home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1996, 1997 John W. Eaton
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by
- ## the Free Software Foundation; either version 2, or (at your option)
- ## any later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but
- ## WITHOUT ANY WARRANTY; without even the implied warranty of
- ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ## General Public License for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place - Suite 330, Boston, MA
- ## 02111-1307, USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o})
- ## Generalized least squares estimation for the multivariate model
- ## @iftex
- ## @tex
- ## $y = x b + e$
- ## with $\bar{e} = 0$ and cov(vec($e$)) = $(s^2)o$,
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ## @code{@var{y} = @var{x} * @var{b} + @var{e}} with @code{mean (@var{e}) =
- ## 0} and @code{cov (vec (@var{e})) = (@var{s}^2)*@var{o}},
- ## @end ifinfo
- ## where
- ## @iftex
- ## @tex
- ## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix, $b$ is a $k
- ## \times p$ matrix, $e$ is a $t \times p$ matrix, and $o$ is a $tp \times
- ## tp$ matrix.
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ## @var{Y} is a @var{T} by @var{p} matrix, @var{X} is a @var{T} by @var{k}
- ## matrix, @var{B} is a @var{k} by @var{p} matrix, @var{E} is a @var{T} by
- ## @var{p} matrix, and @var{O} is a @var{T}@var{p} by @var{T}@var{p}
- ## matrix.
- ## @end ifinfo
- ##
- ## @noindent
- ## Each row of Y and X is an observation and each column a variable.
- ##
- ## The return values @var{beta}, @var{v}, and @var{r} are defined as
- ## follows.
- ##
- ## @table @var
- ## @item beta
- ## The GLS estimator for @var{b}.
- ##
- ## @item v
- ## The GLS estimator for @code{@var{s}^2}.
- ##
- ## @item r
- ## The matrix of GLS residuals, @code{@var{r} = @var{y} - @var{x} *
- ## @var{beta}}.
- ## @end table
- ## @end deftypefn
-
- ## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at>
- ## Created: May 1993
- ## Adapted-By: jwe
-
- function [BETA, v, R] = gls (Y, X, O)
-
- if (nargin != 3)
- usage ("[BETA, v [, R]] = gls (Y, X, O)");
- endif
-
- [rx, cx] = size (X);
- [ry, cy] = size (Y);
- if (rx != ry)
- error ("gls: incorrect matrix dimensions");
- endif
-
- O = O^(-1/2);
- Z = kron (eye (cy), X);
- Z = O * Z;
- Y1 = O * reshape (Y, ry*cy, 1);
- U = Z' * Z;
- r = rank (U);
-
- if (r == cx*cy)
- B = inv (U) * Z' * Y1;
- else
- B = pinv (Z) * Y1;
- endif
-
- BETA = reshape (B, cx, cy);
- R = Y - X * BETA;
- v = (reshape (R, ry*cy, 1))' * (O^2) * reshape (R, ry*cy, 1) / (rx*cy - r);
-
- endfunction
-