home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
zgscal.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
5KB
|
145 lines
## Copyright (C) 1996,1998 Auburn University. All Rights Reserved
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
## -*- texinfo -*-
## @deftypefn {Function File } { x =} zgscal (@var{f}, @var{z}, @var{n}, @var{m}, @var{p})
## Generalized conjugate gradient iteration to
## solve zero-computation generalized eigenvalue problem balancing equation
## @math{fx=z};
## called by @code{zgepbal}
## @end deftypefn
## References:
## ZGEP: Hodel, "Computation of Zeros with Balancing," 1992, submitted to LAA
## Generalized CG: Golub and Van Loan, "Matrix Computations, 2nd ed" 1989
function x = zgscal (a, b, c, d, z, n, m, p)
## A. S. Hodel July 24 1992
## Conversion to Octave R. Bruce Tenison July 3, 1994
## initialize parameters:
## Givens rotations, diagonalized 2x2 block of F, gcg vector initialization
nmp = n+m+p;
## x_0 = x_{-1} = 0, r_0 = z
x = zeros(nmp,1);
xk1 = x;
xk2 = x;
rk1 = z;
k = 0;
## construct balancing least squares problem
F = eye(nmp);
for kk=1:nmp
F(1:nmp,kk) = zgfmul(a,b,c,d,F(:,kk));
endfor
[U,H,k1] = krylov(F,z,nmp,1e-12,1);
if(!is_sqr(H))
if(columns(H) != k1)
error("zgscal(tzero): k1=%d, columns(H)=%d",k1,columns(H));
elseif(rows(H) != k1+1)
error("zgscal: k1=%d, rows(H) = %d",k1,rows(H));
elseif ( norm(H(k1+1,:)) > 1e-12*norm(H,"inf") )
zgscal_last_row_of_H = H(k1+1,:)
error("zgscal: last row of H nonzero (norm(H)=%e)",norm(H,"inf"))
endif
H = H(1:k1,1:k1);
U = U(:,1:k1);
endif
## tridiagonal H can still be rank deficient, so do permuted qr
## factorization
[qq,rr,pp] = qr(H); # H = qq*rr*pp'
nn = rank(rr);
qq = qq(:,1:nn);
rr = rr(1:nn,:); # rr may not be square, but "\" does least
xx = U*pp*(rr\qq'*(U'*z)); # squares solution, so this works
## xx1 = pinv(F)*z;
## zgscal_x_xx1_err = [xx,xx1,xx-xx1]
return;
## the rest of this is left from the original zgscal;
## I've had some numerical problems with the GCG algorithm,
## so for now I'm solving it with the krylov routine.
## initialize residual error norm
rnorm = norm(rk1,1);
xnorm = 0;
fnorm = 1e-12 * norm([a,b;c,d],1);
## dummy defines for MATHTOOLS compiler
gamk2 = 0; omega1 = 0; ztmz2 = 0;
## do until small changes to x
len_x = length(x);
while ((k < 2*len_x) & (xnorm> 0.5) & (rnorm>fnorm))|(k == 0)
k = k+1;
## solve F_d z_{k-1} = r_{k-1}
zk1= zgfslv(n,m,p,rk1);
## Generalized CG iteration
## gamk1 = (zk1'*F_d*zk1)/(zk1'*F*zk1);
ztMz1 = zk1'*rk1;
gamk1 = ztMz1/(zk1'*zgfmul(a,b,c,d,zk1));
if(rem(k,len_x) == 1) omega = 1;
else omega = 1/(1-gamk1*ztMz1/(gamk2*omega1*ztmz2));
endif
## store x in xk2 to save space
xk2 = xk2 + omega*(gamk1*zk1 + xk1 - xk2);
## compute new residual error: rk = z - F xk, check end conditions
rk1 = z - zgfmul(a,b,c,d,xk2);
rnorm = norm(rk1);
xnorm = max(abs(xk1 - xk2));
## printf("zgscal: k=%d, gamk1=%e, gamk2=%e, \nztMz1=%e ztmz2=%e\n", ...
## k,gamk1, gamk2, ztMz1, ztmz2);
## xk2_1_zk1 = [xk2 xk1 zk1]
## ABCD = [a,b;c,d]
## prompt
## get ready for next iteration
gamk2 = gamk1;
omega1 = omega;
ztmz2 = ztMz1;
[xk1,xk2] = swap(xk1,xk2);
endwhile
x = xk2;
## check convergence
if (xnorm> 0.5 & rnorm>fnorm)
warning("zgscal(tzero): GCG iteration failed; solving with pinv");
## perform brute force least squares; construct F
Am = eye(nmp);
for ii=1:nmp
Am(:,ii) = zgfmul(a,b,c,d,Am(:,ii));
endfor
## now solve with qr factorization
x = pinv(Am)*z;
endif
endfunction