home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
stat
/
base
/
ols.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
3KB
|
106 lines
## Copyright (C) 1996, 1997 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2, or (at your option)
## any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place - Suite 330, Boston, MA
## 02111-1307, USA.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{beta}, @var{sigma}, @var{r}] =} ols (@var{y}, @var{x})
## Ordinary least squares estimation for the multivariate model
## @iftex
## @tex
## $y = x b + e$
## with
## $\bar{e} = 0$, and cov(vec($e$)) = kron ($s, I$)
## @end tex
## @end iftex
## @ifinfo
## @code{@var{y} = @var{x}*@var{b} + @var{e}} with
## @code{mean (@var{e}) = 0} and @code{cov (vec (@var{e})) = kron (@var{s},
## @var{I})}.
## @end ifinfo
## where
## @iftex
## @tex
## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix,
## $b$ is a $k \times p$ matrix, and $e$ is a $t \times p$ matrix.
## @end tex
## @end iftex
## @ifinfo
## @var{y} is a @var{t} by @var{p} matrix, @var{X} is a @var{t} by @var{k}
## matrix, @var{B} is a @var{k} by @var{p} matrix, and @var{e} is a @var{t}
## by @var{p} matrix.
## @end ifinfo
##
## Each row of @var{y} and @var{x} is an observation and each column a
## variable.
##
## The return values @var{beta}, @var{sigma}, and @var{r} are defined as
## follows.
##
## @table @var
## @item beta
## The OLS estimator for @var{b}, @code{@var{beta} = pinv (@var{x}) *
## @var{y}}, where @code{pinv (@var{x})} denotes the pseudoinverse of
## @var{x}.
##
## @item sigma
## The OLS estimator for the matrix @var{s},
##
## @example
## @group
## @var{sigma} = (@var{y}-@var{x}*@var{beta})'
## * (@var{y}-@var{x}*@var{beta})
## / (@var{t}-rank(@var{x}))
## @end group
## @end example
##
## @item r
## The matrix of OLS residuals, @code{@var{r} = @var{y} - @var{x} *
## @var{beta}}.
## @end table
## @end deftypefn
## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at>
## Created: May 1993
## Adapted-By: jwe
function [BETA, SIGMA, R] = ols (Y, X)
if (nargin != 2)
error("usage : [BETA, SIGMA [, R]] = ols (Y, X)");
endif
[nr, nc] = size (X);
[ry, cy] = size (Y);
if (nr != ry)
error ("ols: incorrect matrix dimensions");
endif
Z = X' * X;
r = rank (Z);
if (r == nc)
BETA = inv (Z) * X' * Y;
else
BETA = pinv (X) * Y;
endif
R = Y - X * BETA;
SIGMA = R' * R / (nr - r);
endfunction