home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: 10 Tools
/
10-Tools.zip
/
octa21fb.zip
/
octave
/
SCRIPTS.ZIP
/
scripts.fat
/
control
/
dlqr.m
< prev
next >
Wrap
Text File
|
1999-12-24
|
4KB
|
167 lines
## Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved.
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by the
## Free Software Foundation; either version 2, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
## for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, write to the Free
## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} dlqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z})
## Construct the linear quadratic regulator for the discrete time system
## @iftex
## @tex
## $$
## x_{k+1} = A x_k + B u_k
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## x[k+1] = A x[k] + B u[k]
## @end example
##
## @end ifinfo
## to minimize the cost functional
## @iftex
## @tex
## $$
## J = \sum x^T Q x + u^T R u
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## J = Sum (x' Q x + u' R u)
## @end example
## @end ifinfo
##
## @noindent
## @var{z} omitted or
## @iftex
## @tex
## $$
## J = \sum x^T Q x + u^T R u + 2 x^T Z u
## $$
## @end tex
## @end iftex
## @ifinfo
##
## @example
## J = Sum (x' Q x + u' R u + 2 x' Z u)
## @end example
##
## @end ifinfo
## @var{z} included.
##
## The following values are returned:
##
## @table @var
## @item k
## The state feedback gain,
## @iftex
## @tex
## $(A - B K)$
## @end tex
## @end iftex
## @ifinfo
## (@var{a} - @var{b}@var{k})
## @end ifinfo
## is stable.
##
## @item p
## The solution of algebraic Riccati equation.
##
## @item e
## The closed loop poles of
## @iftex
## @tex
## $(A - B K)$.
## @end tex
## @end iftex
## @ifinfo
## (@var{a} - @var{b}@var{k}).
## @end ifinfo
## @end table
## @strong{References}
## @enumerate
## @item Anderson and Moore, Optimal Control: Linear Quadratic Methods,
## Prentice-Hall, 1990, pp. 56-58
## @item Kuo, Digital Control Systems, Harcourt Brace Jovanovich, 1992,
## section 11-5-2.
## @end enumerate
## @end deftypefn
function [k, p, e] = dlqr (a, b, q, r, s)
## Written by A. S. Hodel (scotte@eng.auburn.edu) August 1993.
## Converted to discrete time by R. B. Tenison
## (btenison@eng.auburn.edu) October 1993
if (nargin != 4 && nargin != 5)
error ("dlqr: invalid number of arguments");
endif
## Check a.
if ((n = is_sqr (a)) == 0)
error ("dlqr: requires 1st parameter(a) to be square");
endif
## Check b.
[n1, m] = size (b);
if (n1 != n)
error ("dlqr: a,b not conformal");
endif
## Check q.
if ((n1 = is_sqr (q)) == 0 || n1 != n)
error ("dlqr: q must be square and conformal with a");
endif
## Check r.
if((m1 = is_sqr(r)) == 0 || m1 != m)
error ("dlqr: r must be square and conformal with column dimension of b");
endif
## Check if n is there.
if (nargin == 5)
[n1, m1] = size (s);
if (n1 != n || m1 != m)
error ("dlqr: z must be identically dimensioned with b");
endif
## Incorporate cross term into a and q.
ao = a - (b/r)*s';
qo = q - (s/r)*s';
else
s = zeros (n, m);
ao = a;
qo = q;
endif
## Check that q, (r) are symmetric, positive (semi)definite
if (is_symm (q) && is_symm (r) ...
&& all (eig (q) >= 0) && all (eig (r) > 0))
p = dare (ao, b, qo, r);
k = (r+b'*p*b)\b'*p*a + r\s';
e = eig (a - b*k);
else
error ("dlqr: q (r) must be symmetric positive (semi) definite");
endif
endfunction