home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
is_stabi.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
3KB
|
90 lines
## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
## -*- texinfo -*-
## @deftypefn {Function File } {[@var{retval}, @var{U}] =} is_stabi (@var{sys}@{, @var{tol}@})
## @deftypefnx {Function File } {[@var{retval}, @var{U}] =} is_stabi (@var{a}@{, @var{b} ,@var{tol}@})
## Logical check for system stabilizability (i.e., all unstable modes are controllable).
##
##
## Test for stabilizability is performed via an ordered Schur decomposition
## that reveals the unstable subspace of the system @var{A} matrix.
##
## Returns @code{retval} = 1 if the system, @code{a}, is stabilizable, if the pair
## (@code{a}, @code{b}) is stabilizable, or 0 if not.
## @code{U} = orthogonal basis of controllable subspace.
##
## Controllable subspace is determined by applying Arnoldi iteration with
## complete re-orthogonalization to obtain an orthogonal basis of the
## Krylov subspace.
## @example
## span ([b,a*b,...,a^ b]).
## @end example
## tol is a roundoff paramter, set to 200*eps if omitted.
## @end deftypefn
## See also: size, rows, columns, length, is_mat, is_scal, is_vec
## is_obsrv, is_stabi, is_detec
function [retval, U] = is_stabi (a, b, tol)
## Written by A. S. Hodel (scotte@eng.auburn.edu) August, 1993.
## Updated by A. S. Hodel (scotte@eng.auburn.edu) Aubust, 1995 to use krylovb
## Updated by John Ingram (ingraje@eng.auburn.edu) July, 1996 to accept systems
if(nargin < 1) usage("[retval,U] = is_stabi(a {, b ,tol})");
elseif(is_struct(a))
## sustem passed.
if(nargin == 2)
tol = b; % get tolerance
elseif(nargin > 2)
usage("[retval,U] = is_stabi(sys{,tol})");
endif
[a,b] = sys2ss(sys);
else
## a,b arguments sent directly.
if(nargin > 3)
usage("[retval,U] = is_stabi(a {, b ,tol})");
endif
endif
if(exist("tol"))
[retval,U] = is_contr(a,b,tol);
else
[retval,U] = is_contr(a,b);
tol = 1e2*rows(b)*eps;
endif
if( !retval & columns(U) > 0)
## now use an ordered Schur decomposition to get an orthogonal
## basis of the unstable subspace...
n = rows(a);
[ua,s] = schur(-(a+eye(n)*tol),'A');
k = sum( real(eig(a)) >= 0 ); # count unstable poles
if( k > 0 )
ua = ua(:,1:k);
## now see if span(ua) is contained in span(U)
retval = (norm(ua - U*U'*ua) < tol);
else
retval = 1; # all poles stable
endif
endif
endfunction