rcc->stats_file);
  60.         fseek(rcc->stats_file, 0, SEEK_SET);
  61.  
  62.         size/= 64; // we need at least 64 byte to store a line ...
  63.         rcc->entry = (RateControlEntry*)av_mallocz(size*sizeof(RateControlEntry));
  64.  
  65.         for(i=0; !feof(rcc->stats_file); i++){
  66.             RateControlEntry *rce;
  67.             int picture_number;
  68.             int e;
  69.             
  70.             e= fscanf(rcc->stats_file, "in:%d ", &picture_number);
  71.             rce= &rcc->entry[picture_number];
  72.             e+=fscanf(rcc->stats_file, "out:%*d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%*d bcode:%*d\n",
  73.                    &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits);
  74.             if(e!=7){
  75.                 fprintf(stderr, STATS_FILE " is damaged\n");
  76.                 return -1;
  77.             }
  78.         }
  79.         rcc->num_entries= i;
  80.         
  81.         if(init_pass2(s) < 0) return -1;
  82.     }
  83.      
  84.     /* no 2pass stuff, just normal 1-pass */
  85.     //initial values, they dont really matter as they will be totally different within a few frames
  86.     s->i_pred.coeff= s->p_pred.coeff= 7.0;
  87.     s->i_pred.count= s->p_pred.count= 1.0;
  88.     
  89.     s->i_pred.decay= s->p_pred.decay= 0.4;
  90.     
  91.     // use more bits at the beginning, otherwise high motion at the begin will look like shit
  92.     s->qsum=100 * s->qmin;
  93.     s->qcount=100;
  94.  
  95.     s->short_term_qsum=0.001;
  96.     s->short_term_qcount=0.001;
  97.  
  98.     return 0;
  99. }
  100.  
  101. void ff_rate_control_uninit(MpegEncContext *s)
  102. {
  103.     RateControlContext *rcc= &s->rc_context;
  104.     emms_c();
  105.  
  106.     if(rcc->stats_file) 
  107.         fclose(rcc->stats_file);
  108.     rcc->stats_file = NULL;
  109.     av_freep(&rcc->entry);
  110. }
  111.  
  112. //----------------------------------
  113. // 1 Pass Code
  114.  
  115. static double predict(Predictor *p, double q, double var)
  116. {
  117.      return p->coeff*var / (q*p->count);
  118. }
  119.  
  120. static void update_predictor(Predictor *p, double q, double var, double size)
  121. {
  122.     double new_coeff= size*q / (var + 1);
  123.     if(var<1000) return;
  124.  
  125.     p->count*= p->decay;
  126.     p->coeff*= p->decay;
  127.     p->count++;
  128.     p->coeff+= new_coeff;
  129. }
  130.  
  131. int ff_rate_estimate_qscale(MpegEncContext *s)
  132. {
  133.     int qmin= s->qmin;
  134.     int qmax= s->qmax;
  135.     int rate_q=5;
  136.     float q;
  137.     int qscale;
  138.     float br_compensation;
  139.     double diff;
  140.     double short_term_q;
  141.     double long_term_q;
  142.     double fps;
  143.     int picture_number= s->input_picture_number - s->max_b_frames;
  144.     int64_t wanted_bits;
  145.     emms_c();
  146.  
  147.     fps= (double)s->frame_rate / FRAME_RATE_BASE;
  148.     wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  149. //    printf("%d %d %d\n", picture_number, (int)wanted_bits, (int)s->total_bits);
  150.     
  151.     if(s->pict_type==B_TYPE){
  152.         qmin= (int)(qmin*s->b_quant_factor+s->b_quant_offset + 0.5);
  153.         qmax= (int)(qmax*s->b_quant_factor+s->b_quant_offset + 0.5);
  154.     }
  155.     if(qmin<1) qmin=1;
  156.     if(qmax>31) qmax=31;
  157.     if(qmax<=qmin) qmax= qmin;
  158.  
  159.         /* update predictors */
  160.     if(picture_number>2){
  161.         if(s->pict_type!=B_TYPE && s->last_non_b_pict_type == P_TYPE){
  162. //printf("%d %d %d %f\n", s->qscale, s->last_mc_mb_var, s->frame_bits, s->p_pred.coeff);
  163.             update_predictor(&s->p_pred, s->last_non_b_qscale, s->last_non_b_mc_mb_var, s->pb_frame_bits);
  164.         }
  165.     }
  166.  
  167.     if(s->pict_type == I_TYPE){
  168.         short_term_q= s->short_term_qsum/s->short_term_qcount;
  169.     
  170.         long_term_q= s->qsum/s->qcount*(s->total_bits+1)/(wanted_bits+1); //+1 to avoid nan & 0
  171.  
  172.         q= 1/((1/long_term_q - 1/short_term_q)*s->qcompress + 1/short_term_q);
  173.     }else if(s->pict_type==B_TYPE){
  174.         q= (int)(s->last_non_b_qscale*s->b_quant_factor+s->b_quant_offset + 0.5);
  175.     }else{ //P Frame
  176.         int i;
  177.         int diff, best_diff=1000000000;
  178.         for(i=1; i<=31; i++){
  179.             diff= predict(&s->p_pred, i, s->mc_mb_var_sum) - (double)s->bit_rate/fps;
  180.             if(diff<0) diff= -diff;
  181.             if(diff<best_diff){
  182.                 best_diff= diff;
  183.                 rate_q= i;
  184.             }
  185.         }
  186.         s->short_term_qsum*=s->qblur;
  187.         s->short_term_qcount*=s->qblur;
  188.  
  189.         s->short_term_qsum+= rate_q;
  190.         s->short_term_qcount++;
  191.         short_term_q= s->short_term_qsum/s->short_term_qcount;
  192.     
  193.         long_term_q= s->qsum/s->qcount*(s->total_bits+1)/(wanted_bits+1); //+1 to avoid nan & 0
  194.  
  195. //    q= (long_term_q - short_term_q)*s->qcompress + short_term_q;
  196.         q= 1/((1/long_term_q - 1/short_term_q)*s->qcompress + 1/short_term_q);
  197.     }
  198.  
  199.     diff= s->total_bits - wanted_bits;
  200.     br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  201.     if(br_compensation<=0.0) br_compensation=0.001;
  202.     q/=br_compensation;
  203. //printf("%f %f %f\n", q, br_compensation, short_term_q);
  204.     qscale= (int)(q + 0.5);
  205.     if     (qscale<qmin) qscale=qmin;
  206.     else if(qscale>qmax) qscale=qmax;
  207.     
  208.     if(s->pict_type!=B_TYPE){
  209.         s->qsum+= qscale;
  210.         s->qcount++;
  211.         if     (qscale<s->last_non_b_qscale-s->max_qdiff) qscale=s->last_non_b_qscale-s->max_qdiff;
  212.         else if(qscale>s->last_non_b_qscale+s->max_qdiff) qscale=s->last_non_b_qscale+s->max_qdiff;
  213.     }
  214. //printf("q:%d diff:%d comp:%f rate_q:%d st_q:%f fvar:%d last_size:%d\n", qscale, (int)diff, br_compensation, 
  215. //       rate_q, short_term_q, s->mc_mb_var, s->frame_bits);
  216. //printf("%d %d\n", s->bit_rate, (int)fps);
  217.     return qscale;
  218. }
  219.  
  220. //----------------------------------------------
  221. // 2-Pass code
  222.  
  223. static int init_pass2(MpegEncContext *s)
  224. {
  225.     RateControlContext *rcc= &s->rc_context;
  226.     int i;
  227.     double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  228.     double complexity[5]={0,0,0,0,0};   // aproximate bits at quant=1
  229.     double avg_quantizer[5];
  230.     uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  231.     uint64_t available_bits[5];
  232.     uint64_t all_const_bits;
  233.     uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  234.     int num_frames[5]={0,0,0,0,0};
  235.     double rate_factor=0;
  236.     double step;
  237.     int last_i_frame=-10000000;
  238.  
  239.     /* find complexity & const_bits & decide the pict_types */
  240.     for(i=0; i<rcc->num_entries; i++){
  241.         RateControlEntry *rce= &rcc->entry[i];
  242.         
  243.         if(s->b_frame_strategy==0 || s->max_b_frames==0){
  244.             rce->new_pict_type= rce->pict_type;
  245.         }else{
  246.             int j;
  247.             int next_non_b_type=P_TYPE;
  248.  
  249.             switch(rce->pict_type){
  250.             case I_TYPE:
  251.                 if(i-last_i_frame>s->gop_size/2){ //FIXME this is not optimal
  252.                     rce->new_pict_type= I_TYPE;
  253.                     last_i_frame= i;
  254.                 }else{
  255.                     rce->new_pict_type= P_TYPE; // will be caught by the scene detection anyway
  256.                 }
  257.                 break;
  258.             case P_TYPE:
  259.                 rce->new_pict_type= P_TYPE;
  260.                 break;
  261.             case B_TYPE:
  262.                 for(j=i+1; j<i+s->max_b_frames+2 && j<rcc->num_entries; j++){
  263.                     if(rcc->entry[j].pict_type != B_TYPE){
  264.                         next_non_b_type= rcc->entry[j].pict_type;
  265.                         break;
  266.                     }
  267.                 }
  268.                 if(next_non_b_type==I_TYPE)
  269.                     rce->new_pict_type= P_TYPE;
  270.                 else
  271.                     rce->new_pict_type= B_TYPE;
  272.                 break;
  273.             }
  274.         }
  275.  
  276.         complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  277.         const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  278.         num_frames[rce->new_pict_type]++;
  279.     }
  280.     all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  281.     
  282.     if(all_available_bits < all_const_bits){
  283.         fprintf(stderr, "requested bitrate is to low\n");
  284.         return -1;
  285.     }
  286.  
  287. //    avg_complexity= complexity/rcc->num_entries;
  288.     avg_quantizer[P_TYPE]= 
  289.     avg_quantizer[I_TYPE]=   (complexity[I_TYPE]+complexity[P_TYPE] + complexity[B_TYPE]/s->b_quant_factor) 
  290.                            / (all_available_bits - all_const_bits);
  291.     avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*s->b_quant_factor + s->b_quant_offset;
  292. //printf("avg quantizer: %f %f\n", avg_quantizer[P_TYPE], avg_quantizer[B_TYPE]);
  293.  
  294.     for(i=0; i<5; i++){
  295.         available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  296.     }
  297. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  298.     
  299.     for(step=256*256; step>0.0000001; step*=0.5){
  300.         uint64_t expected_bits=0;
  301.         rate_factor+= step;
  302.         /* find qscale */
  303.         for(i=0; i<rcc->num_entries; i++){
  304.             RateControlEntry *rce= &rcc->entry[i];
  305.             double short_term_q, q, bits_left;
  306.             const int pict_type= rce->new_pict_type;
  307.             int qmin= s->qmin;
  308.             int qmax= s->qmax;
  309.  
  310.             if(pict_type==B_TYPE){
  311.                 qmin= (int)(qmin*s->b_quant_factor+s->b_quant_offset + 0.5);
  312.                 qmax= (int)(qmax*s->b_quant_factor+s->b_quant_offset + 0.5);
  313.             }
  314.             if(qmin<1) qmin=1;
  315.             if(qmax>31) qmax=31;
  316.             if(qmax<=qmin) qmax= qmin;
  317.             
  318.             switch(s->rc_strategy){
  319.             case 0:
  320.                 bits_left= available_bits[pict_type]/num_frames[pict_type]*rate_factor - rce->misc_bits - rce->mv_bits;
  321.                 if(bits_left<1.0) bits_left=1.0;
  322.                 short_term_q= rce->qscale*(rce->i_tex_bits + rce->p_tex_bits)/bits_left;
  323.                 break;
  324.             case 1:
  325.                 bits_left= (available_bits[pict_type] - const_bits[pict_type])/num_frames[pict_type]*rate_factor;
  326.                 if(bits_left<1.0) bits_left=1.0;
  327.                 short_term_q= rce->qscale*(rce->i_tex_bits + rce->p_tex_bits)/bits_left;
  328.                 break;
  329.             case 2:
  330.                 bits_left= available_bits[pict_type]/num_frames[pict_type]*rate_factor;
  331.                 if(bits_left<1.0) bits_left=1.0;
  332.                 short_term_q= rce->qscale*(rce->i_tex_bits + rce->p_tex_bits + rce->misc_bits + rce->mv_bits)/bits_left;
  333.                 break;
  334.             default:
  335.                 fprintf(stderr, "unknown strategy\n");
  336.                 short_term_q=3; //gcc warning fix
  337.             }
  338.  
  339.             if(short_term_q>31.0) short_term_q=31.0;
  340.             else if (short_term_q<1.0) short_term_q=1.0;
  341.  
  342.             q= 1/((1/avg_quantizer[pict_type] - 1/short_term_q)*s->qcompress + 1/short_term_q);
  343.             if     (q<qmin) q=qmin;
  344.             else if(q>qmax) q=qmax;
  345. //printf("lq:%f, sq:%f t:%f q:%f\n", avg_quantizer[rce->pict_type], short_term_q, bits_left, q);
  346.             rce->new_qscale= q;
  347.         }
  348.  
  349.         /* smooth curve */
  350.     
  351.         /* find expected bits */
  352.         for(i=0; i<rcc->num_entries; i++){
  353.             RateControlEntry *rce= &rcc->entry[i];
  354.             double factor= rce->qscale / rce->new_qscale;
  355.             
  356.             rce->expected_bits= expected_bits;
  357.             expected_bits += (int)(rce->misc_bits + rce->mv_bits + (rce->i_tex_bits + rce->p_tex_bits)*factor + 0.5);
  358.         }
  359.  
  360. //        printf("%d %d %f\n", (int)expected_bits, (int)all_available_bits, rate_factor);
  361.         if(expected_bits > all_available_bits) rate_factor-= step;
  362.     }
  363.  
  364.     return 0;
  365. }
  366.  
  367. int ff_rate_estimate_qscale_pass2(MpegEncContext *s)
  368. {
  369.     int qmin= s->qmin;
  370.     int qmax= s->qmax;
  371.     float q;
  372.     int qscale;
  373.     float br_compensation;
  374.     double diff;
  375.     int picture_number= s->picture_number;
  376.     RateControlEntry *rce= &s->rc_context.entry[picture_number];
  377.     int64_t wanted_bits= rce->expected_bits;
  378.     emms_c();
  379.  
  380. //    printf("%d %d %d\n", picture_number, (int)wanted_bits, (int)s->total_bits);
  381.     
  382.     if(s->pict_type==B_TYPE){
  383.         qmin= (int)(qmin*s->b_quant_factor+s->b_quant_offset + 0.5);
  384.         qmax= (int)(qmax*s->b_quant_factor+s->b_quant_offset + 0.5);
  385.     }
  386.     if(qmin<1) qmin=1;
  387.     if(qmax>31) qmax=31;
  388.     if(qmax<=qmin) qmax= qmin;
  389.  
  390.     q= rce->new_qscale;
  391.  
  392.     diff= s->total_bits - wanted_bits;
  393.     br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  394.     if(br_compensation<=0.0) br_compensation=0.001;
  395.     q/=br_compensation;
  396.  
  397.     qscale= (int)(q + 0.5);
  398.     if     (qscale<qmin) qscale=qmin;
  399.     else if(qscale>qmax) qscale=qmax;
  400. //    printf("%d %d %d %d type:%d\n", qmin, qscale, qmax, picture_number, s->pict_type); fflush(stdout);
  401.     return qscale;
  402. }
  403.