home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by the
- ## Free Software Foundation; either version 2, or (at your option) any
- ## later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but WITHOUT
- ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- ## for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File } {[@var{retval}, @var{U}] =} is_stabilizable (@var{sys}@{, @var{tol}@})
- ## @deftypefnx {Function File } {[@var{retval}, @var{U}] =} is_stabilizable (@var{a}@{, @var{b} ,@var{tol}@})
- ## Logical check for system stabilizability (i.e., all unstable modes are controllable).
- ##
- ##
- ## Test for stabilizability is performed via an ordered Schur decomposition
- ## that reveals the unstable subspace of the system @var{A} matrix.
- ##
- ## Returns @code{retval} = 1 if the system, @code{a}, is stabilizable, if the pair
- ## (@code{a}, @code{b}) is stabilizable, or 0 if not.
- ## @code{U} = orthogonal basis of controllable subspace.
- ##
- ## Controllable subspace is determined by applying Arnoldi iteration with
- ## complete re-orthogonalization to obtain an orthogonal basis of the
- ## Krylov subspace.
- ## @example
- ## span ([b,a*b,...,a^ b]).
- ## @end example
- ## tol is a roundoff paramter, set to 200*eps if omitted.
- ## @end deftypefn
-
- ## See also: size, rows, columns, length, is_matrix, is_scalar, is_vector
- ## is_observable, is_stabilizable, is_detectable
-
- function [retval, U] = is_stabilizable (a, b, tol)
-
- ## Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993.
- ## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb
- ## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 to accept systems
-
- if(nargin < 1) usage("[retval,U] = is_stabilizable(a {, b ,tol})");
- elseif(is_struct(a))
- ## sustem passed.
- if(nargin == 2)
- tol = b; % get tolerance
- elseif(nargin > 2)
- usage("[retval,U] = is_stabilizable(sys{,tol})");
- endif
- [a,b] = sys2ss(sys);
- else
- ## a,b arguments sent directly.
- if(nargin > 3)
- usage("[retval,U] = is_stabilizable(a {, b ,tol})");
- endif
- endif
-
- if(exist("tol"))
- [retval,U] = is_controllable(a,b,tol);
- else
- [retval,U] = is_controllable(a,b);
- tol = 1e2*rows(b)*eps;
- endif
-
- if( !retval & columns(U) > 0)
- ## now use an ordered Schur decomposition to get an orthogonal
- ## basis of the unstable subspace...
- n = rows(a);
- [ua,s] = schur(-(a+eye(n)*tol),'A');
- k = sum( real(eig(a)) >= 0 ); # count unstable poles
-
- if( k > 0 )
- ua = ua(:,1:k);
- ## now see if span(ua) is contained in span(U)
- retval = (norm(ua - U*U'*ua) < tol);
- else
- retval = 1; # all poles stable
- endif
- endif
-
- endfunction
-