home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
perl502b.zip
/
lib
/
bigrat.pl
< prev
next >
Wrap
Perl Script
|
1995-03-11
|
4KB
|
150 lines
package bigrat;
require "bigint.pl";
# Arbitrary size rational math package
#
# by Mark Biggar
#
# Input values to these routines consist of strings of the form
# m|^\s*[+-]?[\d\s]+(/[\d\s]+)?$|.
# Examples:
# "+0/1" canonical zero value
# "3" canonical value "+3/1"
# " -123/123 123" canonical value "-1/1001"
# "123 456/7890" canonical value "+20576/1315"
# Output values always include a sign and no leading zeros or
# white space.
# This package makes use of the bigint package.
# The string 'NaN' is used to represent the result when input arguments
# that are not numbers, as well as the result of dividing by zero and
# the sqrt of a negative number.
# Extreamly naive algorthims are used.
#
# Routines provided are:
#
# rneg(RAT) return RAT negation
# rabs(RAT) return RAT absolute value
# rcmp(RAT,RAT) return CODE compare numbers (undef,<0,=0,>0)
# radd(RAT,RAT) return RAT addition
# rsub(RAT,RAT) return RAT subtraction
# rmul(RAT,RAT) return RAT multiplication
# rdiv(RAT,RAT) return RAT division
# rmod(RAT) return (RAT,RAT) integer and fractional parts
# rnorm(RAT) return RAT normalization
# rsqrt(RAT, cycles) return RAT square root
# Convert a number to the canonical string form m|^[+-]\d+/\d+|.
sub main'rnorm { #(string) return rat_num
local($_) = @_;
s/\s+//g;
if (m#^([+-]?\d+)(/(\d*[1-9]0*))?$#) {
&norm($1, $3 ? $3 : '+1');
} else {
'NaN';
}
}
# Normalize by reducing to lowest terms
sub norm { #(bint, bint) return rat_num
local($num,$dom) = @_;
if ($num eq 'NaN') {
'NaN';
} elsif ($dom eq 'NaN') {
'NaN';
} elsif ($dom =~ /^[+-]?0+$/) {
'NaN';
} else {
local($gcd) = &'bgcd($num,$dom);
$gcd =~ s/^-/+/;
if ($gcd ne '+1') {
$num = &'bdiv($num,$gcd);
$dom = &'bdiv($dom,$gcd);
} else {
$num = &'bnorm($num);
$dom = &'bnorm($dom);
}
substr($dom,$[,1) = '';
"$num/$dom";
}
}
# negation
sub main'rneg { #(rat_num) return rat_num
local($_) = &'rnorm(@_);
tr/-+/+-/ if ($_ ne '+0/1');
$_;
}
# absolute value
sub main'rabs { #(rat_num) return $rat_num
local($_) = &'rnorm(@_);
substr($_,$[,1) = '+' unless $_ eq 'NaN';
$_;
}
# multipication
sub main'rmul { #(rat_num, rat_num) return rat_num
local($xn,$xd) = split('/',&'rnorm($_[$[]));
local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
&norm(&'bmul($xn,$yn),&'bmul($xd,$yd));
}
# division
sub main'rdiv { #(rat_num, rat_num) return rat_num
local($xn,$xd) = split('/',&'rnorm($_[$[]));
local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
&norm(&'bmul($xn,$yd),&'bmul($xd,$yn));
}
# addition
sub main'radd { #(rat_num, rat_num) return rat_num
local($xn,$xd) = split('/',&'rnorm($_[$[]));
local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
&norm(&'badd(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd));
}
# subtraction
sub main'rsub { #(rat_num, rat_num) return rat_num
local($xn,$xd) = split('/',&'rnorm($_[$[]));
local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
&norm(&'bsub(&'bmul($xn,$yd),&'bmul($yn,$xd)),&'bmul($xd,$yd));
}
# comparison
sub main'rcmp { #(rat_num, rat_num) return cond_code
local($xn,$xd) = split('/',&'rnorm($_[$[]));
local($yn,$yd) = split('/',&'rnorm($_[$[+1]));
&bigint'cmp(&'bmul($xn,$yd),&'bmul($yn,$xd));
}
# int and frac parts
sub main'rmod { #(rat_num) return (rat_num,rat_num)
local($xn,$xd) = split('/',&'rnorm(@_));
local($i,$f) = &'bdiv($xn,$xd);
if (wantarray) {
("$i/1", "$f/$xd");
} else {
"$i/1";
}
}
# square root by Newtons method.
# cycles specifies the number of iterations default: 5
sub main'rsqrt { #(fnum_str[, cycles]) return fnum_str
local($x, $scale) = (&'rnorm($_[$[]), $_[$[+1]);
if ($x eq 'NaN') {
'NaN';
} elsif ($x =~ /^-/) {
'NaN';
} else {
local($gscale, $guess) = (0, '+1/1');
$scale = 5 if (!$scale);
while ($gscale++ < $scale) {
$guess = &'rmul(&'radd($guess,&'rdiv($x,$guess)),"+1/2");
}
"$guess"; # quotes necessary due to perl bug
}
}
1;