home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
nyquist.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
7KB
|
207 lines
## Copyright (C) 1996,1998 Auburn University. All Rights Reserved
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
## -*- texinfo -*-
## @deftypefn {Function File } {[@var{realp}, @var{imagp}, @var{w}] =} nyquist (@var{sys}@{, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol}@})
## @deftypefnx {Function File } {} nyquist (@var{sys}@{, @var{w}, @var{out_idx}, @var{in_idx}, @var{atol}@})
## Produce Nyquist plots of a system; if no output arguments are given, Nyquist
## plot is printed to the screen.
##
## Compute the frequency response of a system.
## @strong{Inputs} (pass as empty to get default values)
## @table @var
## @item sys
## system data structure (must be either purely continuous or discrete;
## see is_digit)
## @item w
## frequency values for evaluation.
## if sys is continuous, then bode evaluates @math{G(jw)}
## if sys is discrete, then bode evaluates @math{G(exp(jwT))}, where
## @math{@var{T}=sysgetts(@var{sys})} (the system sampling time)
## @item default
## the default frequency range is selected as follows: (These
## steps are NOT performed if @var{w} is specified)
## @end table
## @enumerate
## @item via routine bodquist, isolate all poles and zeros away from
## @var{w}=0 (@var{jw}=0 or @math{exp(@var{jwT})=1}) and select the frequency
## range based on the breakpoint locations of the frequencies.
## @item if @var{sys} is discrete time, the frequency range is limited
## to @var{jwT} in
## @ifinfo
## [0,2p*pi]
## @end ifinfo
## @iftex
## $[0,2p*\pi]$
## @end iftex
## @item A "smoothing" routine is used to ensure that the plot phase does
## not change excessively from point to point and that singular
## points (e.g., crossovers from +/- 180) are accurately shown.
## @end enumerate
## outputs, inputs: the indices of the output(s) and input(s) to be used in
## the frequency response; see sysprune.
##
## @strong{Inputs} (pass as empty to get default values)
## @table @var
## @item atol
## for interactive nyquist plots: atol is a change-in-slope tolerance
## for the of asymptotes (default = 0; 1e-2 is a good choice). This allows
## the user to ``zoom in'' on portions of the Nyquist plot too small to be
## seen with large asymptotes.
## @end table
## @strong{Outputs}
## @table @var
## @item realp, imagp
## the real and imaginary parts of the frequency response
## @math{G(jw)} or @math{G(exp(jwT))} at the selected frequency values.
## @item w
## the vector of frequency values used
## @end table
##
## If no output arguments are given, nyquist plots the results to the screen.
## If @var{atol} != 0 and asymptotes are detected then the user is asked
## interactively if they wish to zoom in (remove asymptotes)
## Descriptive labels are automatically placed.
##
## Note: if the requested plot is for an MIMO system, a warning message is
## presented; the returned information is of the magnitude
## ||G(jw)|| or ||G(exp(jwT))|| only; phase information is not computed.
##
## @end deftypefn
function [realp, imagp, w] = nyquist (sys, w, outputs, inputs, atol)
## By R. Bruce Tenison, July 13, 1994
## A. S. Hodel July 1995 (adaptive frequency spacing,
## remove acura parameter, etc.)
## Revised by John Ingram July 1996 for system format
## Both bode and nyquist share the same introduction, so the common
## parts are in a file called bodquist.m. It contains the part that
## finds the number of arguments, determines whether or not the system
## is SISO, andd computes the frequency response. Only the way the
## response is plotted is different between the two functions.
## check number of input arguments given
if (nargin < 1 | nargin > 5)
usage("[realp,imagp,w] = nyquist(sys[,w,outputs,inputs,atol])");
endif
if(nargin < 2)
w = [];
endif
if(nargin < 3)
outputs = [];
endif
if(nargin < 4)
inputs = [];
endif
if(nargin < 5)
atol = 0;
elseif(!(is_sampl(atol) | atol == 0))
error("atol must be a nonnegative scalar.")
endif
## signal to bodquist who's calling
[f,w] = bodquist(sys,w,outputs,inputs,"nyquist");
## Get the real and imaginary part of f.
realp = real(f);
imagp = imag(f);
## No output arguments, then display plot, otherwise return data.
if (nargout == 0)
dnplot = 0;
while(!dnplot)
if(gnuplot_has_multiplt)
oneplot();
gset key;
endif
clearplot();
grid ("on");
gset data style lines;
if(is_digit(sys))
tstr = " G(e^{jw}) ";
else
tstr = " G(jw) ";
endif
xlabel(["Re(",tstr,")"]);
ylabel(["Im(",tstr,")"]);
[stn, inn, outn] = sysgetsg(sys);
if(is_siso(sys))
title(sprintf("Nyquist plot from %s to %s, w (rad/s) in [%e, %e]", ...
nth(inn,1), nth(outn,1), w(1), w(length(w))) )
endif
gset nologscale xy;
axis(ax2dlim([[vec(realp),vec(imagp)];[vec(realp),-vec(imagp)]]));
plot(realp,imagp,"- ;+w;",realp,-imagp,"-@ ;-w;");
## check for interactive plots
dnplot = 1; # assume done; will change later if atol is satisfied
if(atol > 0 & length(f) > 2)
## check for asymptotes
fmax = max(abs(f));
fi = max(find(abs(f) == fmax));
## compute angles from point to point
df = diff(f);
th = atan2(real(df),imag(df))*180/pi;
## get angle at fmax
if(fi == length(f)) fi = fi-1; endif
thm = th(fi);
## now locate consecutive angles within atol of thm
ith_same = find(abs(th - thm) < atol);
ichk = union(fi,find(diff(ith_same) == 1));
## locate max, min consecutive indices in ichk
loval = max(complmnt(ichk,1:fi));
if(isempty(loval)) loval = fi;
else loval = loval + 1; endif
hival = min(complmnt(ichk,fi:length(th)));
if(isempty(hival)) hival = fi+1; endif
keep_idx = complmnt(loval:hival,1:length(w));
if(length(keep_idx))
resp = input("Remove asymptotes and zoom in (y or n): ",1);
if(resp(1) == "y")
dnplot = 0; # plot again
w = w(keep_idx);
f = f(keep_idx);
realp = real(f);
imagp = imag(f);
endif
endif
endif
endwhile
w = [];
realp=[];
imagp=[];
endif
endfunction