home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1995, 1996, 1997 Kurt Hornik
- ##
- ## This program is free software; you can redistribute it and/or modify
- ## it under the terms of the GNU General Public License as published by
- ## the Free Software Foundation; either version 2, or (at your option)
- ## any later version.
- ##
- ## This program is distributed in the hope that it will be useful, but
- ## WITHOUT ANY WARRANTY; without even the implied warranty of
- ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ## General Public License for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with this file. If not, write to the Free Software Foundation,
- ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-
- ## usage: pascal_inv (x, n, p)
- ##
- ## For each element of x, compute the quantile at x of the Pascal
- ## (negative binomial) distribution with parameters n and p.
- ##
- ## The number of failures in a Bernoulli experiment with success
- ## probability p before the n-th success follows this distribution.
-
- ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at>
- ## Description: Quantile function of the Pascal distribution
-
- function inv = pascal_inv (x, n, p)
-
- if (nargin != 3)
- usage ("pascal_inv (x, n, p)");
- endif
-
- [retval, x, n, p] = common_size (x, n, p);
- if (retval > 0)
- error (["pascal_inv: ", ...
- "x, n and p must be of common size or scalar"]);
- endif
-
- [r, c] = size (x);
- s = r * c;
- x = reshape (x, 1, s);
- n = reshape (n, 1, s);
- p = reshape (p, 1, s);
- inv = zeros (1, s);
-
- k = find (isnan (x) | (x < 0) | (x > 1) | (n < 1) | (n == Inf) ...
- | (n != round (n)) | (p < 0) | (p > 1));
- if any (k)
- inv(k) = NaN * ones (1, length (k));
- endif
-
- k = find ((x == 1) & (n > 0) & (n < Inf) & (n == round (n)) ...
- & (p >= 0) & (p <= 1));
- if any (k)
- inv(k) = Inf * ones (1, length (k));
- endif
-
- k = find ((x >= 0) & (x < 1) & (n > 0) & (n < Inf) ...
- & (n == round (n)) & (p > 0) & (p <= 1));
- if any (k)
- x = x(k);
- n = n(k);
- p = p(k);
- m = zeros (1, length (k));
- s = p .^ n;
- while (1)
- l = find (s < x);
- if any (l)
- m(l) = m(l) + 1;
- s(l) = s(l) + pascal_pdf (m(l), n(l), p(l));
- else
- break;
- endif
- endwhile
- inv(k) = m;
- endif
-
- inv = reshape (inv, r, c);
-
- endfunction
-