home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
doc
/
liboct.INF
(
.txt
)
< prev
next >
Wrap
OS/2 Help File
|
2000-01-15
|
116KB
|
2,595 lines
ΓòÉΓòÉΓòÉ 1. Title page ΓòÉΓòÉΓòÉ
Octave C++ Classes
Edition 1.0 for Octave version 2.1.23
September 1993
John W. Eaton
Copyright (C) 1996, 1997 John W. Eaton.
This is the first edition of the documentation for Octave's C++ classes, and is
consistent with version 2.1.23 of Octave.
Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.
Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.
Permission is granted to copy and distribute translations of this manual into
another language, under the same conditions as for modified versions.
ΓòÉΓòÉΓòÉ 2. Top ΓòÉΓòÉΓòÉ
This manual documents how to use, install and port Octave's C++ class library,
and how to report bugs. It corresponds to Octave version 2.1.23.
Acknowledgements
Copying
Introduction
Arrays
Matrix and Vector Operations
Matrix Factorizations
Ranges
Nonlinear Functions
Nonlinear Equations
Optimization
Quadrature
Ordinary Differential Equations
Differential Algebraic Equations
Error Handling
Installation
Bugs
Concept Index
Function Index
--- The Detailed Node Listing ---
Acknowledgements
Contributors People who contributed to developing
of Octave.
Arrays
Constructors and Assignment
Optimization
Objective Functions
Bounds
Linear Constraints
Nonlinear Constraints
Quadratic Programming
Nonlinear Programming
Quadrature
Collocation Weights
ΓòÉΓòÉΓòÉ 3. Acknowledgements ΓòÉΓòÉΓòÉ
Contributors People who contributed to developing
of Octave.
ΓòÉΓòÉΓòÉ 3.1. Contributors to Octave ΓòÉΓòÉΓòÉ
In addition to John W. Eaton, several people have written parts of liboctave.
(This has been removed because it is the same as what is in the Octave manual.)
ΓòÉΓòÉΓòÉ 4. GNU GENERAL PUBLIC LICENSE ΓòÉΓòÉΓòÉ
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
ΓòÉΓòÉΓòÉ 4.1. Preamble ΓòÉΓòÉΓòÉ
The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software---to make sure the
software is free for all its users. This General Public License applies to
most of the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.
To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.
Also, for each author's protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.
Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification
follow.
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
1. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the
terms of this General Public License. The ``Program'', below, refers to
any such program or work, and a ``work based on the Program'' means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term
``modification''.) Each licensee is addressed as ``you''.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true depends
on what the Program does.
2. You may copy and distribute verbatim copies of the Program's source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.
3. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.
c. If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is
no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to
print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program, and
can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of a
storage or distribution medium does not bring the other work under the
scope of this License.
4. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,
b. Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the
executable.
If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.
5. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full
compliance.
6. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute
the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works
based on it.
7. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.
8. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would
not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from
distribution of the Program.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public
license practices. Many people have made generous contributions to the
wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.
9. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
10. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and ``any
later version'', you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by the
Free Software Foundation.
11. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.
NO WARRANTY
12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.
13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
ΓòÉΓòÉΓòÉ 4.2. Appendix: How to Apply These Terms to Your New Programs ΓòÉΓòÉΓòÉ
If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the ``copyright'' line and a
pointer to where the full notice is found.
one line to give the program's name and a brief idea of what it does.
Copyright (C) 19yy name of author
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may be
called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items---whatever suits your program.
You should also get your employer (if you work as a programmer) or your school,
if any, to sign a ``copyright disclaimer'' for the program, if necessary. Here
is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.
ΓòÉΓòÉΓòÉ 5. A Brief Introduction to Octave ΓòÉΓòÉΓòÉ
This manual documents how to run, install and port Octave's C++ classes, and
how to report bugs.
ΓòÉΓòÉΓòÉ 6. Arrays ΓòÉΓòÉΓòÉ
Constructors and Assignment
ΓòÉΓòÉΓòÉ 6.1. Constructors and Assignment ΓòÉΓòÉΓòÉ
Constructor: Array<T>::Array (void)
Create an array with no elements.
Constructor: Array<T>::Array (int n [, const T &val])
Create an array with n elements. If the optional argument val is supplied, the
elements are initialized to val; otherwise, they are left uninitialized. If n
is less than zero, the current error handler is invoked (see Error Handling).
Constructor: Array<T>::Array (const Array<T> &a)
Create a copy of the Array<T> object a. Memory for the Array<T> class is
managed using a reference counting scheme, so the cost of this operation is
independent of the size of the array.
Operator: Array<T>& Array<T>::operator = (const Array<T> &a)
Assignment operator. Memory for the Array<T> class is managed using a
reference counting scheme, so the cost of this operation is independent of the
size of the array.
Method: int Array<T>::capacity (void) const
Method: int Array<T>::length (void) const
Return the length of the array.
Method: T& Array<T>::elem (int n)
Method: T& Array<T>::checkelem (int n)
Method: T& Array<T>::operator () (int n)
If n is within the bounds of the array, return a reference to the element
indexed by n; otherwise, the current error handler is invoked (see Error
Handling).
Method: T Array<T>::elem (int n) const
Method: T Array<T>::checkelem (int n) const
Method: T Array<T>::operator () (int n) const
If n is within the bounds of the array, return the value indexed by n;
otherwise, call the current error handler. See Error Handling.
Method: T& Array<T>::xelem (int n)
Method: T Array<T>::xelem (int n) const
Return a reference to, or the value of, the element indexed by n. These methods
never perform bounds checking.
Method: void Array<T>::resize (int n [, const T &val])
Change the size of the array to be n elements. All elements are unchanged,
except that if n is greater than the current size and the optional argument val
is provided, the additional elements are initialized to val; otherwise, any
additional elements are left uninitialized. In the current implementation, if
n is less than the current size, the length is updated but no memory is
released.
Method: const T* Array<T>::data (void) const
: Array2 (void)
: Array2 (int n, int m)
: Array2 (int n, int m, const T &val)
: Array2 (const Array2<T> &a)
: Array2 (const DiagArray<T> &a)
: Array2<T>& operator = (const Array2<T> &a)
: int dim1 (void) const
: int rows (void) const
: int dim2 (void) const
: int cols (void) const
: int columns (void) const
: T& elem (int i, int j)
: T& checkelem (int i, int j)
: T& operator () (int i, int j)
: void resize (int n, int m)
: void resize (int n, int m, const T &val)
: Array3 (void)
: Array3 (int n, int m, int k)
: Array3 (int n, int m, int k, const T &val)
: Array3 (const Array3<T> &a)
: Array3<T>& operator = (const Array3<T> &a)
: int dim1 (void) const
: int dim2 (void) const
: int dim3 (void) const
: T& elem (int i, int j, int k)
: T& checkelem (int i, int j, int k)
: T& operator () (int i, int j, int k)
: void resize (int n, int m, int k)
: void resize (int n, int m, int k, const T &val)
: DiagArray (void)
: DiagArray (int n)
: DiagArray (int n, const T &val)
: DiagArray (int r, int c)
: DiagArray (int r, int c, const T &val)
: DiagArray (const Array<T> &a)
: DiagArray (const DiagArray<T> &a)
: DiagArray<T>& operator = (const DiagArray<T> &a)
: int dim1 (void) const
: int rows (void) const
: int dim2 (void) const
: int cols (void) const
: int columns (void) const
: T& elem (int r, int c)
: T& checkelem (int r, int c)
: T& operator () (int r, int c)
: void resize (int n, int m)
: void resize (int n, int m, const T &val)
The real and complex ColumnVector and RowVector classes all have the following
functions. These will eventually be part of an MArray<T> class, derived from
the Array<T> class. Then the ColumnVector and RowVector classes will be
derived from the MArray<T> class.
Element by element vector by scalar ops.
: RowVector operator + (const RowVector &a, const double &s)
: RowVector operator - (const RowVector &a, const double &s)
: RowVector operator * (const RowVector &a, const double &s)
: RowVector operator / (const RowVector &a, const double &s)
Element by element scalar by vector ops.
: RowVector operator + (const double &s, const RowVector &a)
: RowVector operator - (const double &s, const RowVector &a)
: RowVector operator * (const double &s, const RowVector &a)
: RowVector operator / (const double &s, const RowVector &a)
Element by element vector by vector ops.
: RowVector operator + (const RowVector &a, const RowVector &b)
: RowVector operator - (const RowVector &a, const RowVector &b)
: RowVector product (const RowVector &a, const RowVector &b)
: RowVector quotient (const RowVector &a, const RowVector &b)
Unary MArray ops.
: RowVector operator - (const RowVector &a)
The Matrix classes share the following functions. These will eventually be
part of an MArray2<T> class, derived from the Array2<T> class. Then the Matrix
class will be derived from the MArray<T> class.
Element by element matrix by scalar ops.
: Matrix operator + (const Matrix &a, const double &s)
: Matrix operator - (const Matrix &a, const double &s)
: Matrix operator * (const Matrix &a, const double &s)
: Matrix operator / (const Matrix &a, const double &s)
Element by element scalar by matrix ops.
: Matrix operator + (const double &s, const Matrix &a)
: Matrix operator - (const double &s, const Matrix &a)
: Matrix operator * (const double &s, const Matrix &a)
: Matrix operator / (const double &s, const Matrix &a)
Element by element matrix by matrix ops.
: Matrix operator + (const Matrix &a, const Matrix &b)
: Matrix operator - (const Matrix &a, const Matrix &b)
: Matrix product (const Matrix &a, const Matrix &b)
: Matrix quotient (const Matrix &a, const Matrix &b)
Unary matrix ops.
: Matrix operator - (const Matrix &a)
The DiagMatrix classes share the following functions. These will eventually be
part of an MDiagArray<T> class, derived from the DiagArray<T> class. Then the
DiagMatrix class will be derived from the MDiagArray<T> class.
Element by element MDiagArray by scalar ops.
: DiagMatrix operator * (const DiagMatrix &a, const double &s)
: DiagMatrix operator / (const DiagMatrix &a, const double &s)
Element by element scalar by MDiagArray ops.
: DiagMatrix operator * (const double &s, const DiagMatrix &a)
Element by element MDiagArray by MDiagArray ops.
: DiagMatrix operator + (const DiagMatrix &a, const DiagMatrix &b)
: DiagMatrix operator - (const DiagMatrix &a, const DiagMatrix &b)
: DiagMatrix product (const DiagMatrix &a, const DiagMatrix &b)
Unary MDiagArray ops.
: DiagMatrix operator - (const DiagMatrix &a)
ΓòÉΓòÉΓòÉ 7. Matrix and Vector Operations ΓòÉΓòÉΓòÉ
: Matrix (void)
: Matrix (int r, int c)
: Matrix (int r, int c, double val)
: Matrix (const Array2<double> &a)
: Matrix (const Matrix &a)
: Matrix (const DiagArray<double> &a)
: Matrix (const DiagMatrix &a)
: Matrix& operator = (const Matrix &a)
: int operator == (const Matrix &a) const
: int operator != (const Matrix &a) const
: Matrix& insert (const Matrix &a, int r, int c)
: Matrix& insert (const RowVector &a, int r, int c)
: Matrix& insert (const ColumnVector &a, int r, int c)
: Matrix& insert (const DiagMatrix &a, int r, int c)
: Matrix& fill (double val)
: Matrix& fill (double val, int r1, int c1, int r2, int c2)
: Matrix append (const Matrix &a) const
: Matrix append (const RowVector &a) const
: Matrix append (const ColumnVector &a) const
: Matrix append (const DiagMatrix &a) const
: Matrix stack (const Matrix &a) const
: Matrix stack (const RowVector &a) const
: Matrix stack (const ColumnVector &a) const
: Matrix stack (const DiagMatrix &a) const
: Matrix transpose (void) const
: Matrix extract (int r1, int c1, int r2, int c2) const
: RowVector row (int i) const
: RowVector row (char *s) const
: ColumnVector column (int i) const
: ColumnVector column (char *s) const
: Matrix inverse (void) const
: Matrix inverse (int &info) const
: Matrix inverse (int &info, double &rcond) const
: ComplexMatrix fourier (void) const
: ComplexMatrix ifourier (void) const
: DET determinant (void) const
: DET determinant (int &info) const
: DET determinant (int &info, double &rcond) const
: Matrix solve (const Matrix &b) const
: Matrix solve (const Matrix &b, int &info) const
: Matrix solve (const Matrix &b, int &info, double &rcond) const
: ComplexMatrix solve (const ComplexMatrix &b) const
: ComplexMatrix solve (const ComplexMatrix &b, int &info) const
: ComplexMatrix solve (const ComplexMatrix &b, int &info, double &rcond) const
: ColumnVector solve (const ColumnVector &b) const
: ColumnVector solve (const ColumnVector &b, int &info) const
: ColumnVector solve (const ColumnVector &b, int &info, double &rcond) const
: ComplexColumnVector solve (const ComplexColumnVector &b) const
: ComplexColumnVector solve (const ComplexColumnVector &b, int &info) const
: ComplexColumnVector solve (const ComplexColumnVector &b, int &info, double
&rcond) const
: Matrix lssolve (const Matrix &b) const
: Matrix lssolve (const Matrix &b, int &info) const
: Matrix lssolve (const Matrix &b, int &info, int &rank) const
: ComplexMatrix lssolve (const ComplexMatrix &b) const
: ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const
: ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank) const
: ColumnVector lssolve (const ColumnVector &b) const
: ColumnVector lssolve (const ColumnVector &b, int &info) const
: ColumnVector lssolve (const ColumnVector &b, int &info, int &rank) const
: ComplexColumnVector lssolve (const ComplexColumnVector &b) const
: ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info) const
: ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info, int
&rank) const
: Matrix& operator += (const Matrix &a)
: Matrix& operator -= (const Matrix &a)
: Matrix& operator += (const DiagMatrix &a)
: Matrix& operator -= (const DiagMatrix &a)
: Matrix operator ! (void) const
: ComplexMatrix operator + (const Matrix &a, const Complex &s)
: ComplexMatrix operator - (const Matrix &a, const Complex &s)
: ComplexMatrix operator * (const Matrix &a, const Complex &s)
: ComplexMatrix operator / (const Matrix &a, const Complex &s)
: ComplexMatrix operator + (const Complex &s, const Matrix &a)
: ComplexMatrix operator - (const Complex &s, const Matrix &a)
: ComplexMatrix operator * (const Complex &s, const Matrix &a)
: ComplexMatrix operator / (const Complex &s, const Matrix &a)
: ColumnVector operator * (const Matrix &a, const ColumnVector &b)
: ComplexColumnVector operator * (const Matrix &a, const ComplexColumnVector
&b)
: Matrix operator + (const Matrix &a, const DiagMatrix &b)
: Matrix operator - (const Matrix &a, const DiagMatrix &b)
: Matrix operator * (const Matrix &a, const DiagMatrix &b)
: ComplexMatrix operator + (const Matrix &a, const ComplexDiagMatrix &b)
: ComplexMatrix operator - (const Matrix &a, const ComplexDiagMatrix &b)
: ComplexMatrix operator * (const Matrix &a, const ComplexDiagMatrix &b)
: Matrix operator * (const Matrix &a, const Matrix &b)
: ComplexMatrix operator * (const Matrix &a, const ComplexMatrix &b)
: ComplexMatrix operator + (const Matrix &a, const ComplexMatrix &b)
: ComplexMatrix operator - (const Matrix &a, const ComplexMatrix &b)
: ComplexMatrix product (const Matrix &a, const ComplexMatrix &b)
: ComplexMatrix quotient (const Matrix &a, const ComplexMatrix &b)
: Matrix map (d_d_Mapper f, const Matrix &a)
: void map (d_d_Mapper f)
: Matrix all (void) const
: Matrix any (void) const
: Matrix cumprod (void) const
: Matrix cumsum (void) const
: Matrix prod (void) const
: Matrix sum (void) const
: Matrix sumsq (void) const
: ColumnVector diag (void) const
: ColumnVector diag (int k) const
: ColumnVector row_min (void) const
: ColumnVector row_min_loc (void) const
: ColumnVector row_max (void) const
: ColumnVector row_max_loc (void) const
: RowVector column_min (void) const
: RowVector column_min_loc (void) const
: RowVector column_max (void) const
: RowVector column_max_loc (void) const
: ostream& operator << (ostream &os, const Matrix &a)
: istream& operator >> (istream &is, Matrix &a)
: ColumnVector (void)
: ColumnVector (int n)
: ColumnVector (int n, double val)
: ColumnVector (const Array<double> &a)
: ColumnVector (const ColumnVector &a)
: ColumnVector& operator = (const ColumnVector &a)
: int operator == (const ColumnVector &a) const
: int operator != (const ColumnVector &a) const
: ColumnVector& insert (const ColumnVector &a, int r)
: ColumnVector& fill (double val)
: ColumnVector& fill (double val, int r1, int r2)
: ColumnVector stack (const ColumnVector &a) const
: RowVector transpose (void) const
: ColumnVector extract (int r1, int r2) const
: ColumnVector& operator += (const ColumnVector &a)
: ColumnVector& operator -= (const ColumnVector &a)
: ComplexColumnVector operator + (const ColumnVector &a, const Complex &s)
: ComplexColumnVector operator - (const ColumnVector &a, const Complex &s)
: ComplexColumnVector operator * (const ColumnVector &a, const Complex &s)
: ComplexColumnVector operator / (const ColumnVector &a, const Complex &s)
: ComplexColumnVector operator + (const Complex &s, const ColumnVector &a)
: ComplexColumnVector operator - (const Complex &s, const ColumnVector &a)
: ComplexColumnVector operator * (const Complex &s, const ColumnVector &a)
: ComplexColumnVector operator / (const Complex &s, const ColumnVector &a)
: Matrix operator * (const ColumnVector &a, const RowVector &a)
: ComplexMatrix operator * (const ColumnVector &a, const ComplexRowVector &b)
: ComplexColumnVector operator + (const ComplexColumnVector &a, const
ComplexColumnVector &b)
: ComplexColumnVector operator - (const ComplexColumnVector &a, const
ComplexColumnVector &b)
: ComplexColumnVector product (const ComplexColumnVector &a, const
ComplexColumnVector &b)
: ComplexColumnVector quotient (const ComplexColumnVector &a, const
ComplexColumnVector &b)
: ColumnVector map (d_d_Mapper f, const ColumnVector &a)
: void map (d_d_Mapper f)
: double min (void) const
: double max (void) const
: ostream& operator << (ostream &os, const ColumnVector &a)
: RowVector (void)
: RowVector (int n)
: RowVector (int n, double val)
: RowVector (const Array<double> &a)
: RowVector (const RowVector &a)
: RowVector& operator = (const RowVector &a)
: int operator == (const RowVector &a) const
: int operator != (const RowVector &a) const
: RowVector& insert (const RowVector &a, int c)
: RowVector& fill (double val)
: RowVector& fill (double val, int c1, int c2)
: RowVector append (const RowVector &a) const
: ColumnVector transpose (void) const
: RowVector extract (int c1, int c2) const
: RowVector& operator += (const RowVector &a)
: RowVector& operator -= (const RowVector &a)
: ComplexRowVector operator + (const RowVector &a, const Complex &s)
: ComplexRowVector operator - (const RowVector &a, const Complex &s)
: ComplexRowVector operator * (const RowVector &a, const Complex &s)
: ComplexRowVector operator / (const RowVector &a, const Complex &s)
: ComplexRowVector operator + (const Complex &s, const RowVector &a)
: ComplexRowVector operator - (const Complex &s, const RowVector &a)
: ComplexRowVector operator * (const Complex &s, const RowVector &a)
: ComplexRowVector operator / (const Complex &s, const RowVector &a)
: double operator * (const RowVector &a, ColumnVector &b)
: Complex operator * (const RowVector &a, const ComplexColumnVector &b)
: RowVector operator * (const RowVector &a, const Matrix &b)
: ComplexRowVector operator * (const RowVector &a, const ComplexMatrix &b)
: ComplexRowVector operator + (const RowVector &a, const ComplexRowVector &b)
: ComplexRowVector operator - (const RowVector &a, const ComplexRowVector &b)
: ComplexRowVector product (const RowVector &a, const ComplexRowVector &b)
: ComplexRowVector quotient (const RowVector &a, const ComplexRowVector &b)
: RowVector map (d_d_Mapper f, const RowVector &a)
: void map (d_d_Mapper f)
: double min (void) const
: double max (void) const
: ostream& operator << (ostream &os, const RowVector &a)
: DiagMatrix (void)
: DiagMatrix (int n)
: DiagMatrix (int n, double val)
: DiagMatrix (int r, int c)
: DiagMatrix (int r, int c, double val)
: DiagMatrix (const RowVector &a)
: DiagMatrix (const ColumnVector &a)
: DiagMatrix (const DiagArray<double> &a)
: DiagMatrix (const DiagMatrix &a)
: DiagMatrix& operator = (const DiagMatrix &a)
: int operator == (const DiagMatrix &a) const
: int operator != (const DiagMatrix &a) const
: DiagMatrix& fill (double val)
: DiagMatrix& fill (double val, int beg, int end)
: DiagMatrix& fill (const ColumnVector &a)
: DiagMatrix& fill (const RowVector &a)
: DiagMatrix& fill (const ColumnVector &a, int beg)
: DiagMatrix& fill (const RowVector &a, int beg)
: DiagMatrix transpose (void) const
: Matrix extract (int r1, int c1, int r2, int c2) const
: RowVector row (int i) const
: RowVector row (char *s) const
: ColumnVector column (int i) const
: ColumnVector column (char *s) const
: DiagMatrix inverse (void) const
: DiagMatrix inverse (int &info) const
: DiagMatrix& operator += (const DiagMatrix &a)
: DiagMatrix& operator -= (const DiagMatrix &a)
: Matrix operator + (const DiagMatrix &a, double s)
: Matrix operator - (const DiagMatrix &a, double s)
: ComplexMatrix operator + (const DiagMatrix &a, const Complex &s)
: ComplexMatrix operator - (const DiagMatrix &a, const Complex &s)
: ComplexDiagMatrix operator * (const DiagMatrix &a, const Complex &s)
: ComplexDiagMatrix operator / (const DiagMatrix &a, const Complex &s)
: Matrix operator + (double s, const DiagMatrix &a)
: Matrix operator - (double s, const DiagMatrix &a)
: ComplexMatrix operator + (const Complex &s, const DiagMatrix &a)
: ComplexMatrix operator - (const Complex &s, const DiagMatrix &a)
: ComplexDiagMatrix operator * (const Complex &s, const DiagMatrix &a)
: ColumnVector operator * (const DiagMatrix &a, const ColumnVector &b)
: ComplexColumnVector operator * (const DiagMatrix &a, const
ComplexColumnVector &b)
: ComplexDiagMatrix operator + (const DiagMatrix &a, const ComplexDiagMatrix
&b)
: ComplexDiagMatrix operator - (const DiagMatrix &a, const ComplexDiagMatrix
&b)
: ComplexDiagMatrix product (const DiagMatrix &a, const ComplexDiagMatrix &b)
: Matrix operator + (const DiagMatrix &a, const Matrix &b)
: Matrix operator - (const DiagMatrix &a, const Matrix &b)
: Matrix operator * (const DiagMatrix &a, const Matrix &b)
: ComplexMatrix operator + (const DiagMatrix &a, const ComplexMatrix &b)
: ComplexMatrix operator - (const DiagMatrix &a, const ComplexMatrix &b)
: ComplexMatrix operator * (const DiagMatrix &a, const ComplexMatrix &b)
: ColumnVector diag (void) const
: ColumnVector diag (int k) const
: ostream& operator << (ostream &os, const DiagMatrix &a)
: ComplexMatrix (void)
: ComplexMatrix (int r, int c)
: ComplexMatrix (int r, int c, const Complex &val)
: ComplexMatrix (const Matrix &a)
: ComplexMatrix (const Array2<Complex> &a)
: ComplexMatrix (const ComplexMatrix &a)
: ComplexMatrix (const DiagMatrix &a)
: ComplexMatrix (const DiagArray<Complex> &a)
: ComplexMatrix (const ComplexDiagMatrix &a)
: ComplexMatrix& operator = (const ComplexMatrix &a)
: int operator == (const ComplexMatrix &a) const
: int operator != (const ComplexMatrix &a) const
: ComplexMatrix& insert (const Matrix &a, int r, int c)
: ComplexMatrix& insert (const RowVector &a, int r, int c)
: ComplexMatrix& insert (const ColumnVector &a, int r, int c)
: ComplexMatrix& insert (const DiagMatrix &a, int r, int c)
: ComplexMatrix& insert (const ComplexMatrix &a, int r, int c)
: ComplexMatrix& insert (const ComplexRowVector &a, int r, int c)
: ComplexMatrix& insert (const ComplexColumnVector &a, int r, int c)
: ComplexMatrix& insert (const ComplexDiagMatrix &a, int r, int c)
: ComplexMatrix& fill (double val)
: ComplexMatrix& fill (const Complex &val)
: ComplexMatrix& fill (double val, int r1, int c1, int r2, int c2)
: ComplexMatrix& fill (const Complex &val, int r1, int c1, int r2, int c2)
: ComplexMatrix append (const Matrix &a) const
: ComplexMatrix append (const RowVector &a) const
: ComplexMatrix append (const ColumnVector &a) const
: ComplexMatrix append (const DiagMatrix &a) const
: ComplexMatrix append (const ComplexMatrix &a) const
: ComplexMatrix append (const ComplexRowVector &a) const
: ComplexMatrix append (const ComplexColumnVector &a) const
: ComplexMatrix append (const ComplexDiagMatrix &a) const
: ComplexMatrix stack (const Matrix &a) const
: ComplexMatrix stack (const RowVector &a) const
: ComplexMatrix stack (const ColumnVector &a) const
: ComplexMatrix stack (const DiagMatrix &a) const
: ComplexMatrix stack (const ComplexMatrix &a) const
: ComplexMatrix stack (const ComplexRowVector &a) const
: ComplexMatrix stack (const ComplexColumnVector &a) const
: ComplexMatrix stack (const ComplexDiagMatrix &a) const
: ComplexMatrix transpose (void) const
: Matrix real (const ComplexMatrix &a)
: Matrix imag (const ComplexMatrix &a)
: ComplexMatrix conj (const ComplexMatrix &a)
: ComplexMatrix extract (int r1, int c1, int r2, int c2) const
: ComplexRowVector row (int i) const
: ComplexRowVector row (char *s) const
: ComplexColumnVector column (int i) const
: ComplexColumnVector column (char *s) const
: ComplexMatrix inverse (void) const
: ComplexMatrix inverse (int &info) const
: ComplexMatrix inverse (int &info, double &rcond) const
: ComplexMatrix fourier (void) const
: ComplexMatrix ifourier (void) const
: ComplexDET determinant (void) const
: ComplexDET determinant (int &info) const
: ComplexDET determinant (int &info, double &rcond) const
: ComplexMatrix solve (const Matrix &b) const
: ComplexMatrix solve (const Matrix &b, int &info) const
: ComplexMatrix solve (const Matrix &b, int &info, double &rcond) const
: ComplexMatrix solve (const ComplexMatrix &b) const
: ComplexMatrix solve (const ComplexMatrix &b, int &info) const
: ComplexMatrix solve (const ComplexMatrix &b, int &info, double &rcond) const
: ComplexColumnVector solve (const ComplexColumnVector &b) const
: ComplexColumnVector solve (const ComplexColumnVector &b, int &info) const
: ComplexColumnVector solve (const ComplexColumnVector &b, int &info, double
&rcond) const
: ComplexMatrix lssolve (const ComplexMatrix &b) const
: ComplexMatrix lssolve (const ComplexMatrix &b, int &info) const
: ComplexMatrix lssolve (const ComplexMatrix &b, int &info, int &rank) const
: ComplexColumnVector lssolve (const ComplexColumnVector &b) const
: ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info) const
: ComplexColumnVector lssolve (const ComplexColumnVector &b, int &info, int
&rank) const
: ComplexMatrix& operator += (const DiagMatrix &a)
: ComplexMatrix& operator -= (const DiagMatrix &a)
: ComplexMatrix& operator += (const ComplexDiagMatrix &a)
: ComplexMatrix& operator -= (const ComplexDiagMatrix &a)
: ComplexMatrix& operator += (const Matrix &a)
: ComplexMatrix& operator -= (const Matrix &a)
: ComplexMatrix& operator += (const ComplexMatrix &a)
: ComplexMatrix& operator -= (const ComplexMatrix &a)
: Matrix operator ! (void) const
: ComplexMatrix operator + (const ComplexMatrix &a, double s)
: ComplexMatrix operator - (const ComplexMatrix &a, double s)
: ComplexMatrix operator * (const ComplexMatrix &a, double s)
: ComplexMatrix operator / (const ComplexMatrix &a, double s)
: ComplexMatrix operator + (double s, const ComplexMatrix &a)
: ComplexMatrix operator - (double s, const ComplexMatrix &a)
: ComplexMatrix operator * (double s, const ComplexMatrix &a)
: ComplexMatrix operator / (double s, const ComplexMatrix &a)
: ComplexColumnVector operator * (const ComplexMatrix &a, const ColumnVector
&b)
: ComplexColumnVector operator * (const ComplexMatrix &a, const
ComplexColumnVector &b)
: ComplexMatrix operator + (const ComplexMatrix &a, const DiagMatrix &b)
: ComplexMatrix operator - (const ComplexMatrix &a, const DiagMatrix &b)
: ComplexMatrix operator * (const ComplexMatrix &a, const DiagMatrix &b)
: ComplexMatrix operator + (const ComplexMatrix &a, const ComplexDiagMatrix &b)
: ComplexMatrix operator - (const ComplexMatrix &a, const ComplexDiagMatrix &b)
: ComplexMatrix operator * (const ComplexMatrix &a, const ComplexDiagMatrix &b)
: ComplexMatrix operator + (const ComplexMatrix &a, const Matrix &b)
: ComplexMatrix operator - (const ComplexMatrix &a, const Matrix &b)
: ComplexMatrix operator * (const ComplexMatrix &a, const Matrix &b)
: ComplexMatrix operator * (const ComplexMatrix &a, const ComplexMatrix &b)
: ComplexMatrix product (const ComplexMatrix &a, const Matrix &b)
: ComplexMatrix quotient (const ComplexMatrix &a, const Matrix &b)
: ComplexMatrix map (c_c_Mapper f, const ComplexMatrix &a)
: Matrix map (d_c_Mapper f, const ComplexMatrix &a)
: void map (c_c_Mapper f)
: Matrix all (void) const
: Matrix any (void) const
: ComplexMatrix cumprod (void) const
: ComplexMatrix cumsum (void) const
: ComplexMatrix prod (void) const
: ComplexMatrix sum (void) const
: ComplexMatrix sumsq (void) const
: ComplexColumnVector diag (void) const
: ComplexColumnVector diag (int k) const
: ComplexColumnVector row_min (void) const
: ComplexColumnVector row_min_loc (void) const
: ComplexColumnVector row_max (void) const
: ComplexColumnVector row_max_loc (void) const
: ComplexRowVector column_min (void) const
: ComplexRowVector column_min_loc (void) const
: ComplexRowVector column_max (void) const
: ComplexRowVector column_max_loc (void) const
: ostream& operator << (ostream &os, const ComplexMatrix &a)
: istream& operator >> (istream &is, ComplexMatrix &a)
: ComplexColumnVector (void)
: ComplexColumnVector (int n)
: ComplexColumnVector (int n, const Complex &val)
: ComplexColumnVector (const ColumnVector &a)
: ComplexColumnVector (const Array<Complex> &a)
: ComplexColumnVector (const ComplexColumnVector &a)
: ComplexColumnVector& operator = (const ComplexColumnVector &a)
: int operator == (const ComplexColumnVector &a) const
: int operator != (const ComplexColumnVector &a) const
: ComplexColumnVector& insert (const ColumnVector &a, int r)
: ComplexColumnVector& insert (const ComplexColumnVector &a, int r)
: ComplexColumnVector& fill (double val)
: ComplexColumnVector& fill (const Complex &val)
: ComplexColumnVector& fill (double val, int r1, int r2)
: ComplexColumnVector& fill (const Complex &val, int r1, int r2)
: ComplexColumnVector stack (const ColumnVector &a) const
: ComplexColumnVector stack (const ComplexColumnVector &a) const
: ComplexRowVector transpose (void) const
: ColumnVector real (const ComplexColumnVector &a)
: ColumnVector imag (const ComplexColumnVector &a)
: ComplexColumnVector conj (const ComplexColumnVector &a)
: ComplexColumnVector extract (int r1, int r2) const
: ComplexColumnVector& operator += (const ColumnVector &a)
: ComplexColumnVector& operator -= (const ColumnVector &a)
: ComplexColumnVector& operator += (const ComplexColumnVector &a)
: ComplexColumnVector& operator -= (const ComplexColumnVector &a)
: ComplexColumnVector operator + (const ComplexColumnVector &a, double s)
: ComplexColumnVector operator - (const ComplexColumnVector &a, double s)
: ComplexColumnVector operator * (const ComplexColumnVector &a, double s)
: ComplexColumnVector operator / (const ComplexColumnVector &a, double s)
: ComplexColumnVector operator + (double s, const ComplexColumnVector &a)
: ComplexColumnVector operator - (double s, const ComplexColumnVector &a)
: ComplexColumnVector operator * (double s, const ComplexColumnVector &a)
: ComplexColumnVector operator / (double s, const ComplexColumnVector &a)
: ComplexMatrix operator * (const ComplexColumnVector &a, const
ComplexRowVector &b)
: ComplexColumnVector operator + (const ComplexColumnVector &a, const
ColumnVector &b)
: ComplexColumnVector operator - (const ComplexColumnVector &a, const
ColumnVector &b)
: ComplexColumnVector product (const ComplexColumnVector &a, const ColumnVector
&b)
: ComplexColumnVector quotient (const ComplexColumnVector &a, const
ColumnVector &b)
: ComplexColumnVector map (c_c_Mapper f, const ComplexColumnVector &a)
: ColumnVector map (d_c_Mapper f, const ComplexColumnVector &a)
: void map (c_c_Mapper f)
: Complex min (void) const
: Complex max (void) const
: ostream& operator << (ostream &os, const ComplexColumnVector &a)
: ComplexRowVector (void)
: ComplexRowVector (int n)
: ComplexRowVector (int n, const Complex &val)
: ComplexRowVector (const RowVector &a)
: ComplexRowVector (const Array<Complex> &a)
: ComplexRowVector (const ComplexRowVector &a)
: ComplexRowVector& operator = (const ComplexRowVector &a)
: int operator == (const ComplexRowVector &a) const
: int operator != (const ComplexRowVector &a) const
: ComplexRowVector& insert (const RowVector &a, int c)
: ComplexRowVector& insert (const ComplexRowVector &a, int c)
: ComplexRowVector& fill (double val)
: ComplexRowVector& fill (const Complex &val)
: ComplexRowVector& fill (double val, int c1, int c2)
: ComplexRowVector& fill (const Complex &val, int c1, int c2)
: ComplexRowVector append (const RowVector &a) const
: ComplexRowVector append (const ComplexRowVector &a) const
: ComplexColumnVector transpose (void) const
: RowVector real (const ComplexRowVector &a)
: RowVector imag (const ComplexRowVector &a)
: ComplexRowVector conj (const ComplexRowVector &a)
: ComplexRowVector extract (int c1, int c2) const
: ComplexRowVector& operator += (const RowVector &a)
: ComplexRowVector& operator -= (const RowVector &a)
: ComplexRowVector& operator += (const ComplexRowVector &a)
: ComplexRowVector& operator -= (const ComplexRowVector &a)
: ComplexRowVector operator + (const ComplexRowVector &a, double s)
: ComplexRowVector operator - (const ComplexRowVector &a, double s)
: ComplexRowVector operator * (const ComplexRowVector &a, double s)
: ComplexRowVector operator / (const ComplexRowVector &a, double s)
: ComplexRowVector operator + (double s, const ComplexRowVector &a)
: ComplexRowVector operator - (double s, const ComplexRowVector &a)
: ComplexRowVector operator * (double s, const ComplexRowVector &a)
: ComplexRowVector operator / (double s, const ComplexRowVector &a)
: Complex operator * (const ComplexRowVector &a, const ColumnVector &b)
: Complex operator * (const ComplexRowVector &a, const ComplexColumnVector &b)
: ComplexRowVector operator * (const ComplexRowVector &a, const ComplexMatrix
&b)
: ComplexRowVector operator + (const ComplexRowVector &a, const RowVector &b)
: ComplexRowVector operator - (const ComplexRowVector &a, const RowVector &b)
: ComplexRowVector product (const ComplexRowVector &a, const RowVector &b)
: ComplexRowVector quotient (const ComplexRowVector &a, const RowVector &b)
: ComplexRowVector map (c_c_Mapper f, const ComplexRowVector &a)
: RowVector map (d_c_Mapper f, const ComplexRowVector &a)
: void map (c_c_Mapper f)
: Complex min (void) const
: Complex max (void) const
: ostream& operator << (ostream &os, const ComplexRowVector &a)
: ComplexDiagMatrix (void)
: ComplexDiagMatrix (int n)
: ComplexDiagMatrix (int n, const Complex &val)
: ComplexDiagMatrix (int r, int c)
: ComplexDiagMatrix (int r, int c, const Complex &val)
: ComplexDiagMatrix (const RowVector &a)
: ComplexDiagMatrix (const ComplexRowVector &a)
: ComplexDiagMatrix (const ColumnVector &a)
: ComplexDiagMatrix (const ComplexColumnVector &a)
: ComplexDiagMatrix (const DiagMatrix &a)
: ComplexDiagMatrix (const DiagArray<Complex> &a)
: ComplexDiagMatrix (const ComplexDiagMatrix &a)
: ComplexDiagMatrix& operator = (const ComplexDiagMatrix &a)
: int operator == (const ComplexDiagMatrix &a) const
: int operator != (const ComplexDiagMatrix &a) const
: ComplexDiagMatrix& fill (double val)
: ComplexDiagMatrix& fill (const Complex &val)
: ComplexDiagMatrix& fill (double val, int beg, int end)
: ComplexDiagMatrix& fill (const Complex &val, int beg, int end)
: ComplexDiagMatrix& fill (const ColumnVector &a)
: ComplexDiagMatrix& fill (const ComplexColumnVector &a)
: ComplexDiagMatrix& fill (const RowVector &a)
: ComplexDiagMatrix& fill (const ComplexRowVector &a)
: ComplexDiagMatrix& fill (const ColumnVector &a, int beg)
: ComplexDiagMatrix& fill (const ComplexColumnVector &a, int beg)
: ComplexDiagMatrix& fill (const RowVector &a, int beg)
: ComplexDiagMatrix& fill (const ComplexRowVector &a, int beg)
: ComplexDiagMatrix transpose (void) const
: DiagMatrix real (const ComplexDiagMatrix &a)
: DiagMatrix imag (const ComplexDiagMatrix &a)
: ComplexDiagMatrix conj (const ComplexDiagMatrix &a)
: ComplexMatrix extract (int r1, int c1, int r2, int c2) const
: ComplexRowVector row (int i) const
: ComplexRowVector row (char *s) const
: ComplexColumnVector column (int i) const
: ComplexColumnVector column (char *s) const
: ComplexDiagMatrix inverse (int &info) const
: ComplexDiagMatrix inverse (void) const
: ComplexDiagMatrix& operator += (const DiagMatrix &a)
: ComplexDiagMatrix& operator -= (const DiagMatrix &a)
: ComplexDiagMatrix& operator += (const ComplexDiagMatrix &a)
: ComplexDiagMatrix& operator -= (const ComplexDiagMatrix &a)
: ComplexMatrix operator + (const ComplexDiagMatrix &a, double s)
: ComplexMatrix operator - (const ComplexDiagMatrix &a, double s)
: ComplexMatrix operator + (const ComplexDiagMatrix &a, const Complex &s)
: ComplexMatrix operator - (const ComplexDiagMatrix &a, const Complex &s)
: ComplexDiagMatrix operator * (const ComplexDiagMatrix &a, double s)
: ComplexDiagMatrix operator / (const ComplexDiagMatrix &a, double s)
: ComplexMatrix operator + (double s, const ComplexDiagMatrix &a)
: ComplexMatrix operator - (double s, const ComplexDiagMatrix &a)
: ComplexMatrix operator + (const Complex &s, const ComplexDiagMatrix &a)
: ComplexMatrix operator - (const Complex &s, const ComplexDiagMatrix &a)
: ComplexDiagMatrix operator * (double s, const ComplexDiagMatrix &a)
: ComplexColumnVector operator * (const ComplexDiagMatrix &a, const
ColumnVector &b)
: ComplexColumnVector operator * (const ComplexDiagMatrix &a, const
ComplexColumnVector &b)
: ComplexDiagMatrix operator + (const ComplexDiagMatrix &a, const DiagMatrix
&b)
: ComplexDiagMatrix operator - (const ComplexDiagMatrix &a, const DiagMatrix
&b)
: ComplexDiagMatrix product (const ComplexDiagMatrix &a, const DiagMatrix &b)
: ComplexMatrix operator + (const ComplexDiagMatrix &a, const Matrix &b)
: ComplexMatrix operator - (const ComplexDiagMatrix &a, const Matrix &b)
: ComplexMatrix operator * (const ComplexDiagMatrix &a, const Matrix &b)
: ComplexMatrix operator + (const ComplexDiagMatrix &a, const ComplexMatrix &b)
: ComplexMatrix operator - (const ComplexDiagMatrix &a, const ComplexMatrix &b)
: ComplexMatrix operator * (const ComplexDiagMatrix &a, const ComplexMatrix &b)
: ComplexColumnVector diag (void) const
: ComplexColumnVector diag (int k) const
: ostream& operator << (ostream &os, const ComplexDiagMatrix &a)
ΓòÉΓòÉΓòÉ 8. Matrix Factorizations ΓòÉΓòÉΓòÉ
: AEPBALANCE (void)
: AEPBALANCE (const Matrix &a, const char *balance_job)
: AEPBALANCE (const AEPBALANCE &a)
: AEPBALANCE& operator = (const AEPBALANCE &a)
: Matrix balanced_matrix (void) const
: Matrix balancing_matrix (void) const
: ostream& operator << (ostream &os, const AEPBALANCE &a)
: ComplexAEPBALANCE (void)
: ComplexAEPBALANCE (const ComplexMatrix &a, const char *balance_job)
: ComplexAEPBALANCE (const ComplexAEPBALANCE &a)
: ComplexAEPBALANCE& operator = (const ComplexAEPBALANCE &a)
: ComplexMatrix balanced_matrix (void) const
: ComplexMatrix balancing_matrix (void) const
: ostream& operator << (ostream &os, const ComplexAEPBALANCE &a)
: DET (void)
: DET (const DET &a)
: DET& operator = (const DET &a)
: int value_will_overflow (void) const
: int value_will_underflow (void) const
: double coefficient (void) const
: int exponent (void) const
: double value (void) const
: ostream& operator << (ostream &os, const DET &a)
: ComplexDET (void)
: ComplexDET (const ComplexDET &a)
: ComplexDET& operator = (const ComplexDET &a)
: int value_will_overflow (void) const
: int value_will_underflow (void) const
: Complex coefficient (void) const
: int exponent (void) const
: Complex value (void) const
: ostream& operator << (ostream &os, const ComplexDET &a)
: GEPBALANCE (void)
: GEPBALANCE (const Matrix &a, const Matrix &, const char *balance_job)
: GEPBALANCE (const GEPBALANCE &a)
: GEPBALANCE& operator = (const GEPBALANCE &a)
: Matrix balanced_a_matrix (void) const
: Matrix balanced_b_matrix (void) const
: Matrix left_balancing_matrix (void) const
: Matrix right_balancing_matrix (void) const
: ostream& operator << (ostream &os, const GEPBALANCE &a)
: CHOL (void)
: CHOL (const Matrix &a)
: CHOL (const Matrix &a, int &info)
: CHOL (const CHOL &a)
: CHOL& operator = (const CHOL &a)
: Matrix chol_matrix (void) const
: ostream& operator << (ostream &os, const CHOL &a)
: ComplexCHOL (void)
: ComplexCHOL (const ComplexMatrix &a)
: ComplexCHOL (const ComplexMatrix &a, int &info)
: ComplexCHOL (const ComplexCHOL &a)
: ComplexCHOL& operator = (const ComplexCHOL &a)
: ComplexMatrix chol_matrix (void) const
: ostream& operator << (ostream &os, const ComplexCHOL &a)
: HESS (void)
: HESS (const Matrix &a)
: HESS (const Matrix&a, int &info)
: HESS (const HESS &a)
: HESS& operator = (const HESS &a)
: Matrix hess_matrix (void) const
: Matrix unitary_hess_matrix (void) const
: ostream& operator << (ostream &os, const HESS &a)
: ComplexHESS (void)
: ComplexHESS (const ComplexMatrix &a)
: ComplexHESS (const ComplexMatrix &a, int &info)
: ComplexHESS (const ComplexHESS &a)
: ComplexHESS& operator = (const ComplexHESS &a)
: ComplexMatrix hess_matrix (void) const
: ComplexMatrix unitary_hess_matrix (void) const
: ostream& operator << (ostream &os, const ComplexHESS &a)
: SCHUR (void)
: SCHUR (const Matrix &a, const char *ord)
: SCHUR (const Matrix &a, const char *ord, int &info)
: SCHUR (const SCHUR &a, const char *ord)
: SCHUR& operator = (const SCHUR &a)
: Matrix schur_matrix (void) const
: Matrix unitary_matrix (void) const
: ostream& operator << (ostream &os, const SCHUR &a)
: ComplexSCHUR (void)
: ComplexSCHUR (const ComplexMatrix &a, const char *ord)
: ComplexSCHUR (const ComplexMatrix &a, const char *ord, int &info)
: ComplexSCHUR (const ComplexSCHUR &a, const char *ord)
: ComplexSCHUR& operator = (const ComplexSCHUR &a)
: ComplexMatrix schur_matrix (void) const
: ComplexMatrix unitary_matrix (void) const
: ostream& operator << (ostream &os, const ComplexSCHUR &a)
: SVD (void)
: SVD (const Matrix &a)
: SVD (const Matrix &a, int &info)
: SVD (const SVD &a)
: SVD& operator = (const SVD &a)
: DiagMatrix singular_values (void) const
: Matrix left_singular_matrix (void) const
: Matrix right_singular_matrix (void) const
: ostream& operator << (ostream &os, const SVD &a)
: ComplexSVD (void)
: ComplexSVD (const ComplexMatrix &a)
: ComplexSVD (const ComplexMatrix &a, int &info)
: ComplexSVD (const ComplexSVD &a)
: ComplexSVD& operator = (const ComplexSVD &a)
: DiagMatrix singular_values (void) const
: ComplexMatrix left_singular_matrix (void) const
: ComplexMatrix right_singular_matrix (void) const
: ostream& operator << (ostream &os, const ComplexSVD &a)
: EIG (void)
: EIG (const Matrix &a)
: EIG (const Matrix &a, int &info)
: EIG (const ComplexMatrix &a)
: EIG (const ComplexMatrix &a, int &info)
: EIG (const EIG &a)
: EIG& operator = (const EIG &a)
: ComplexColumnVector eigenvalues (void) const
: ComplexMatrix eigenvectors (void) const
: ostream& operator << (ostream &os, const EIG &a)
: LU (void)
: LU (const Matrix &a)
: LU (const LU &a)
: LU& operator = (const LU &a)
: Matrix L (void) const
: Matrix U (void) const
: Matrix P (void) const
: ostream& operator << (ostream &os, const LU &a)
: ComplexLU (void)
: ComplexLU (const ComplexMatrix &a)
: ComplexLU (const ComplexLU &a)
: ComplexLU& operator = (const ComplexLU &a)
: ComplexMatrix L (void) const
: ComplexMatrix U (void) const
: Matrix P (void) const
: ostream& operator << (ostream &os, const ComplexLU &a)
: QR (void)
: QR (const Matrix &A)
: QR (const QR &a)
: QR& operator = (const QR &a)
: Matrix Q (void) const
: Matrix R (void) const
: ostream& operator << (ostream &os, const QR &a)
: ComplexQR (void)
: ComplexQR (const ComplexMatrix &A)
: ComplexQR (const ComplexQR &a)
: ComplexQR& operator = (const ComplexQR &a)
: ComplexMatrix Q (void) const
: ComplexMatrix R (void) const
: ostream& operator << (ostream &os, const ComplexQR &a)
ΓòÉΓòÉΓòÉ 9. Ranges ΓòÉΓòÉΓòÉ
: Range (void)
: Range (const Range &r)
: Range (double b, double l)
: Range (double b, double l, double i)
: double base (void) const
: double limit (void) const
: double inc (void) const
: void set_base (double b)
: void set_limit (double l)
: void set_inc (double i)
: int nelem (void) const
: double min (void) const
: double max (void) const
: void sort (void)
: ostream& operator << (ostream &os, const Range &r)
: istream& operator >> (istream &is, Range &r)
: void print_range (void)
ΓòÉΓòÉΓòÉ 10. Nonlinear Functions ΓòÉΓòÉΓòÉ
: NLFunc (void)
: NLFunc (const nonlinear_fcn)
: NLFunc (const nonlinear_fcn, const jacobian_fcn)
: NLFunc (const NLFunc &a)
: NLFunc& operator = (const NLFunc &a)
: nonlinear_fcn function (void) const;
: NLFunc& set_function (const nonlinear_fcn f)
: jacobian_fcn jacobian_function (void) const;
: NLFunc& set_jacobian_function (const jacobian_fcn j)
ΓòÉΓòÉΓòÉ 11. Nonlinear Equations ΓòÉΓòÉΓòÉ
: NLEqn_options (void)
: NLEqn_options (const NLEqn_options &opt)
: NLEqn_options& operator = (const NLEqn_options &opt)
: void init (void)
: void copy (const NLEqn_options &opt)
: void set_default_options (void)
: void set_tolerance (double val)
: double tolerance (void)
: NLEqn (void)
: NLEqn (const ColumnVector&, const NLFunc)
: NLEqn (const NLEqn &a)
: NLEqn& operator = (const NLEqn &a)
: void resize (int n)
: void set_states (const ColumnVector &x)
: ColumnVector states (void) const
: int size (void) const
: ColumnVector solve (void)
: ColumnVector solve (const ColumnVector &x)
: ColumnVector solve (int &info)
: ColumnVector solve (const ColumnVector &x, int &info)
ΓòÉΓòÉΓòÉ 12. Optimization ΓòÉΓòÉΓòÉ
Objective Functions
Bounds
Linear Constraints
Nonlinear Constraints
Quadratic Programming
Nonlinear Programming
ΓòÉΓòÉΓòÉ 12.1. Objective Functions ΓòÉΓòÉΓòÉ
: Objective (void)
: Objective (const objective_fcn)
: Objective (const objective_fcn, const gradient_fcn)
: Objective (const Objective &a)
: Objective& operator = (const Objective &a)
: objective_fcn objective_function (void) const;
: Objective& set_objective_function (const objective_fcn)
: gradient_fcn gradient_function (void) const;
: Objective& set_gradient_function (const gradient_fcn)
ΓòÉΓòÉΓòÉ 12.2. Bounds ΓòÉΓòÉΓòÉ
: Bounds (void)
: Bounds (int n)
: Bounds (const ColumnVector lb, const ColumnVector ub)
: Bounds (const Bounds &a)
: Bounds& operator = (const Bounds &a)
: Bounds& resize (int n)
: double lower_bound (int index) const;
: double upper_bound (int index) const;
: ColumnVector lower_bounds (void) const;
: ColumnVector upper_bounds (void) const;
: int size (void) const;
: Bounds& set_bound (int index, double low, double high)
: Bounds& set_bounds (double low, double high)
: Bounds& set_bounds (const ColumnVector lb, const ColumnVector ub)
: Bounds& set_lower_bound (int index, double low)
: Bounds& set_upper_bound (int index, double high)
: Bounds& set_lower_bounds (double low)
: Bounds& set_upper_bounds (double high)
: Bounds& set_lower_bounds (const ColumnVector lb)
: Bounds& set_upper_bounds (const ColumnVector ub)
: ostream& operator << (ostream &os, const Bounds &b)
ΓòÉΓòÉΓòÉ 12.3. Linear Constraints ΓòÉΓòÉΓòÉ
: LinConst (void)
: LinConst (int nclin, int nx)
: LinConst (int nclin_eq, int nclin_ineq, int nx)
: LinConst (const ColumnVector &lb, const Matrix &A, const ColumnVector &ub)
: LinConst (const Matrix &A_eq, const ColumnVector &b_eq, const Matrix &A_ineq,
const ColumnVector &b_ineq)
: LinConst (const LinConst &a)
: LinConst& operator = (const LinConst &a)
: LinConst& resize (int nclin, int n)
: Matrix constraint_matrix (void) const;
: LinConst& set_constraint_matrix (const Matrix &A)
: Matrix eq_constraint_matrix (void) const;
: Matrix ineq_constraint_matrix (void) const;
: ColumnVector eq_constraint_vector (void) const;
: ColumnVector ineq_constraint_vector (void) const;
: ostream& operator << (ostream &os, const LinConst &b)
ΓòÉΓòÉΓòÉ 12.4. Nonlinear Constraints ΓòÉΓòÉΓòÉ
: NLConst (void)
: NLConst (int n)
: NLConst (const ColumnVector lb, const NLFunc f, const ColumnVector ub)
: NLConst (const NLConst &a)
: NLConst& operator = (const NLConst &a)
ΓòÉΓòÉΓòÉ 12.5. Quadratic Programming ΓòÉΓòÉΓòÉ
: QP (void)
: QP (const ColumnVector &x, const Matrix &H)
: QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c)
: QP (const ColumnVector &x, const Matrix &H, const Bounds &b)
: QP (const ColumnVector &x, const Matrix &H, const LinConst &lc)
: QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
Bounds &b)
: QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
LinConst &lc)
: QP (const ColumnVector &x, const Matrix &H, const Bounds &b, const LinConst
&lc)
: QP (const ColumnVector &x, const Matrix &H, const ColumnVector &c, const
Bounds &b, const LinConst &lc)
: virtual ColumnVector minimize (void)
: virtual ColumnVector minimize (double &objf)
: virtual ColumnVector minimize (double &objf, int &inform)
: virtual ColumnVector minimize (double &objf, int &inform, ColumnVector
&lambda) = 0;
: virtual ColumnVector minimize (const ColumnVector &x)
: virtual ColumnVector minimize (const ColumnVector &x, double &objf)
: virtual ColumnVector minimize (const ColumnVector &x, double &objf, int
&inform)
: virtual ColumnVector minimize (const ColumnVector &x, double &objf, int
&inform, ColumnVector &lambda)
: ColumnVector minimize (double &objf, int &inform, ColumnVector &lambda)
ΓòÉΓòÉΓòÉ 12.6. Nonlinear Programming ΓòÉΓòÉΓòÉ
: NLP (void)
: NLP (const ColumnVector &x, const Objective &phi)
: NLP (const ColumnVector &x, const Objective &phi, const Bounds &b)
: NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const
LinConst &lc)
: NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const
LinConst &lc, const NLConst &nlc)
: NLP (const ColumnVector &x, const Objective &phi, const LinConst &lc)
: NLP (const ColumnVector &x, const Objective &phi, const LinConst &lc, const
NLConst &nlc)
: NLP (const ColumnVector &x, const Objective &phi, const NLConst &nlc)
: NLP (const ColumnVector &x, const Objective &phi, const Bounds &b, const
NLConst &nlc)
: NLP& operator = (const NLP &a)
: int size (void) const
: ColumnVector minimize (void)
: ColumnVector minimize (double &objf)
: ColumnVector minimize (double &objf, int &inform)
: ColumnVector minimize (double &objf, int &inform, ColumnVector &lambda)
: ColumnVector minimize (const ColumnVector &x)
: ColumnVector minimize (const ColumnVector &x, double &objf)
: ColumnVector minimize (const ColumnVector &x, double &objf, int &inform)
: ColumnVector minimize (const ColumnVector &x, double &objf, int &inform,
ColumnVector &lambda)
ΓòÉΓòÉΓòÉ 13. Quadrature ΓòÉΓòÉΓòÉ
: Quad (integrand_fcn fcn)
: Quad (integrand_fcn fcn, double abs, double rel)
: virtual double integrate (void)
: virtual double integrate (int &ier)
: virtual double integrate (int &ier, int &neval)
: virtual double integrate (int &ier, int &neval, double &abserr) = 0
: Quad_options (void)
: Quad_options (const Quad_options &opt)
: Quad_options& operator = (const Quad_options &opt)
: void init (void)
: void copy (const Quad_options &opt)
: void set_default_options (void)
: void set_absolute_tolerance (double val)
: void set_relative_tolerance (double val)
: double absolute_tolerance (void)
: double relative_tolerance (void)
: DefQuad (integrand_fcn fcn)
: DefQuad (integrand_fcn fcn, double ll, double ul)
: DefQuad (integrand_fcn fcn, double ll, double ul, double abs, double rel)
: DefQuad (integrand_fcn fcn, double ll, double ul, const ColumnVector &sing)
: DefQuad (integrand_fcn fcn, const ColumnVector &sing, double abs, double rel)
: DefQuad (integrand_fcn fcn, const ColumnVector &sing)
: DefQuad (integrand_fcn fcn, double ll, double ul, const ColumnVector &sing,
double abs, double rel)
: IndefQuad (integrand_fcn fcn)
: IndefQuad (integrand_fcn fcn, double b, IntegralType t)
: IndefQuad (integrand_fcn fcn, double b, IntegralType t, double abs, double
rel)
: IndefQuad (integrand_fcn fcn, double abs, double rel)
Collocation Weights
ΓòÉΓòÉΓòÉ 13.1. Collocation Weights ΓòÉΓòÉΓòÉ
: CollocWt (void)
: CollocWt (int n, int inc_l, int inc_r)
: CollocWt (int n, int inc_l, int inc_r, double l, double r)
: CollocWt (int n, double a, double b, int inc_l, int inc_r)
: CollocWt (int n, int inc_l, int inc_r, double l, double r)
: CollocWt (const CollocWt&)
: CollocWt& operator = (const CollocWt&)
: CollocWt& resize (int ncol)
: CollocWt& add_left (void)
: CollocWt& add_right (void)
: CollocWt& delete_left (void)
: CollocWt& delete_right (void)
: CollocWt& set_left (double val)
: CollocWt& set_right (double val)
: CollocWt& set_alpha (double val)
: CollocWt& set_beta (double val)
: int ncol (void) const
: int left_included (void) const
: int right_included (void) const
: double left (void) const
: double right (void) const
: double width (void) const
: double alpha (void) const
: double beta (void) const
: ColumnVector roots (void)
: ColumnVector quad (void)
: ColumnVector quad_weights (void)
: Matrix first (void)
: Matrix second (void)
: ostream& operator << (ostream &os, const CollocWt &c)
ΓòÉΓòÉΓòÉ 14. Ordinary Differential Equations ΓòÉΓòÉΓòÉ
: ODE_options (void)
: ODE_options (const ODE_options &opt)
: ODE_options& operator = (const ODE_options &opt)
: void init (void)
: void copy (const ODE_options &opt)
: void set_default_options (void)
: void set_absolute_tolerance (double val)
: void set_initial_step_size (double val)
: void set_maximum_step_size (double val)
: void set_minimum_step_size (double val)
: void set_relative_tolerance (double val)
: double absolute_tolerance (void)
: double initial_step_size (void)
: double maximum_step_size (void)
: double minimum_step_size (void)
: double relative_tolerance (void)
: ODE (void)
: ODE (int n)
: ODE (const ColumnVector &state, double time, const ODEFunc &f)
: virtual int size (void) const
: virtual ColumnVector state (void) const
: virtual double time (void) const
: virtual void force_restart (void)
: virtual void initialize (const ColumnVector &x, double t)
: virtual void set_stop_time (double t)
: virtual void clear_stop_time (void)
: virtual ColumnVector integrate (double t)
: void integrate (int nsteps, double tstep, ostream &s)
: Matrix integrate (const ColumnVector &tout)
: Matrix integrate (const ColumnVector &tout, const ColumnVector &tcrit)
ΓòÉΓòÉΓòÉ 15. Differential Algebraic Equations ΓòÉΓòÉΓòÉ
: DAE (void)
: DAE (int n)
: DAE (const ColumnVector &x, double time, DAEFunc &f)
: DAE (const ColumnVector &x, ColumnVector &xdot, double time, DAEFunc &f)
: ColumnVector deriv (void)
: virtual void initialize (const ColumnVector &x, double t)
: virtual void initialize (const ColumnVector &x, ColumnVector &xdot, double t)
: ColumnVector integrate (double t)
: Matrix integrate (const ColumnVector &tout, Matrix &xdot_out)
: Matrix integrate (const ColumnVector &tout, Matrix &xdot_out, const
ColumnVector &tcrit)
ΓòÉΓòÉΓòÉ 16. Error Handling ΓòÉΓòÉΓòÉ
ΓòÉΓòÉΓòÉ 17. Installation ΓòÉΓòÉΓòÉ
ΓòÉΓòÉΓòÉ 18. Bugs ΓòÉΓòÉΓòÉ
ΓòÉΓòÉΓòÉ 19. Concept Index ΓòÉΓòÉΓòÉ
Sorry, no cp index
ΓòÉΓòÉΓòÉ 20. Function Index ΓòÉΓòÉΓòÉ
Sorry, no fn index