home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
zgfmul.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
3KB
|
82 lines
## Copyright (C) 1996,1998 Auburn University. All Rights Reserved
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
## -*- texinfo -*-
## @deftypefn {Function File } @var{y} = zgfmul(@var{a},@var{b},@var{c},@var{d},@var{x})
##
## Compute product of zgep incidence matrix @var{F} with vector @var{x}.
## Used by zgepbal (in zgscal) as part of generalized conjugate gradient
## iteration.
## @end deftypefn
## References:
## ZGEP: Hodel, "Computation of Zeros with Balancing," 1992, submitted to LAA
## Generalized CG: Golub and Van Loan, "Matrix Computations, 2nd ed" 1989
function y = zgfmul (a, b, c, d, x)
## A. S. Hodel July 24 1992
## Conversion to Octave July 3, 1994
[n,m] = size(b);
[p,m1] = size(c);
nm = n+m;
y = zeros(nm+p,1);
## construct F column by column
for jj=1:n
Fj = zeros(nm+p,1);
## rows 1:n: F1
aridx = complmnt(jj,find(a(jj,:) != 0));
acidx = complmnt(jj,find(a(:,jj) != 0));
bidx = find(b(jj,:) != 0);
cidx = find(c(:,jj) != 0);
Fj(aridx) = Fj(aridx) - 1; # off diagonal entries of F1
Fj(acidx) = Fj(acidx) - 1;
## diagonal entry of F1
Fj(jj) = length(aridx)+length(acidx) + length(bidx) + length(cidx);
if(!isempty(bidx)) Fj(n+bidx) = 1; endif # B' incidence
if(!isempty(cidx)) Fj(n+m+cidx) = -1; endif # -C incidence
y = y + x(jj)*Fj; # multiply by corresponding entry of x
endfor
for jj=1:m
Fj = zeros(nm+p,1);
bidx = find(b(:,jj) != 0);
if(!isempty(bidx)) Fj(bidx) = 1; endif # B incidence
didx = find(d(:,jj) != 0);
if(!isempty(didx)) Fj(n+m+didx) = 1; endif # D incidence
Fj(n+jj) = length(bidx) + length(didx); # F2 is diagonal
y = y + x(n+jj)*Fj; # multiply by corresponding entry of x
endfor
for jj=1:p
Fj = zeros(nm+p,1);
cidx = find(c(jj,:) != 0);
if(!isempty(cidx)) Fj(cidx) = -1; endif # -C' incidence
didx = find(d(jj,:) != 0);
if(!isempty(didx)) Fj(n+didx) = 1; endif # D' incidence
Fj(n+m+jj) = length(cidx) + length(didx); # F2 is diagonal
y = y + x(n+m+jj)*Fj; # multiply by corresponding entry of x
endfor
endfunction