home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1996 Auburn University. All Rights Reserved
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by the
- ## Free Software Foundation; either version 2, or (at your option) any
- ## later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but WITHOUT
- ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- ## for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {[@var{retval}, @var{Pc}, @var{Pf}] =} hinfsyn_chk(@var{A}, @var{B1}, @var{B2}, @var{C1}, @var{C2}, @var{D12}, @var{D21}, @var{g}, @var{ptol})
- ## Called by @code{hinfsyn} to see if gain @var{g} satisfies conditions in
- ## Theorem 3 of
- ## Doyle, Glover, Khargonekar, Francis, "State Space Solutions to Standard
- ## H2 and Hinf Control Problems", IEEE TAC August 1989
- ##
- ## @strong{Warning} Do not attempt to use this at home; no argument checking performed.
- ##
- ## @strong{Inputs} as returned by @code{is_dgkf}, except for:
- ## @table @var
- ## @item g
- ## candidate gain level
- ## @item ptol
- ## as in @code{hinfsyn}
- ## @end table
- ##
- ## @strong{Outputs}
- ## @table @var
- ## @item retval
- ## 1 if g exceeds optimal Hinf closed loop gain, else 0
- ## @item Pc
- ## solution of "regulator" H-inf ARE
- ## @item Pf
- ## solution of "filter" H-inf ARE
- ## @end table
- ## Do not attempt to use this at home; no argument checking performed.
- ## @end deftypefn
-
- function [retval, Pc, Pf] = hinfsyn_chk (A, B1, B2, C1, C2, D12, D21, g, ptol)
-
- ## A. S. Hodel August 1995
-
- Pc = Pf = [];
-
- ## Construct the two Hamiltonians
- g2 = 1/(g*g);
- Hc = [ A , g2*B1*B1' - B2*B2'; -C1'*C1 , -A'];
- Hf = [ A' , g2*C1'*C1 - C2'*C2; -B1*B1' , -A];
-
- ## check if Hc, Hf are in dom(Ric)
- Hcminval = min(abs(real(eig(Hc))));
- Hfminval = min(abs(real(eig(Hf))));
- if(Hcminval < ptol);
- disp("hinfsyn_chk: Hc is not in dom(Ric)");
- retval = 0;
- return
- endif
- if(Hfminval < ptol)
- disp("hinfsyn_chk: Hf is not in dom(Ric)");
- retval = 0;
- return
- endif
-
- ## Solve ARE's
- Pc = are(A, B2*B2'-g2*B1*B1',C1'*C1);
- Pf = are(A',C2'*C2-g2*C1'*C1,B1*B1');
-
- Pceig = eig(Pc);
- Pfeig = eig(Pf);
- Pcfeig = eig(Pc*Pf);
-
- if(min(Pceig) < -ptol)
- disp("hinfsyn_chk: Pc is not >= 0");
- retval = 0;
- return
- endif
- if(min(Pfeig) < -ptol)
- disp("hinfsyn_chk: Pf is not >= 0");
- retval = 0;
- return
- endif
- if(max(abs(Pcfeig)) >= g*g)
- disp("hinfsyn_chk: rho(Pf*Pc) is not < g^2");
- retval = 0;
- return
- endif
-
- ## all conditions met.
- retval = 1;
-
- endfunction
-