home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1996,1998 Auburn University. All Rights Reserved
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by the
- ## Free Software Foundation; either version 2, or (at your option) any
- ## later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but WITHOUT
- ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- ## for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File } {[@var{realp}, @var{imagp}, @var{w}] =} nyquist (@var{sys}@{, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol}@})
- ## @deftypefnx {Function File } {} nyquist (@var{sys}@{, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol}@})
- ## Produce Nyquist plots of a system; if no output arguments are given, Nyquist
- ## plot is printed to the screen.
- ##
- ## Compute the frequency response of a system.
- ## @strong{Inputs} (pass as empty to get default values)
- ## @table @var
- ## @item sys
- ## system data structure (must be either purely continuous or discrete;
- ## see is_digital)
- ## @item w
- ## frequency values for evaluation.
- ## if sys is continuous, then bode evaluates @math{G(jw)}
- ## if sys is discrete, then bode evaluates @math{G(exp(jwT))}, where
- ## @math{@var{T}=sysgettsam(@var{sys})} (the system sampling time)
- ## @item default
- ## the default frequency range is selected as follows: (These
- ## steps are NOT performed if @var{w} is specified)
- ## @end table
- ## @enumerate
- ## @item via routine bodquist, isolate all poles and zeros away from
- ## @var{w}=0 (@var{jw}=0 or @math{exp(@var{jwT})=1}) and select the frequency
- ## range based on the breakpoint locations of the frequencies.
- ## @item if @var{sys} is discrete time, the frequency range is limited
- ## to @var{jwT} in
- ## @ifinfo
- ## [0,2p*pi]
- ## @end ifinfo
- ## @iftex
- ## $[0,2p*\pi]$
- ## @end iftex
- ## @item A "smoothing" routine is used to ensure that the plot phase does
- ## not change excessively from point to point and that singular
- ## points (e.g., crossovers from +/- 180) are accurately shown.
- ## @end enumerate
- ## outputs, inputs: the indices of the output(s) and input(s) to be used in
- ## the frequency response; see sysprune.
- ##
- ## @strong{Inputs} (pass as empty to get default values)
- ## @table @var
- ## @item atol
- ## for interactive nyquist plots: atol is a change-in-slope tolerance
- ## for the of asymptotes (default = 0; 1e-2 is a good choice). This allows
- ## the user to ``zoom in'' on portions of the Nyquist plot too small to be
- ## seen with large asymptotes.
- ## @end table
- ## @strong{Outputs}
- ## @table @var
- ## @item realp, imagp
- ## the real and imaginary parts of the frequency response
- ## @math{G(jw)} or @math{G(exp(jwT))} at the selected frequency values.
- ## @item w
- ## the vector of frequency values used
- ## @end table
- ##
- ## If no output arguments are given, nyquist plots the results to the screen.
- ## If @var{atol} != 0 and asymptotes are detected then the user is asked
- ## interactively if they wish to zoom in (remove asymptotes)
- ## Descriptive labels are automatically placed.
- ##
- ## Note: if the requested plot is for an MIMO system, a warning message is
- ## presented; the returned information is of the magnitude
- ## ||G(jw)|| or ||G(exp(jwT))|| only; phase information is not computed.
- ##
- ## @end deftypefn
-
- function [realp, imagp, w] = nyquist (sys, w, outputs, inputs, atol)
-
- ## By R. Bruce Tenison, July 13, 1994
- ## A. S. Hodel July 1995 (adaptive frequency spacing,
- ## remove acura parameter, etc.)
- ## Revised by John Ingram July 1996 for system format
-
- ## Both bode and nyquist share the same introduction, so the common
- ## parts are in a file called bodquist.m. It contains the part that
- ## finds the number of arguments, determines whether or not the system
- ## is SISO, andd computes the frequency response. Only the way the
- ## response is plotted is different between the two functions.
-
- ## check number of input arguments given
- if (nargin < 1 | nargin > 5)
- usage("[realp,imagp,w] = nyquist(sys[,w,outputs,inputs,atol])");
- endif
- if(nargin < 2)
- w = [];
- endif
- if(nargin < 3)
- outputs = [];
- endif
- if(nargin < 4)
- inputs = [];
- endif
- if(nargin < 5)
- atol = 0;
- elseif(!(is_sample(atol) | atol == 0))
- error("atol must be a nonnegative scalar.")
- endif
-
- ## signal to bodquist who's calling
-
- [f,w] = bodquist(sys,w,outputs,inputs,"nyquist");
-
- ## Get the real and imaginary part of f.
- realp = real(f);
- imagp = imag(f);
-
- ## No output arguments, then display plot, otherwise return data.
- if (nargout == 0)
- dnplot = 0;
- while(!dnplot)
- if(gnuplot_has_multiplot)
- oneplot();
- gset key;
- endif
- clearplot();
- grid ("on");
- gset data style lines;
-
- if(is_digital(sys))
- tstr = " G(e^{jw}) ";
- else
- tstr = " G(jw) ";
- endif
- xlabel(["Re(",tstr,")"]);
- ylabel(["Im(",tstr,")"]);
-
- [stn, inn, outn] = sysgetsignals(sys);
- if(is_siso(sys))
- title(sprintf("Nyquist plot from %s to %s, w (rad/s) in [%e, %e]", ...
- nth(inn,1), nth(outn,1), w(1), w(length(w))) )
- endif
-
- gset nologscale xy;
-
- axis(axis2dlim([[vec(realp),vec(imagp)];[vec(realp),-vec(imagp)]]));
- plot(realp,imagp,"- ;+w;",realp,-imagp,"-@ ;-w;");
-
- ## check for interactive plots
- dnplot = 1; # assume done; will change later if atol is satisfied
- if(atol > 0 & length(f) > 2)
-
- ## check for asymptotes
- fmax = max(abs(f));
- fi = max(find(abs(f) == fmax));
-
- ## compute angles from point to point
- df = diff(f);
- th = atan2(real(df),imag(df))*180/pi;
-
- ## get angle at fmax
- if(fi == length(f)) fi = fi-1; endif
- thm = th(fi);
-
- ## now locate consecutive angles within atol of thm
- ith_same = find(abs(th - thm) < atol);
- ichk = union(fi,find(diff(ith_same) == 1));
-
- ## locate max, min consecutive indices in ichk
- loval = max(complement(ichk,1:fi));
- if(isempty(loval)) loval = fi;
- else loval = loval + 1; endif
-
- hival = min(complement(ichk,fi:length(th)));
- if(isempty(hival)) hival = fi+1; endif
-
- keep_idx = complement(loval:hival,1:length(w));
-
- if(length(keep_idx))
- resp = input("Remove asymptotes and zoom in (y or n): ",1);
- if(resp(1) == "y")
- dnplot = 0; # plot again
- w = w(keep_idx);
- f = f(keep_idx);
- realp = real(f);
- imagp = imag(f);
- endif
- endif
-
- endif
- endwhile
- w = [];
- realp=[];
- imagp=[];
- endif
-
- endfunction
-