home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
ss2sys.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
9KB
|
294 lines
## Copyright (C) 1996,1998 Auburn University. All Rights Reserved.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
## -*- texinfo -*-
## @deftypefn {Function File } { @var{sys} =} ss2sys (@var{a},@var{b},@var{c}@{,@var{d}, @var{tsam}, @var{n}, @var{nz}, @var{stname}, @var{inname}, @var{outname}, @var{outlist}@})
## Create system structure from state-space data. May be continous,
## discrete, or mixed (sampeled-data)
##
## @strong{Inputs}
## @table @var
## @item a, b, c, d
## usual state space matrices.
##
## default: @var{d} = zero matrix
##
## @item tsam
## sampling rate. Default: @math{tsam = 0} (continuous system)
##
## @item n, nz
## number of continuous, discrete states in the system
##
## default:
## @table @var
## @item tsam = 0
## @math{n = @code{rows}(@var{a})}, @math{nz = 0}
##
## @item tsam > 0
## @math{ n = 0}, @math{nz = @code{rows}(@var{a})}
##
## see below for system partitioning
##
## @end table
##
## @item stname
## list of strings of state signal names
##
## default (@var{stname}=[] on input): @code{x_n} for continuous states,
## @code{xd_n} for discrete states
##
## @item inname
## list of strings of input signal names
##
## default (@var{inname} = [] on input): @code{u_n}
##
## @item outname
## list of strings of input signal names
##
## default (@var{outname} = [] on input): @code{y_n}
##
## @item outlist
##
## list of indices of outputs y that are sampled
##
## default:
## @table @var
## @item tsam = 0
## @math{outlist = []}
## @item tsam > 0
## @math{outlist = 1:@code{rows}(@var{c})}
## @end table
##
## Unlike states, discrete/continous outputs may appear in any order.
##
## @strong{Note} @code{sys2ss} returns a vector @var{yd} where
## @var{yd}(@var{outlist}) = 1; all other entries of @var{yd} are 0.
##
## @end table
##
## @strong{Outputs}
## @var{outsys} = system data structure
##
## @strong{System partitioning}
##
## Suppose for simplicity that outlist specified
## that the first several outputs were continuous and the remaining outputs
## were discrete. Then the system is partitioned as
## @example
## @group
## x = [ xc ] (n x 1)
## [ xd ] (nz x 1 discrete states)
## a = [ acc acd ] b = [ bc ]
## [ adc add ] [ bd ]
## c = [ ccc ccd ] d = [ dc ]
## [ cdc cdd ] [ dd ]
##
## (cdc = c(outlist,1:n), etc.)
## @end group
## @end example
## with dynamic equations:
## @ifinfo
## @math{ d/dt xc(t) = acc*xc(t) + acd*xd(k*tsam) + bc*u(t)}
##
## @math{ xd((k+1)*tsam) = adc*xc(k*tsam) + add*xd(k*tsam) + bd*u(k*tsam)}
##
## @math{ yc(t) = ccc*xc(t) + ccd*xd(k*tsam) + dc*u(t)}
##
## @math{ yd(k*tsam) = cdc*xc(k*tsam) + cdd*xd(k*tsam) + dd*u(k*tsam)}
## @end ifinfo
## @iftex
## @tex
## $$\eqalign{
## {d \over dt} x_c(t)
## & = a_{cc} x_c(t) + a_{cd} x_d(k*t_{sam}) + bc*u(t) \cr
## x_d((k+1)*t_{sam})
## & = a_{dc} x_c(k t_{sam}) + a_{dd} x_d(k t_{sam}) + b_d u(k t_{sam}) \cr
## y_c(t)
## & = c_{cc} x_c(t) + c_{cd} x_d(k t_{sam}) + d_c u(t) \cr
## y_d(k t_{sam})
## & = c_{dc} x_c(k t_{sam}) + c_{dd} x_d(k t_{sam}) + d_d u(k t_{sam})
## }$$
## @end tex
## @end iftex
##
## @strong{Signal partitions}
## @example
## @group
## | continuous | discrete |
## ----------------------------------------------------
## states | stname(1:n,:) | stname((n+1):(n+nz),:) |
## ----------------------------------------------------
## outputs | outname(cout,:) | outname(outlist,:) |
## ----------------------------------------------------
## @end group
## @end example
## where @math{cout} is the list of in 1:@code{rows}(@var{p})
## that are not contained in outlist. (Discrete/continuous outputs
## may be entered in any order desired by the user.)
##
## @strong{Example}
## @example
## octave:1> a = [1 2 3; 4 5 6; 7 8 10];
## octave:2> b = [0 0 ; 0 1 ; 1 0];
## octave:3> c = eye(3);
## octave:4> sys = ss2sys(a,b,c,[],0,3,0,list("volts","amps","joules"));
## octave:5> sysout(sys);
## Input(s)
## 1: u_1
## 2: u_2
##
## Output(s):
## 1: y_1
## 2: y_2
## 3: y_3
##
## state-space form:
## 3 continuous states, 0 discrete states
## State(s):
## 1: volts
## 2: amps
## 3: joules
##
## A matrix: 3 x 3
## 1 2 3
## 4 5 6
## 7 8 10
## B matrix: 3 x 2
## 0 0
## 0 1
## 1 0
## C matrix: 3 x 3
## 1 0 0
## 0 1 0
## 0 0 1
## D matrix: 3 x 3
## 0 0
## 0 0
## 0 0
## @end example
## Notice that the @var{D} matrix is constructed by default to the
## correct dimensions. Default input and output signals names were assigned
## since none were given.
##
## @end deftypefn
function retsys = ss2sys (a, b, c, d, tsam, n, nz, stname, inname, outname, outlist)
## Written by John Ingram (ingraje@eng.auburn.edu) July 20, 1996
## Test for correct number of inputs
if ((nargin < 3) | (nargin > 11))
usage("retsys = ss2sys (a,b,c{,d,tsam,n,nz,stname,inname,outname,outlist})");
endif
## verify A, B, C, D arguments
## If D is not specified, set it to a zero matrix of appriate dimension.
if (nargin == 3) d = zeros(rows(c) , columns(b));
elseif (isempty(d)) d = zeros(rows(c) , columns(b)); endif
## Check the dimensions
[na,m,p] = abcddim(a,b,c,d);
## If dimensions are wrong, exit function
if (m == -1)
error("a(%dx%d), b(%dx%d), c(%dx%d), d(%dx%d); incompatible", ...
rows(a), columns(a), rows(b), columns(b), rows(c), columns(c), ...
rows(d), columns(d));
endif
## check for tsam input
if(nargin < 5) tsam = 0;
elseif( !( is_sampl(tsam) | (tsam == 0) ) )
error("tsam must be a nonnegative real scalar");
endif
## check for continuous states
if( (nargin < 6) & (tsam == 0) ) n = na;
elseif(nargin < 6) n = 0;
elseif((!is_mat(n)) | isstr(n))
error("Parameter n is not a numerical value.");
elseif( (!is_scal(n)) | (n < 0 ) | (n != round(n)) )
if(is_scal(n)) error("illegal value of n=%d,%e",n,n);
else error("illegal value of n=(%dx%d)", ...
rows(n), columns(n)); endif
endif
## check for num discrete states
if( (nargin < 7) & (tsam == 0)) nz = 0;
elseif(nargin < 7) nz = na - n;
elseif((!is_mat(nz)) | isstr(nz))
error("Parameter nz is not a numerical value.");
elseif( (!is_scal(nz)) | (nz < 0 ) | (nz != round(nz)) )
if(is_scal(nz))
error(["illegal value of nz=",num2str(nz)]);
else
error(["illegal value of nz=(",num2str(rows(nz)),"x", ...
num2str(columns(nz)),")"]);
endif
endif
## check for total number of states
if( (n + nz) != na )
error(["Illegal: a is ",num2str(na),"x",num2str(na),", n=", ...
num2str(n),", nz=",num2str(nz)]);
endif
## construct system with default names
retsys.a = a;
retsys.b = b;
retsys.c = c;
retsys.d = d;
retsys.n = n;
retsys.nz = nz;
retsys.tsam = tsam;
retsys.yd = zeros(1,p); # default value entered below
## Set the system vector: active = 2(ss), updated = [0 0 1];
retsys.sys = [2, 0, 0, 1];
retsys.stname = sysdefst(n,nz);
retsys.inname = sysdefio(m,"u");
retsys.outname = sysdefio(p,"y");
## check for state names
if(nargin >= 8)
if(!isempty(stname)) retsys = syssetsg(retsys,"st",stname); endif
endif
## check for input names
if(nargin >= 9)
if(!isempty(inname)) retsys = syssetsg(retsys,"in",inname); endif
endif
## check for output names
if(nargin >= 10)
if(!isempty(outname)) retsys = syssetsg(retsys,"out",outname); endif
endif
## set up yd
if(nargin < 11)
retsys = syssetsg(retsys,"yd",ones(1,p)*(tsam > 0));
else
if(!isempty(outlist))
retsys = syssetsg(retsys,"yd",ones(size(outlist)),outlist);
endif
endif
endfunction