home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
windr440.zip
/
windrive.zip
/
WinDriver
/
samples
/
pci_diag
/
pci_lib.c
< prev
next >
Wrap
C/C++ Source or Header
|
2000-03-30
|
15KB
|
464 lines
//////////////////////////////////////////////////////////////////////
// File - pci_lib.c
//
// Library for accessing a PCI card.
// Code was generated by WinDriver Wizard.
// It accesses hardware via WinDriver functions.
//
//////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include "pci_lib.h"
#include "../../include/windrvr_int_thread.h"
// this string is set to an error message, if one occurs
CHAR PCI_ErrorString[1024];
// internal function used by PCI_Open()
BOOL PCI_DetectCardElements(PCI_HANDLE hPCI);
DWORD PCI_CountCards (DWORD dwVendorID, DWORD dwDeviceID)
{
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
HANDLE hWD;
PCI_ErrorString[0] = '\0';
hWD = WD_Open();
// check if handle valid & version OK
if (hWD==INVALID_HANDLE_VALUE)
{
sprintf( PCI_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
return 0;
}
BZERO(ver);
WD_Version(hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( PCI_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
WD_Close (hWD);
return 0;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hWD, &pciScan);
WD_Close (hWD);
if (pciScan.dwCards==0)
sprintf( PCI_ErrorString, "no cards found\n");
return pciScan.dwCards;
}
BOOL PCI_Open (PCI_HANDLE *phPCI, DWORD dwVendorID, DWORD dwDeviceID, DWORD nCardNum, DWORD options)
{
PCI_HANDLE hPCI = (PCI_HANDLE) malloc (sizeof (PCI_STRUCT));
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
WD_PCI_CARD_INFO pciCardInfo;
*phPCI = NULL;
PCI_ErrorString[0] = '\0';
BZERO(*hPCI);
hPCI->cardReg.hCard = 0;
hPCI->hWD = WD_Open();
// check if handle valid & version OK
if (hPCI->hWD==INVALID_HANDLE_VALUE)
{
sprintf( PCI_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
goto Exit;
}
BZERO(ver);
WD_Version(hPCI->hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( PCI_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
goto Exit;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hPCI->hWD, &pciScan);
if (pciScan.dwCards==0) // Found at least one card
{
sprintf( PCI_ErrorString, "Could not find PCI card\n");
goto Exit;
}
if (pciScan.dwCards<=nCardNum)
{
sprintf( PCI_ErrorString, "Card out of range of available cards\n");
goto Exit;
}
BZERO(pciCardInfo);
pciCardInfo.pciSlot = pciScan.cardSlot[nCardNum];
WD_PciGetCardInfo (hPCI->hWD, &pciCardInfo);
hPCI->pciSlot = pciCardInfo.pciSlot;
hPCI->cardReg.Card = pciCardInfo.Card;
hPCI->fUseInt = (options & PCI_OPEN_USE_INT) ? TRUE : FALSE;
if (!hPCI->fUseInt)
{
DWORD i;
// Remove interrupt item if not needed
for (i=0; i<hPCI->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPCI->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->item = ITEM_NONE;
}
}
else
{
DWORD i;
// make interrupt resource sharable
for (i=0; i<hPCI->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPCI->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->fNotSharable = FALSE;
}
}
hPCI->cardReg.fCheckLockOnly = FALSE;
WD_CardRegister (hPCI->hWD, &hPCI->cardReg);
if (hPCI->cardReg.hCard==0)
{
sprintf ( PCI_ErrorString, "Failed locking device\n");
goto Exit;
}
if (!PCI_DetectCardElements(hPCI))
{
sprintf ( PCI_ErrorString, "Card does not have all items expected for PCI\n");
goto Exit;
}
// Open finished OK
*phPCI = hPCI;
return TRUE;
Exit:
// Error during Open
if (hPCI->cardReg.hCard)
WD_CardUnregister(hPCI->hWD, &hPCI->cardReg);
if (hPCI->hWD!=INVALID_HANDLE_VALUE)
WD_Close(hPCI->hWD);
free (hPCI);
return FALSE;
}
void PCI_Close(PCI_HANDLE hPCI)
{
// disable interrupts
if (PCI_IntIsEnabled(hPCI))
PCI_IntDisable(hPCI);
// unregister card
if (hPCI->cardReg.hCard)
WD_CardUnregister(hPCI->hWD, &hPCI->cardReg);
// close WinDriver
WD_Close(hPCI->hWD);
free (hPCI);
}
void PCI_WritePCIReg(PCI_HANDLE hPCI, DWORD dwReg, DWORD dwData)
{
WD_PCI_CONFIG_DUMP pciCnf;
BZERO(pciCnf);
pciCnf.pciSlot = hPCI->pciSlot;
pciCnf.pBuffer = &dwData;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = FALSE;
WD_PciConfigDump(hPCI->hWD,&pciCnf);
}
DWORD PCI_ReadPCIReg(PCI_HANDLE hPCI, DWORD dwReg)
{
WD_PCI_CONFIG_DUMP pciCnf;
DWORD dwVal;
BZERO(pciCnf);
pciCnf.pciSlot = hPCI->pciSlot;
pciCnf.pBuffer = &dwVal;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = TRUE;
WD_PciConfigDump(hPCI->hWD,&pciCnf);
return dwVal;
}
BOOL PCI_DetectCardElements(PCI_HANDLE hPCI)
{
DWORD i;
DWORD ad_sp;
BZERO(hPCI->Int);
BZERO(hPCI->addrDesc);
for (i=0; i<hPCI->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hPCI->cardReg.Card.Item[i];
switch (pItem->item)
{
case ITEM_MEMORY:
case ITEM_IO:
{
DWORD dwBytes;
DWORD dwPhysAddr;
BOOL fIsMemory;
if (pItem->item==ITEM_MEMORY)
{
dwBytes = pItem->I.Mem.dwBytes;
dwPhysAddr = pItem->I.Mem.dwPhysicalAddr;
fIsMemory = TRUE;
}
else
{
dwBytes = pItem->I.IO.dwBytes;
dwPhysAddr = pItem->I.IO.dwAddr;
fIsMemory = FALSE;
}
for (ad_sp=0; ad_sp<PCI_ITEMS; ad_sp++)
{
DWORD dwPCIAddr;
DWORD dwPCIReg;
if (PCI_IsAddrSpaceActive(hPCI, ad_sp)) continue;
if (ad_sp<PCI_AD_EPROM) dwPCIReg = PCI_BAR0 + 4*ad_sp;
else dwPCIReg = PCI_ERBAR;
dwPCIAddr = PCI_ReadPCIReg(hPCI, dwPCIReg);
if (dwPCIAddr & 1)
{
if (fIsMemory) continue;
dwPCIAddr &= ~0x3;
}
else
{
if (!fIsMemory) continue;
dwPCIAddr &= ~0xf;
}
if (dwPCIAddr==dwPhysAddr)
break;
}
if (ad_sp<PCI_ITEMS)
{
DWORD j;
hPCI->addrDesc[ad_sp].fActive = TRUE;
hPCI->addrDesc[ad_sp].index = i;
hPCI->addrDesc[ad_sp].fIsMemory = fIsMemory;
hPCI->addrDesc[ad_sp].dwMask = 0;
for (j=1; j<dwBytes && j!=0x80000000; j *= 2)
{
hPCI->addrDesc[ad_sp].dwMask =
(hPCI->addrDesc[ad_sp].dwMask << 1) | 1;
}
}
}
break;
case ITEM_INTERRUPT:
if (hPCI->Int.Int.hInterrupt) return FALSE;
hPCI->Int.Int.hInterrupt = pItem->I.Int.hInterrupt;
break;
}
}
// check that all the items needed were found
// check if interrupt found
if (hPCI->fUseInt && !hPCI->Int.Int.hInterrupt)
{
return FALSE;
}
// check that at least one memory space was found
for (i = 0; i<PCI_ITEMS; i++)
if (PCI_IsAddrSpaceActive(hPCI, i)) break;
if (i==PCI_ITEMS) return FALSE;
return TRUE;
}
BOOL PCI_IsAddrSpaceActive(PCI_HANDLE hPCI, PCI_ADDR addrSpace){
return hPCI->addrDesc[addrSpace].fActive;
}
// General read/write function
void PCI_ReadWriteBlock(PCI_HANDLE hPCI, PCI_ADDR addrSpace, DWORD dwOffset, BOOL fRead, PVOID buf, DWORD dwBytes, PCI_MODE mode)
{
WD_TRANSFER trans;
BOOL fMem = hPCI->addrDesc[addrSpace].fIsMemory;
// safty check: is the address range active
if (!PCI_IsAddrSpaceActive(hPCI, addrSpace)) return;
BZERO(trans);
if (fRead)
{
if (mode==PCI_MODE_BYTE) trans.cmdTrans = fMem ? RM_SBYTE : RP_SBYTE;
else if (mode==PCI_MODE_WORD) trans.cmdTrans = fMem ? RM_SWORD : RP_SWORD;
else if (mode==PCI_MODE_DWORD) trans.cmdTrans = fMem ? RM_SDWORD : RP_SDWORD;
}
else
{
if (mode==PCI_MODE_BYTE) trans.cmdTrans = fMem ? WM_SBYTE : WP_SBYTE;
else if (mode==PCI_MODE_WORD) trans.cmdTrans = fMem ? WM_SWORD : WP_SWORD;
else if (mode==PCI_MODE_DWORD) trans.cmdTrans = fMem ? WM_SDWORD : WP_SDWORD;
}
if (fMem)
trans.dwPort = hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwTransAddr;
else
trans.dwPort = hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.IO.dwAddr;
trans.dwPort += dwOffset;
trans.fAutoinc = TRUE;
trans.dwBytes = dwBytes;
trans.dwOptions = 0;
trans.Data.pBuffer = buf;
WD_Transfer (hPCI->hWD, &trans);
}
BYTE PCI_ReadByte (PCI_HANDLE hPCI, PCI_ADDR addrSpace, DWORD dwOffset)
{
BYTE data;
if (hPCI->addrDesc[addrSpace].fIsMemory)
{
PBYTE pData = (PBYTE) (hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwUserDirectAddr + dwOffset);
data = *pData; // read from the memory mapped range directly
}
else PCI_ReadWriteBlock( hPCI, addrSpace, dwOffset, TRUE, &data, sizeof (BYTE), PCI_MODE_BYTE);
return data;
}
WORD PCI_ReadWord (PCI_HANDLE hPCI, PCI_ADDR addrSpace, DWORD dwOffset)
{
WORD data;
if (hPCI->addrDesc[addrSpace].fIsMemory)
{
PWORD pData = (PWORD) (hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwUserDirectAddr + dwOffset);
data = *pData; // read from the memory mapped range directly
}
else PCI_ReadWriteBlock( hPCI, addrSpace, dwOffset, TRUE, &data, sizeof (WORD), PCI_MODE_WORD);
return data;
}
DWORD PCI_ReadDword (PCI_HANDLE hPCI, PCI_ADDR addrSpace, DWORD dwOffset)
{
DWORD data;
if (hPCI->addrDesc[addrSpace].fIsMemory)
{
PDWORD pData = (PDWORD) (hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwUserDirectAddr + dwOffset);
data = *pData; // read from the memory mapped range directly
}
else PCI_ReadWriteBlock( hPCI, addrSpace, dwOffset, TRUE, &data, sizeof (DWORD), PCI_MODE_DWORD);
return data;
}
void PCI_WriteByte (PCI_HANDLE hPCI, PCI_ADDR addrSpace, DWORD dwOffset, BYTE data)
{
if (hPCI->addrDesc[addrSpace].fIsMemory)
{
PBYTE pData = (PBYTE) (hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwUserDirectAddr + dwOffset);
*pData = data; // write to the memory mapped range directly
}
else PCI_ReadWriteBlock( hPCI, addrSpace, dwOffset, FALSE, &data, sizeof (BYTE), PCI_MODE_BYTE);
}
void PCI_WriteWord (PCI_HANDLE hPCI, PCI_ADDR addrSpace, DWORD dwOffset, WORD data)
{
if (hPCI->addrDesc[addrSpace].fIsMemory)
{
PWORD pData = (PWORD) (hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwUserDirectAddr + dwOffset);
*pData = data; // write to the memory mapped range directly
}
else PCI_ReadWriteBlock( hPCI, addrSpace, dwOffset, FALSE, &data, sizeof (WORD), PCI_MODE_WORD);
}
void PCI_WriteDword (PCI_HANDLE hPCI, PCI_ADDR addrSpace, DWORD dwOffset, DWORD data)
{
if (hPCI->addrDesc[addrSpace].fIsMemory)
{
PDWORD pData = (PDWORD) (hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwUserDirectAddr + dwOffset);
*pData = data; // write to the memory mapped range directly
}
else
PCI_ReadWriteBlock( hPCI, addrSpace, dwOffset, FALSE, &data, sizeof (DWORD), PCI_MODE_DWORD);
}
BOOL PCI_IntIsEnabled (PCI_HANDLE hPCI)
{
if (!hPCI->fUseInt) return FALSE;
if (!hPCI->Int.hThread) return FALSE;
return TRUE;
}
VOID PCI_IntHandler (PVOID pData)
{
PCI_HANDLE hPCI = (PCI_HANDLE) pData;
PCI_INT_RESULT intResult;
intResult.dwCounter = hPCI->Int.Int.dwCounter;
intResult.dwLost = hPCI->Int.Int.dwLost;
intResult.fStopped = hPCI->Int.Int.fStopped;
hPCI->Int.funcIntHandler(hPCI, &intResult);
}
BOOL PCI_IntEnable (PCI_HANDLE hPCI, PCI_INT_HANDLER funcIntHandler)
{
PCI_ADDR addrSpace;
if (!hPCI->fUseInt) return FALSE;
// check if interrupt is already enabled
if (hPCI->Int.hThread) return FALSE;
BZERO(hPCI->Int.Trans);
// This is a sample of handling interrupts:
// One transfer commands is issued. You will need to change this code.
// You must add transfer commands to CANCEL the source of the interrupt, otherwise, the
// PC will hang when an interrupt occurs!
addrSpace = PCI_AD_BAR0; // put the address space of the register here
if (hPCI->addrDesc[addrSpace].fIsMemory)
{
hPCI->Int.Trans[0].dwPort = hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.Mem.dwTransAddr;
hPCI->Int.Trans[0].cmdTrans = WM_DWORD;
}
else
{
hPCI->Int.Trans[0].dwPort = hPCI->cardReg.Card.Item[hPCI->addrDesc[addrSpace].index].I.IO.dwAddr;
hPCI->Int.Trans[0].cmdTrans = WP_DWORD;
}
hPCI->Int.Trans[0].dwPort += 0; // put the offset of the register from the beginning of the address space here
hPCI->Int.Trans[0].Data.Dword = 0; // put the data to write to the control register here
hPCI->Int.Int.dwCmds = 1;
hPCI->Int.Int.Cmd = hPCI->Int.Trans;
hPCI->Int.Int.dwOptions |= INTERRUPT_CMD_COPY;
// this calls WD_IntEnable() and creates an interrupt handler thread
hPCI->Int.funcIntHandler = funcIntHandler;
if (!InterruptThreadEnable(&hPCI->Int.hThread, hPCI->hWD, &hPCI->Int.Int, PCI_IntHandler, (PVOID) hPCI))
return FALSE;
return TRUE;
}
void PCI_IntDisable (PCI_HANDLE hPCI)
{
if (!hPCI->fUseInt) return;
if (!hPCI->Int.hThread) return;
// this calls WD_IntDisable()
InterruptThreadDisable(hPCI->Int.hThread);
hPCI->Int.hThread = NULL;
}