home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
hnfsnric.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
3KB
|
76 lines
## Copyright (C) 1996,1998 Auburn University. All Rights Reserved
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
## usage: [Xinf,x_ha_err] = hnfsnric(A,BB,C1,d1dot,R,ptol)
##
## forms
## xx = ([BB; -C1'*d1dot]/R) * [d1dot'*C1 BB'];
## Ha = [A 0*A; -C1'*C1 -A'] - xx;
## and solves associated Riccati equation
## returns error code
## x_ha_err:
## 0: successful
## 1: Xinf has imaginary eigenvalues
## 2: Hx not Hamiltonian
## 3: Xinf has inf. eigenvalues (numerical overflow)
## 4: Xinf not symmetric
## 5: Xinf not positive definite
## 6: R is singular
function [Xinf, x_ha_err] = hnfsnric (A, BB, C1, d1dot, R, ptol)
x_ha_err = 0; # assume success
Xinf = []; # default return value
n = is_sqr(A);
nw = is_sqr(R);
if(rank(R) != nw) x_ha_err = 6;
else # build hamiltonian Ha for X_inf
xx = ([BB; -C1'*d1dot]/R) * [d1dot'*C1, BB'];
Ha = [A, 0*A; -C1'*C1, -A'] - xx;
x_ha_err = 0;
[d, Ha] = balance(Ha);
[u, s] = schur(Ha, "A");
rev = real(eig(s));
if (any(abs(rev) <= ptol)) # eigenvalues near the imaginary axis
x_ha_err = 1;
elseif (sum(rev > 0) != sum(rev < 0))
## unequal number of positive and negative eigenvalues
x_ha_err = 2;
else
## compute positive Riccati equation solution
u = d * u;
Xinf = u(n+1:2*n,1:n) / u(1:n,1:n);
if (!all(all(finite(Xinf))))
x_ha_err = 3;
elseif (norm(Xinf-Xinf') >= 10*ptol)
## solution not symmetric
x_ha_err = 4;
else
## positive semidefinite?
## force symmetry (faster, avoids some convergence problems)
Xinf = (Xinf + Xinf')/2;
rev = eig(Xinf);
if (any(rev <= -ptol))
x_ha_err = 5;
endif
endif
endif
endif
endfunction