home *** CD-ROM | disk | FTP | other *** search
- ## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved.
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by the
- ## Free Software Foundation; either version 2, or (at your option) any
- ## later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but WITHOUT
- ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- ## for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, write to the Free
- ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
-
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {[@var{l}, @var{m}, @var{p}, @var{e}] =} dlqe (@var{a}, @var{g}, @var{c}, @var{sigw}, @var{sigv}, @var{z})
- ## Construct the linear quadratic estimator (Kalman filter) for the
- ## discrete time system
- ## @iftex
- ## @tex
- ## $$
- ## x_{k+1} = A x_k + B u_k + G w_k
- ## $$
- ## $$
- ## y_k = C x_k + D u_k + w_k
- ## $$
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ##
- ## @example
- ## x[k+1] = A x[k] + B u[k] + G w[k]
- ## y[k] = C x[k] + D u[k] + w[k]
- ## @end example
- ##
- ## @end ifinfo
- ## where @var{w}, @var{v} are zero-mean gaussian noise processes with
- ## respective intensities @code{@var{sigw} = cov (@var{w}, @var{w})} and
- ## @code{@var{sigv} = cov (@var{v}, @var{v})}.
- ##
- ## If specified, @var{z} is @code{cov (@var{w}, @var{v})}. Otherwise
- ## @code{cov (@var{w}, @var{v}) = 0}.
- ##
- ## The observer structure is
- ## @iftex
- ## @tex
- ## $$
- ## z_{k+1} = A z_k + B u_k + k (y_k - C z_k - D u_k)
- ## $$
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ##
- ## @example
- ## z[k+1] = A z[k] + B u[k] + k (y[k] - C z[k] - D u[k])
- ## @end example
- ## @end ifinfo
- ##
- ## @noindent
- ## The following values are returned:
- ##
- ## @table @var
- ## @item l
- ## The observer gain,
- ## @iftex
- ## @tex
- ## $(A - ALC)$.
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ## (@var{a} - @var{a}@var{l}@var{c}).
- ## @end ifinfo
- ## is stable.
- ##
- ## @item m
- ## The Riccati equation solution.
- ##
- ## @item p
- ## The estimate error covariance after the measurement update.
- ##
- ## @item e
- ## The closed loop poles of
- ## @iftex
- ## @tex
- ## $(A - ALC)$.
- ## @end tex
- ## @end iftex
- ## @ifinfo
- ## (@var{a} - @var{a}@var{l}@var{c}).
- ## @end ifinfo
- ## @end table
- ## @end deftypefn
-
- function [l, m, p, e] = dlqe (a, g, c, sigw, sigv, s)
- ## Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993.
- ## Modified for discrete time by R. Bruce Tenison (btenison@eng.auburn.edu)
- ## October, 1993
-
- if (nargin != 5 && nargin != 6)
- error ("dlqe: invalid number of arguments");
- endif
-
- ## The problem is dual to the regulator design, so transform to dlqr call.
-
- if (nargin == 5)
- [k, p, e] = dlqr (a', c', g*sigw*g', sigv);
- m = p;
- l = k';
- else
- [k, p, e] = dlqr (a', c', g*sigw*g', sigv, g*s);
- m = p;
- l = k';
- a = a-g*t/sigv*c;
- sigw = sigw-t/sigv;
- endif
-
- p = a\(m-g*sigw*g')/a';
-
- endfunction
-